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Abstract We argue that a proper treatment of material dispersion
should be based on individual particle tracking using realistic size
and density. The effect of turbulent diffusion and the scavenging
of particles by precipitation are shown to be treatable as stochastic
perturbations of the deterministic Newtonian equation of motion.
This approach enables one to investigate the chaotic aspects of par-
ticle dispersion by means of dynamical systems concepts. Topologi-
cal entropy is shown to be in this context the growth rate of material
lines, which can be considered to provide a novel characterization
of the state of the atmosphere. The deposition process is found to
be well characterizable by the escape rate (being a measure of the
strength of the exponential decay of the number of particles not
yet reached the surface), which might depend on local turbulence
and rain intensity. The variability of the dispersion process due
to the difference between different meteorological forecasts within
an ensemble forecast are also illustrated. Examples are taken from
volcanic eruptions and the Fukushima accident.

1 Introduction

The concepts of chaos theory apply to any nonlinear system. Nowadays
they are also widely used in different treatments of climate dynamics, as
some chapters of this book also illustrate. The most appropriate appear-
ance of dynamical systems theory is in conceptual climate models since
chaos is basically a low-dimensional phenomenon. Primarily, it is a feature
of temporal dependence without any spatial extension. Chaos is thus a
property of systems describable by ordinary differential equations. The of-
ten heard statement that weather is chaotic should therefore be interpreted
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in a symbolic sense: weather, in which spatial features are essential, is more
complex than chaotic. It is basically turbulent in accordance with the fact
that weather is described by the partial differential equations of hydrody-
namics. (In spite of the differences between chaos and turbulence, some
features might be in common, like e.g. the fact that both phenomena are
unpredictable.) As a consequence, all aspects of climate dynamics related to
essential spatial features and requiring thus a description in terms of partial
differential equations are more complicated than chaotic.

There is one class of phenomena, relevant both in weather- and climate-
related contexts, namely the dispersion of particles, which is a chaotic pro-
cess. This is so because the traditional description of any flow occurs in the
Eulerian picture, and implies the determination of the velocity field. The
advection of particles can, however, be treated as a phenomenon sitting on
top of the Eulerian description. Particles basically follow the fluid veloc-
ity at their instantaneous position, and their motion, a Lagrangian feature,
can be considered as one driven by the Eulerian flow. Particle trajectories,
which are functions of time only, can thus basically be obtained as solu-
tions of ordinary differential equations containing the velocity field (which
itself fulfills a partial differential equation) as a known input function. In
this sense advection is a clearly chaotic phenomenon as the term “chaotic
advection” (Aref, 1984) expresses.

In the last decades the demand for precise tracking and forecasting of
atmospheric pollutants has increased due to the growing interest in environ-
mental problems and, consequently, to the requirements for detailed predic-
tion of health and economic hazards. Recent events like volcanic eruptions
(e.g. Mount St. Helens (1980), Pinatubo (1991), Eyjafjallajökull (2010))
and pollutant spreading from industrial accidents (e.g. Fukushima (2011))
underline the need for investigating pollutant dispersion in the atmosphere.
Aerosol particles from different sources may be advected far away from their
initial position and may cause air pollution episodes at distant locations.
As discussed above, a Lagrangian description is needed in all cases when
one is interested in pollutant trajectories1.

A broad class of the currently used particle-tracking models tracks “ghost
particles” (computational particles): any of these particles is assumed to be
point-like, and carries an artificial mass which decays in time (e.g. HYS-
PLIT (Draxler and Hess, 2004), FLEXPART (Stohl et al., 2010)). The
properties of these particles usually do not coincide with those of any real
pollutant particle. In contrary, such particles typically follow the path of

1For describing pollutant concentrations, also Eulerian methods are available, in terms

of advection-diffusion-sedimentation equations, but they are not based on individual

particles, and thus cannot reflect chaos-related properties.
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an air parcel (ideal passive tracer), gravitational settling does not have an
effect on the motion of “ghost particles”. The mass m (whose numerical
value might be on the order of kilograms) attributed to the ghost particle
is time-dependent and decreases due to dry and wet deposition according
to the equation:

dm(t)

dt
= −C(r(t), t)m(t), (1)

where C(r(t), t) is a location and time-dependent coefficient. It is the quan-
tity C which is used to describe effects like gravitational settling, and dry
or wet deposition.

