
Vector-valued modular functions and forms

Let Γ = SL2(Z) be the classical modular group of 2×2 integer ma-
trices with unit determinant, and let ρ : Γ → GLd(C) denote a d-
dimensional matrix representation of Γ satisfying some technical as-

sumptions: namely, that T := ρ
(

1 1

0 1

)
is diagonal and ρ

(
−1 0

0 −1

)
is the

identity matrix. It follows from the above properties that the matrices

S :=ρ
(

0 −1

1 0

)
and U :=ρ

(
0 −1

1 −1

)
=ST−1 have orders 2 and 3 respectively,

consequently their characteristic polynomials read zd−α (z − 1)α and

zd−β1−β2 (z − ω)β1 (z − ω)β2 for suitable integers α, β1 and β2, where
ω = exp

(
2πi
3

)
. The 4-tuple (d, α, β1, β2) is a most important char-

acteristic of the representation ρ, called its signature. Note that the
signature may be computed from the relations

Tr(S)= d− 2α ,(1a)

Tr(U)= d− 3

2
(β1 + β2) + i

√
3

2
(β1 − β2) .(1b)

The group Γ acts on the complex upper half-plane H={τ ∈ C | Im τ >0}
by fractional linear transformations

(2) τ 7→ aτ + b

cτ + d
,

for
(
a b

c d

)
∈Γ. The quotient of the upper half-plane by this group action

becomes after compacti�cation (i.e. after adding the cusp at τ = i∞)
a Riemann-surface of genus 0. By a (weak) vector-valued modular form

of weight w and multiplier ρ is meant a map X : H→Cd that satis�es
the following criteria.

1.Holomorphicity: X is holomorphic in the upper half-plane H;

2.Functional equation: for all
(
a b

c d

)
∈ Γ

(3) X
(
aτ + b

cτ + d

)
= (cτ + d)w ρ

(
a b
c d

)
X(τ)

3.Cuspidal behavior: X has �nite order poles at the cusp τ= i∞.

To explain this last point, note that for
(

1 1

0 1

)
∈ Γ the functional

equation Eq.3 takes the form

(4) X (τ + 1) = TX (τ) .

Since T is diagonal by assumption, there exists a diagonal matrix Λ
(called the exponent matrix ) such that T = exp(2πiΛ). It follows that
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exp(−2πiτΛ) X (τ) is periodic (with period 1), consequently it may be
expanded into a Fourier-series, which reads

(5) q−ΛX (q) =
∑
n∈Z

X[n] qn ,

using the usual notation q = exp(2πiτ). The principal (or singular)
part PX of X is the sum of the terms with negative powers of q on the
right-hand side of Eq.5, i.e.

(6) PX :=
∑
n<0

X[n] qn .

With this de�nition, X has �nite order poles at the cusp τ= i∞ if and
only if its principal part PX is a �nite sum.
In case ρ is the trivial one-dimensional representation, we recover the

standard notion of (weak) modular forms. In case the weight w is zero,
the corresponding forms are called vector-valued modular functions :
these form an in�nite dimensional linear space M(ρ) over C. Taking

principal parts provides us with a linear map P :M(ρ)→ q−1C[q−1]
d
,

which may be shown to be bijective under suitable conditions.
At this point, we should notice that the exponent matrix Λ is not com-
pletely determined by the representation ρ. Indeed, only the fractional
part of its diagonal elements are determined, but the integer parts
might be chosen at will. But this choice a�ects the de�nition Eq.6 of
the principal part! It may be shown that P is bijective provided one
chooses the integer part of Λ in such a way that the trace condition

(7) Tr(Λ) = d− α

2
− β1 + 2β2

3

is satis�ed, and this may always be achieved.
From now on, we shall suppose that an exponent matrix satisfying

Eq.7 has been chosen, consequently P is bijective. This means that we
can choose a canonical basis X(ξ;n) ofM(ρ) such that

(8)
[
PX(ξ;n)