In addition, in this approach a ghost particle is thought to be the center
of mass of a large amount of adjacent pollutants. This assumption only
holds if neighboring particles remain together forever. It is well-known,
however, that advection is typically chaotic (Aref, 1984) and the nature
of chaotic dynamics implies that an initially small, compact ball becomes
rapidly deformed and strongly stretched. A measure of this strong deviation
of neighboring particles is the so-called Lyapunov exponent (Ott, 1993). In
a pictorial representation, the ball of real particles becomes deformed into
a complicated, filamentary shape of large extent, see Figure 1. We should
therefore conclude that the physical reality of “ghost particle” models is
strongly questionable.

m m m i m
i

Figure 1. Comparison of the dispersion of a “ghost particle” and of real
particles after some time, in the atmospheric context, after a few days. The
total mass of the real particles of individual mass mp,i is equal to the mass
mp = m0 of the ghost particle.

A faithful approach in the Lagrangian picture thus requires real particles:
the particles in these models have fixed, realistic size and density (Heffter
and Stunder, 1993; Searcy et al., 1998). However, the currently available
models of this type do not take into account important effects like small-
scale turbulence and the scavenging of particles by precipitation.
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2 The RePLaT Lagrangian Dispersion Model

In order to cope with these effects, we expanded the validity of the available
models (Heffter and Stunder, 1993; Searcy et al., 1998) and developed a rel-
atively simple one, the Real Particle Lagrangian Tracking (RePLaT) model
which is able to describe real physical processes reasonably well (Haszpra
and Tél, 2013a). The model tracks individual aerosol particles with realis-
tic size and density, and takes into account more processes than other “real
particle” models. Since RePLaT describes the motion of realistic aerosol
particles, it is also suitable for the investigation of the dispersion and depo-
sition processes from a dynamical systems point of view.

The equation of motion for the particle trajectory rp(t) is derived from
Newton’s equation. The drag force depends on the particle Reynolds num-
ber that quantifies the relation of hydrodynamical and viscous acceleration
due to the relative velocity between particle and fluid. Scale analysis reveals
that the horizontal velocity of a small aerosol particle takes over the actual
local wind speed practically instantaneously, whereas vertically the termi-
nal velocity also has to be taken into account besides the vertical velocity
component of air. Therefore a particle is advected by the wind components
in the horizontal direction, and its vertical motion is, in addition, influenced
by its terminal velocity wterm which depends on the size r and density ρp
of the particle, as well as, on the density ρ and viscosity ν of the air at the
location of the particle:

drp
dt

= v + wtermn, (2)

where n is the vertical unit vector pointing upwards. For aerosol particles
of size of at most 12 m and with density about ρp = 2000 kg/m3 Stokes’
law is valid during the full motion, and hence the terminal velocity is

wterm = −2

9

ρpr
2

ρν
g. (3)

Since the meteorological data utilized by the dispersion model have
coarse resolution without resolving turbulent diffusion, the effect of small-
scale turbulent diffusion on the particles is built into the model as a stochas-
tic process. Within the planetary boundary layer the computation of the
vertical turbulent diffusivity is based on the Monin–Obukhov similarity the-
ory (see e.g. Dyer (1974); Troen and Mahrt (1986)), while the horizontal
turbulent diffusivity is assumed to be constant in both the boundary layer
and in the free atmosphere. The equation of motion completed by the im-
pact of turbulent diffusion is

drp
dt

= v + wtermn+ ξD, (4)
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where ξ is a random walk process and D represents the turbulent diffusion
coefficient in the different directions, which might be location- and time-
dependent.

A further novel feature of the model is the application of the impact of
precipitation on individual particles by a random process which depends
on precipitation intensity. For the parametrization of wet deposition, we
have taken over what is used in the corresponding Eulerian approach (Se-
infeld and Pandis, 1998). There the impact of wet deposition is taken into
account via Eq. (1) with C = kw called the wet deposition coefficient (or
scavenging coefficient). This implies that after a short time Δt, locally a
fraction 1−exp(−kwΔt) ≈ kwΔt of mass becomes converted into wet mate-
rial within the computational cell. We use this relationship to incorporate
wet deposition into our model. We consider wet deposition as a random
process that results in a particle being captured by a raindrop in time Δt
with probability

p = 1− exp(−kwΔt). (5)