]
η

= q−nδξη ,

i.e. X(ξ;n) has a pole of order n > 0 in the ξ-th component. The basic
problem is to determine the q dependence of the X(ξ;n).
Let

(9) J(q) = q−1 +
∞∑
n=1

c(n) qn = q−1 + 196884q+ . . .

denote the Hauptmodul of Γ, i.e. the (suitably normalized) modular
invariant. Multiplication by J takes the spaceM(ρ) to itself, in other
words M(ρ) is a C[J ]-module. The important point is that this is a
C[J ]-module of �nite rank, because the canonical basis vectors satisfy
the recursion relations
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(10) X(ξ;m+1) = J(q) X(ξ;m) −
m−1∑
n=1

c(n) X(ξ;m−n) −
∑
η

X (ξ;m)
η X(η;1) ,

where

(11) X (ξ;m)
η := lim

q→0

([
q−ΛX(ξ;m)

]
η
− q−mδξη

)
denotes the �constant part� of X(ξ;m). These recursion relations allow
to express each canonical basis vector X(ξ;m) in terms of the X(ξ;1)-s,
proving that the latter generate the C[J ]-moduleM(ρ).
Let's introduce the fundamental matrix

(12) Ξ(q)ξη :=
[
X(η;1)

]
ξ
,

whose columns generate the C[J ]-moduleM(ρ). It may be shown that

the determinant of this matrix is given by

(13) det Ξ(τ) =

(
E4 (τ)

∆ (τ)1/3

)β1+2β2
(

E6 (τ)

∆ (τ)1/2

)α

,

where

E4 =1 + 240q + 2160q2 + . . . ,(14a)

E6 =1− 504q − 16632q2 − . . .(14b)

denote the Eisenstein series of weights 4 and 6, and ∆ = q
∏∞

n=1 (1− qn)24

is the discriminant form of weight 12. In particular, the fundamental
matrix is invertible except at the elliptic points τ = i and τ = ω. In
terms of the fundamental matrix, any X ∈M(ρ) may be written as
X(q) = Ξ(q) X (q), where X∈C[J ] d is a column vector whose compo-
nents are polynomials in the Hauptmodul J(q). Even better, one has
the following

Inversion formula: if X(q) ∈M(ρ) has principal part PX, then

(15) X(q) = Ξ(q)
1

2πi

�
J ′(z)

J(q)− J(z)
Ξ(z)−1 zΛPX (z) dz .

Here J ′(z) = −z−2 +
∑∞

n=1 nc(n) zn−1 is the derivative of the Haupt-
modul J , and the integral is to be taken over a closed contour encircling
the origin, and contained in the circle of radius |q|.
In particular,

(16)
[
X(ξ;n) (q)

]
η

=
1

2πi

�
zΛξξ−nJ ′(z)

J(q)− J(z)

[
Ξ(q) Ξ(z)−1]

ηξ
dz .
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As can be seen from the above, the whole story boils down to the
computation of the fundamental matrix Ξ(q). In this respect, the im-
portant observation is that the di�erential operator

(17) ∇ :=
E(τ)

2πi

d

dτ

mapsM(ρ) to itself, where

(18) E(q) :=
E4(q)E6(q)

∆(q)
=

∞∑
n=−1

Enqn .

Looking at the action of ∇ on the canonical basis vectors, one gets the
di�erential relations

(19) ∇X(ξ;m) = (Λξξ −m)
m−1∑
n=−1

EnX(ξ;m−n) +
∑
η

ΛηηX (ξ;m)
η X(η;1) .