Thereby the radius of the particle suddenly increases to the mean radius
rrain of raindrops which is on the order 100 m or larger. The trajectory
of the “new” particle (a particle that turned into a raindrop) is computed
using the terminal velocity based on the new properties of the particle, and
follows typically from the quadratic drag law. The “new” particle does not
leave the atmosphere instantaneously, but falls through the air according to
the equation of motion (4), with the terminal velocity

wterm = −8

3

ρrainrraing

ρCD
(6)

of raindrops, where CD = 0.4 is the drag coefficient for spheres.
There are different parametrizations available for the typical radius of

the raindrops (Sportisse, 2007). In RePLaT we use the Pruppacher–Klett
parametrization (Pruppacher and Klett, 1997):

rrain = 0.488P 0.21, (7)

where the unit of rrain is mm and the unit of rain intensity P is mmh−1.
Using this and other relations (Sportisse, 2007) the scavenging coefficient
kw appears in terms of rain intensity P as:

kw = 0.154P 0.79 h−1. (8)

For simplicity, the effect of wet deposition is taken into account only below
the 850 hPa level.
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These modifications due to turbulent diffusion and precipitation turn
the equation of motion to a stochastic ordinary differential equation. The
chaotic behavior found in this setting is thus obviously a kind of noisy chaos.

3 Data and Methods

As an input to the dispersion simulations, the reanalysis fields of the ERA-
Interim database (Dee et al., 2011) and forecasts of the European Centre
for Medium-Range Weather Forecasts (ECMWF) were used. The equations
of motion of the particles are written in spherical coordinates in the hor-
izontal, and in pressure coordinates in the vertical direction in agreement
with the structure of the meteorological data used. The model solves the
differential equations for the subsequent position of the particles by using
the explicit Euler method. For dispersion taking place solely in the free at-
mosphere and for cases in which processes of the planetary boundary layer
are also taken into account, the time step was chosen to be Δt = 45 min and
5.625 min, respectively. The meteorological data are available on a given
latitude-longitude grid on different pressure levels in a given time resolu-
tion. The meteorological variables at the actual location of a particle are
calculated using bicubic spline interpolation in the horizontal direction and
linear interpolation in the vertical direction and also in time. For particle
properties we take typical volcanic ash data (Johnson et al., 2012): r in the
range of 1–10 m and ρp = 2000 kg/m3.

Calculation of the pollutant concentration is based on the number of
particles per cells of nearly equal horizontal area. This alternative grid is
constructed in the following way: the meridional sides of a “rectangular”
cell is equal for all latitudes, while the zonal sides of the cells vary with
latitude so that the area of the cells is almost equal, see Figure 2 (for more
details see Haszpra and Tél (2013b)).

4 Validation: the Fukushima Accident

In order to validate the RePLaT model we simulated the dispersion of two
radioactive material, the aerosol-bound cesium-137 isotope (137Cs) and the
noble gas xenon-133 isotope (133Xe) released during the accident of the
Fukushima Nuclear Power Plant in the spring of 2011. Wind data are taken
from the ERA-Interim database. The simulations took into consideration
the processes of the boundary layer, like precipitation, and turbulent dif-
fusion depending on the height, as described in Section 2. The data of
local emission were taken from the literature (Stohl et al., 2012). The dis-
persion of the radioactive material was followed over several weeks. The
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Figure 2. The nearly uniform-area grid used for the calculation of concen-
tration. Here the side length of the cells is ε ≈ 1.5◦.

radius and density of 137Cs carrier particles is estimated to be r = 0.2 m
and ρp = 1900 kg/m3 based on Stohl et al. (2012), while the noble gas
component was treated formally as r = 0 particles (i.e. particles with zero
terminal velocity) in Eq. (2). Figure 3 illustrates the geographical distribu-
tion of 137Cs one week after the accident. The simulation shows that the
particles are transported to the East over the Pacific Ocean. In mid March
a fraction of the radioactive material is captured by the steering flow of two
cyclones near Japan and at the coast of North America. These particles
were lifted to the free atmosphere and reached even Europe about a week
later.

Figure 4 shows the access radioactivity in the first few days after its ar-
rival to different locations. It is remarkable that the arrival times of the pol-
lution coincide reasonable well with the measured data (dashed lines). The
deviations in the intensities might be related to the fact that the emission
data are estimated a posteriori via retracking methods which are subject to
considerable uncertainties (Stohl et al., 2012).
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Figure 3. The dispersion of 137Cs from the Fukushima accident on March
18, 2011. Initial conditions on March 11: particles initiated in a volume
of 1◦ × 1◦ area and height of about 300 m according to the a posterior
estimation of Stohl et al. (2012). Left: altitude of the carrier r = 0.2 m
particles in hPa. Right: radioactivity concentration in air columns over the
grid of Fig. 2 originating from 137Cs in the unit of Bq/m2.
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Figure 4. The access radioactive concentration of 137Cs (left) and 133Xe
(middle and right) simulated by RePLaT (solid line) and the measured data
(dashed line) as a function of the days of the year at Chapel Hill, Stockholm
and Richland, respectively.

5 Topological Entropy

5.1 General Concepts

In dynamical systems theory, topological entropy is a measure of the
complexity of the motion. In the most abstract setting, this quantity char-
acterizes how the number of possible trajectories grows in time (Ott, 1993).
The concept is most clearly accessible in periodically driven cases, where
there exist unstable periodic orbits, so-called cycles, available for the dynam-
ics. The temporal length of these cycles can be arbitrarily large. Moreover,
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the number Nt of all the unstable cycles of length t increases drastically,
exponentially for large times t. The growth rate h defined by the relation
Nt ∼ eht is called the topological entropy2.

The existence of h is a basic property of chaos, so much that a possible
definition of chaos is based on it: a system is chaotic if its topological
entropy is positive (Ott, 1993; Tél and Gruiz, 2006). The unstable cycles
form the skeleton of chaos, chaotic motion can be considered as random
walk among the unstable cycles. The motion might temporarily approach
one of the cycles. Since, however, the cycle in unstable, the trajectory can
only remain in its neighborhood for a finite time and it approaches another
one sooner or later. This is the origin of the irregular nature of chaotic
dynamics.

A property of topological entropy which is easier to capture in mea-
surements is that it also represents the growth rate of the length of line
segments. A line segment of initial length L0 is stretched more and more in
the unstable direction of the dynamics. Let L(t) denote the length of the
line segment after time t. For two-dimensional systems it is proven (New-
house and Pignataro, 1993) that after a sufficiently long time this length
increases exponentially, and the growth rate is given by just the topological
entropy, h, according to the relation

L(t) ∼ eht, (9)

valid for t � 1/h. The original definition based on unstable cycles and the
one relying on the growth of line segments are equivalent in time-periodic
dynamics. In aperiodic problems, however, only equation (9) can be used
for the definition of topological entropy, and this is the approach we follow
here in the context of atmospheric dispersion.

The topological entropy h is similar in spirit to, but different in value
from, the (largest positive) Lyapunov exponent λ. A general inequality
states (Ott, 1993; Tél and Gruiz, 2006) that

h ≥ λ. (10)

The difference lies in the fact that though the Lyapunov exponent is the
rate of deviation between nearby trajectories, its definition reveals that the
linear growth rate of the logarithm of the distance between a particle pair
should be determined. In contrast, h is the rate of change of a length (and
not of its logarithm). Inequality (10) is a consequence of the mathematical

2The terminology is motivated by Boltzmann’s relation for the thermodynamical en-

tropy S: S = kB lnN known from statistical physics, where N is the number of states

and kB stands for Boltzmann’s constant.
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property that the logarithm of the average of a quantity is not the same as
the average of the logarithm of the same quantity.

Technically, the evaluation of the topological entropy requires the mon-
itoring of a large number of particles. This difficulty is, however, compen-
sated by the fact that no smallness requirement or reshifting conditions are
to be fulfilled (the latters are needed (Ott, 1993) for the Lyapunov calcu-
lation since the distance between the pair should always remain small). In
particular, in flows represented on a grid, as in our case, the determination of
the Lyapunov exponent faces the difficulty of being restricted to small scales.
The determination of the topological entropy is based, however, on lengths
exceeding by far the grid scale. The stretching filaments foliate regions with
considerably different wind fields and are, therefore, natural candidates for
providing a large scale characteristic of the atmosphere. Altogether, our ex-
perience shows that the numerical determination of the topological entropy
appears to be straightforward and computationally rather cheap.