But the fundamental matrix Ξ(q) determines completely the canoni-
cal basis vectors X(ξ;m) through Eq.16: inserting these expressions into
Eq.19, one arrives at the result that the di�erential relations are com-
patible with the solution Eq.16 of the recursion relations if, and only if
the fundamental matrix satis�es the �rst order linear di�erential equa-
tion � the compatibility equation �

(20)
1

2πi

dΞ(τ)

dτ
= Ξ(τ) D(τ) ,

where

(21) D(τ) =
1

E(τ)
{(J(τ)− 240) (Λ− 1) + X + ΛX − XΛ}

and Xξη = X (η;1)
ξ is the so-called characteristic matrix. Taking into

account the boundary condition

(22) Ξ(q)→ qΛ−1 as q → 0 ,

which follows from Eq.8 , one can solve Eq.20 provided one knows the
exponent matrix Λ and the characteristic matrix X . By the theory of
ordinary di�erential equations, Eq.20 has series solutions that converge
in suitably small neighborhoods; since Ξ(τ) solves the equation and is
holomorphic on H, it follows that the above series converge everywhere.
Note that Eq.20 has singular points at the poles of D(τ), i.e. at

the cusp τ = i∞ and at the elliptic points τ = i and τ = exp
(

2πi
3

)
.

As it turns out, all these are regular singular points. To see this, let's
consider the uniformizing function

(23) z(τ) =
984− J(τ)

1728
,

which maps the upper half-plane H onto the complex plane C, has
valence 2 and 3 at the elliptic points, and has a �rst order pole at the
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cusp τ = i∞; as usual, we extend the de�nition of z so that it maps
τ = i∞ to ∞. As a function of z, the fundamental matrix satis�es the
following form of the compatibility equation

(24)
dΞ(z)

dz
= Ξ(z)

(
A

2z
+

B

3 (z− 1)

)
,

with

A =
31

36
(1−Λ)− 1

864
(X + ΛX − XΛ) ,(25a)

B =
41

24
(1−Λ) +

1

576
(X + ΛX − XΛ) .(25b)

The di�erential equation Eq.24 has indeed three regular singular points
(at z = 0, 1 and ∞, corresponding to τ = i, ω and i∞ respectively),
hence it is a (matrix-valued) hypergeometric equation.
As a function of z, the fundamental matrix is not single valued: its

multivaluedness is described by the monodromy of Eq.24 , which is in
turn determined by the representation ρ. The monodromy group of the
hypergeometric equation Eq.24 is precisely the image of ρ, e.g. the

monodromy around z = 0 is given by S = ρ
(

0 −1

1 0

)
, while that around

z = 1 by U = ρ
(

0 −1

1 −1

)
.

The coe�cient matrices A and B in Eq.24 are far from being ar-
bitrary, they are severely restricted by the analytic properties of the
fundamental matrix. In particular, they are both semisimple (i.e. di-
agonalizable), and satisfy the

Spectral condition: the possible eigenvalues of A are 0 or 1, while

those of B are either 0, 1 or 2.

Note that the multiplicities of the di�erent eigenvalues might be
expressed in terms of the signature, which leads to

det (z −A) = zd−α (z − 1)α ,(26a)

det (z −B) = zd−β1−β2 (z − 1)β1 (z − 2)β2 .(26b)

This, in turn, gives

Tr(A) = α ,(27a)

Tr(B) = β1 + 2β2 ,(27b)

Tr
(
B2
)

= β1 + 4β2 ,(27c)

and the algebraic relations

(28) A (A− 1) = B (B− 1) (B− 2) = 0 .

Combining these with the relation

(29) 1−Λ =
A

2
+

B

3
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that follows from Eqs.25a and 25b , one concludes that 1

(30) Tr(X ) = 4 (62β1 + 124β2 − 123α),

and that for a given diagonal exponent matrix Λ the matrix A has to
satisfy

A2 = A ,

AΛA =−17

18
A− 2

(
AΛ2 + ΛAΛ + Λ2A

)
+3 (AΛ + ΛA)− 4Λ3 + 8Λ2 − 44

9
Λ +

8

9
,

(31)

which is a system of quadratic equations for the matrix elements of A.
Once a solution to Eq.31 is known, the corresponding characteristic
matrix may be determined from Eq.25a.

1Formally, one also gets the trace condition Eq.7 , but this was assumed to hold

right from the start.
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