5.2 A Case Study

In the atmospheric context, the use of topological entropy is based on the
general observation that any initially short material line becomes strongly
stretched within a short time. We illustrate the usefulness of the concept
with a case study within the RePLaT model. Wind data are taken from the
ERA-Interim database again. For simplicity, first we consider ideal tracers
(r = 0) within the free atmosphere where turbulent diffusion is negligible
(D = 0 in (4)), and no precipitation takes place (P = 0).

Fig. 5 illustrates the dispersion of an initially meridional line segment of
n = 2 ·105 particles with an initial length L0 = 3◦ ≈ 333 km (twice the reso-
lution of the wind data) initialized between Great Britain and Scandinavia
and followed for a period of 10 days. In the first days the particles are ad-
vected to Northeast towards the Scandinavian Peninsula, while the length
of the filament increases. On the fourth day (Figure 5 left) the middle part
of the filament is captured by a cyclone over Finland, while the easterly
end also begins to spiral around another cyclone over Siberia. During the
next few days (Figure 5 middle and right) the cyclones and anticyclones of
the atmospheric flow fold, rumple and lengthen the filament more and more
by stirring, and at the end of the observation period of 10 days the extent
of the line segment becomes 6–7000 times longer than the initial length
(Figure 6), and extends over Europe and quite a large area of Asia. It is
also interesting, as can be read off from the grayscale of the right panel of
Figure 5, that after 10 days the altitude of the particles spans to a range
between about 300–1000 hPa, corresponding to about 9 km in altitude.
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Figure 5. Stretching of a material line initialized at 00 UTC June 1, 2010.
Initial conditions (surrounded by a box): L0 = 3◦ ≈ 333 km, n0 = 2 × 105

particles were distributed along a meridian on p0 = 500 hPa, the center
of the line was λ0 = 0◦, ϕ = 60◦N. The panels show the location of the
particles after 4, 6 and 10 days after the release, respectively. The arrows
in the upper panels point toward the pollutant cloud. The altitude of the
particles in pressure coordinates is marked by grayscale.



106 T. Haszpra and T. Tél

0 2 4 6 8 10
10

2

10
3

10
4

10
5

10
6

10
7

t [day]

L
[k
m
]

Figure 6. The length L(t) of the material line shown in Figure 5 as a
function of time over 10 days.

The length L(t) of the filament at time t is computed as the sum of
the horizontal distances between neighboring particle positions. It is clearly
visible in Fig. 6 that the growth of L(t) is exponential in time. The exponent,
the topological entropy is found to be h = 0.89 day−1. This implies that the
total stretching factor after 10 days is exp (8.9) ≈ 7330, in harmony with
the estimate above.

5.3 Geographical Distribution of Topological Entropy

One can observe quite remarkable differences in the topological entropy
values depending on the initial geographical location and also on the partic-
ular season. To gain a systematic understanding, we extended our studies to
small (up to r = 5 m) aerosol particles and to different locations (Haszpra
and Tél, 2011). We initialized material line segments oriented meridionally
over the Globe, distributed on a grid: from 80◦S to 80◦N in 10◦ incre-
ments, and from 180◦W to 180◦E in 30◦ increments. The initial height is
p0 = 500 hPa. The topological entropy of each line segment is calculated
from a 10-days tracking. The results for r = 1 m particles obtained on
the 1st of January 2010 are shown in Figure 7. The largest topological en-
tropies (≈ 0.7 day−1) appear in the midlatitudes, and can be attributed to
the strong mixing and shearing effects of the cyclones. The smallest values
(≈ 0.2 day−1) can be found in the tropical belt.

The zonal average of these topological entropy values is of double-hill
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Figure 7. Geographical distribution of the 10-day-topological entropy of
material lines of r = 1 m particles. The material lines were distributed on
the 500 hPa level on 01.01.2010 00 UTC in the center of the circles shown,
their initial length was L0 ≈ 333 km.

shape (see Fig. 8), with somewhat larger values in the winter than in the
summer hemisphere.

5.4 Remarks

We also carried out (Haszpra and Tél, 2013b) an investigation of the sea-
sonal change of the topological entropy. To this end, at each geographical
location, a line segment is initialized in every 10 days, then the temporal av-
erage of the topological entropy of three months is determined for December
to February, March to May, June to August, and September to November.
The largest values appear in the mid and high latitudes, mainly in the win-
ter season of the hemisphere due to the strong mixing and shearing effects
of cyclones. The zonally averaged topological entropy in the mid- and high
latitudes (30◦–80◦) in the winter season of both hemispheres is somewhat
larger than in the summer (hw − hs ≈ 0.06 day−1). This is in agreement
with the fact that winters are more variable than summers because of the
greater temperature gradient between the pole and the Equator (see also
Figure 8). The difference between the winter and summer season is more
significant on the Southern Hemisphere than on the Northern one (0.09 and
0.04 day−1, respectively). The reason for this can be the difference in the
proportion and location of oceans and continents. The average topologi-
cal entropy was found to depend only slightly on the initial altitude of the
particles.
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Figure 8. The zonal average of the topological entropy of Figure 7. The
error bar denotes the standard deviation of the topological entropy values
along a latitude.

It is worth noting that the atmosphere as a single system should be
characterizable by a single value of the topological entropy. This is indeed
valid for long term (of several months) observations. The 10-day-topological
entropy used here is in fact a new location-dependent quantity, and it is a
surprising empirical fact that a well-defined exponential scaling can be ob-
served during such a short time. Anyhow, this local value of the topological
entropy can be considered to be a new, useful measure of the chaoticity of
the state of the atmosphere, and it can provide information on the speed of
pollutant spread from a given location.

6 Escape Rate

6.1 General Concepts

Under certain circumstances chaotic behavior is of finite duration, i.e.,
the complexity and unpredictability of the motion can be observed over a
finite time interval only. Nevertheless, there also exists in such cases a set in
phase space responsible for chaos, which is, however, non-attracting. This
type of chaos is called transient chaos and the non-attracting set is a chaotic
saddle (for an introductory text see Tél and Gruiz, 2006). Since there
are typically significant differences in the individual lifetimes, an average
lifetime can be defined. To this end, it is worth following several motions
instead of a single one: the study of particle ensembles is essential. To
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characterize the dynamics, one takes a preselected region, and starts n0 � 1
trajectories in it. They escape the preselected region sooner or later, and the
motion before escape appears to be chaotic. The number n(t) of trajectories
that do not leave the preselected region up to time t is thus a monotonically
decreasing function of t. After a sufficiently long time (for t larger than
some tc), the decay in the number n(t) of survivors is generally exponential:

n(t) ∼ exp(−κt), for t > tc. (11)

Coefficient κ is called the escape rate (Ott, 1993; Tél and Gruiz, 2006;
Lai and Tél, 2011). Its reciprocal value can be considered as an estimate
of the average lifetime of chaos. A nonzero escape rate is thus a new,
important chaos characteristic: the larger the value of κ, the faster the
escape/sedimentation process.

In the atmospheric context, the preselected region might be the entire
atmosphere. The condition of escape is then the first arrival at the surface.
It is interesting to see how turbulence and wet deposition influence the es-
cape dynamics. We claim that the escape rates provide a kind of Lagrangian
characterization of the entire deposition process.

6.2 Global Results

In order to determine global escape rates, we distribute n0 = 2.5 × 105

particles uniformly over the globe on different pressure levels on 1 Jan-
uary 2010. They are tracked in the ERA-Interim wind fields up to their
escape, but at longest for 1 yr. To study the dependence of the escape rate
on the particle size and on the initial altitude, simulations are run with
radii of r = 0, 1, 2, . . . , 12 m and initial altitudes of p0 = 500, 700, 850 and
900 hPa (Haszpra and Tél, 2013a). Note that the radius of a particle sud-
denly changes if the particle is captured by a raindrop, as discussed in the
description of the RePLaT model (Section 2). (The limiting case of a “par-
ticle” with r = 0 m can be considered as a gaseous contaminant in the
atmosphere.)

To compare different effects, simulations are carried out in three setups
that take into account:

1. advection, turbulent diffusion and precipitation,

2. advection and turbulent diffusion, and

3. only advection.
As a first example, Fig. 9 exhibits the number of survivors vs. time for

a fixed initial altitude p0 = 500 hPa (corresponding to free atmospheric
initial conditions) for r = 9 m particles in setup 1. As the aerosol parti-
cles are initially far from the surface, the curve starts with a plateau: no
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outfall from the atmosphere occurs within the first few days. After a short
transition following the plateau (i.e. for t > tc ≈ 1–15 days for the dif-
ferent simulations), an approximately exponential decay can be seen for a
few days (see the dashed line belonging to days 2–5 in Fig. 9). After some
time, however, a crossover takes place and a slower exponential decay sets
in for t > 10 days). Thus, we can speak of a short-term and a long-term
exponential decay characterized by different exponents. The corresponding
escape rates will be denoted by κs and κ�, respectively.
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Figure 9. Proportion n/n0 of the number of survivors in setup 1 as a
function of time. n0 = 2.5 × 105 particles were distributed uniformly over
the globe on p0 = 500 hPa with r = 9 m on 01.01.2010 00 UTC. Dashed
lines illustrate the short-term and long-term decay processes.

Escape rates can be used as measures of the deposition process. Results
obtained for different sizes show that both escape rates are at least 10 times
larger for large aerosol particles (9 or 10 m) than for small ones. The
deposition process is thus very fast for large sizes. At any given size, the
long-term escape rate is at least half or smaller than the short-term one.
Since this difference appears in the exponent, we can safely speak about a
separation of time scales in the deposition process.

Our findings illustrate that the naive expectation coming from dynam-
ical systems theory according to which the global emptying is a random
process described by a single exponential decay does not hold. In the atmo-
sphere, instead, a short-term and a long-term dynamics can be identified,
characterized by two different approximately exponential decays.

A detailed investigation shows that the long-term escape rate κ� com-
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puted for different initial pressure levels p0 does not depend on the ini-
tial level in either setup (in contrast to κs which exhibits a strong p0-
dependence). The reason for this phenomenon might be the fact that par-
ticles surviving a long time in the atmosphere become well mixed. The
independence of p0 indicates that there exists a global atmospheric chaotic
saddle, and the long-lived particles reflect properties of this set underlying
the deposition dynamics. κ�(r) is thus a global atmospheric characteristic
of particles of size r. The atmospheric saddle is likely to be time-dependent,
and the κ�(r) values are characteristic of the time period investigated.

It is remarkable that κ� ranges over about two orders of magnitude al-
though the radii vary over one decade only. The dependence is thus strongly
nonlinear. The best approximate fit appears to be exponential

κ�(r) ∼ exp(kr). (12)

Exponent k is found to be k ≈ 0.33–0.38 m−1 for setups 1, 2, including
rain and/or turbulent diffusion (see Fig. 10).
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Figure 10. The dependence of the long-term escape rate on the size and
initial altitude of the particles in setup 2 for different p0 levels. Dashed lines
indicate exponential fittings to κ� vs. r.

It is worth comparing the scaling of Eq. (12) with a naive estimate. The
time needed to pass a fixed vertical distance Z with the terminal velocity
(3) in non-moving air is Z/wterm. Since the terminal velocity is propor-
tional to r2, the time is proportional to r−2. As the reciprocal of this time
corresponds to the escape rate, the estimate results in a scaling proportional
to r2. The fit of this functional form to the data is much less satisfactory
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than that provided by (12). The difference between the power law behavior
and the observed exponential one can only be interpreted by realizing that
atmospheric winds play an essential role in the deposition process.

6.3 The Eruption of Mount Merapi

Mount Merapi in Indonesia had long-lasting eruption series in 2010, from
late October to November. To study the outfall dynamics of aerosol parti-
cles, instead of the continuous eruptions, we simulate with RePLaT only a
single volcanic ash puff of columnar shape of size 1◦ × 1◦ × 400 hPa, cen-
tered at λ0 = 110.44◦ E, ϕ0 = 7.54◦ S and p0 = 500 hPa (Haszpra and Tél,
2013a).

Figure 11 demonstrates the horizontal dispersion of the ash cloud con-
taining n0 = 2.16×105 particles of r = 5 m emitted at 00UTC on 1 Novem-
ber in the ERA-interim wind field. As expected, such particles spread and
reach very different regions in the atmosphere. Entering into different ver-
tical levels, they become subject to different horizontal winds. The still
strongly localized ash cloud on the 3rd day (Fig. 11, top left) spreads consid-
erably up to the 7th day (Fig. 11, top right). It is worth mentioning that de-
spite the simplifying one-puff assumption, this figure shows good agreement
with the satellite image of sulfur dioxide tracers in the period of 4–8 Novem-
ber (http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=46881).
20 days after the hypothetical emission, the particles initialized in a small
volume cover a huge area and are well mixed in the midlatitudes of the
Southern Hemisphere. Therefore the long-term escape rate found for this
case (κ′ = 0.103 m−1) is almost the same as the global escape rate κ� for
r = 5 m particles.

A remarkable feature of the bottom panel of Fig. 11, showing the ash
cloud 20 days after the eruption, is that the distribution of the deposited
(black) particles is fractal-like. There are large regions without any outfall,
and the overall pattern is filamentary. The set of particles on the surface
appears to trace out the intersection of the unstable manifold of the atmo-
spheric chaotic saddle with the surface. This saddle might in principle be
time-dependent, and what we see here is the set of these intersections in the
interval November 7–20.

It is insightful to look at the vertical distribution of the particles over the
time span followed. This can be seen in the form of a histogram in Fig. 12
for particles of r = 10 m. The initially columnar shape is deformed into
a Gaussian one that spreads as its center moves downwards. This behavior
was also observed in a simple cloud model with aerosol particles (Drótos
and Tél, 2011). It is remarkable, however, that after the center of the
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Figure 11. Dispersion of the volcanic ash consisting of r = 5 m particles
from the Mount Merapi eruption. Panels illustrate the geographical distri-
bution 3, 7 and 20 days after the eruption taken place on 1 November, 2010,
respectively. Graybar indicates the pressure level of the particles in hPa.

Gaussian distribution reaches the surface, and the majority of the particles
is deposited, the small fraction of particles remaining aloft is distributed
widely in the different layers. It is the fraction of these extreme survivors
that is responsible for the second, long-term exponential decay observed.
We believe that this wide altitudinal distribution of the extreme survivors
is also the physical background of the time-scale separation described in the
previous section.

6.4 Remarks

It is interesting to compare the escape process with precipitation activ-
ities. Only a small fraction of the r = 10 m particles is found to leave
the atmosphere in the first 6 days after the hypothetical eruption of Mount
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Figure 12. Vertical distribution of the proportion of particles with r =
10 m in vertical layers of size 50 hPa for 0, 1, 3, 5, and 7 days after the
hypothetical Mount Merapi eruption. The dashed horizontal line represents
the surface.

Merapi. When they happen to reach the 850 hPa level precipitation starts
playing an important role due to the frequent rainfall events above Indone-
sia. In the period of days 6–8 (6–8 November), particles reach a region of
a cyclone with strong precipitation, therefore a large amount of particles
are scavenged out by rain in this period. The particle distribution on the
surface is found to strongly correlate with the rain intensity (Haszpra and
Tél, 2013a). Indeed within 8 days, the majority of the particles falls out
from the atmosphere in this case.

In summary, we have found that the emptying process of aerosol particles
cannot be characterized by a single exponential decay. The global emptying
process, from any height of the atmosphere, is governed by two temporal
periods in which different exponential forms appear defining two different
escape rates. The reciprocal value of the short-term escape rate is found to
provide an estimate of the average residence time of typical particles. The
analogous quantity belonging to the long-term escape rate characterizes
exceptional particles that remain in the atmosphere for an extremely long
time. It is interesting to note that the escape rates of particles of different
sizes are found to vary in a broad range rather rapidly, roughly exponentially
with the particle size. These investigations provide a Lagrangian foundation
for the concept of deposition rates.

7 Ensemble Features and Outlook

It is important to note that there is always some uncertainty in the calcu-
lation of pollutant dispersion due to different error sources. One of these is
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the meteorological forecast produced by the numerical solution of the partial
differential equations of the atmospheric hydrodynamics. Due to inaccura-
cies in the measurements and approximations used, the initial conditions of
the meteorological model cannot be determined precisely. Initial errors are
then amplified because of the sensitivity to initial conditions of atmospheric
turbulence. Therefore, there is uncertainty in the meteorological forecasts
which can be quantified by the so-called ensemble technique based on the
execution of multiple meteorological simulations (Kalnay, 2003; Leutbecher
and Palmer, 2008). These imply that there is a considerable difference in
the driving provided by the velocity field v for the advection equations (2)
or (4).

Dispersion models are usually run by a single forecast which is consid-
ered to be the best one. However, it can be useful to perform simulations
using the whole ensemble forecast, i.e. producing an ensemble dispersion
prediction in order to get a detailed and more reliable overview of the un-
certainties and possible hazards related to the dispersion event.

Figure 13 shows the distribution of r = 1 m particles in two ensemble
members of an ECMWF ensemble forecast after 2.5 days tracking with the
RePLaT model. The particles are initiated in a two-dimensional square of
size 1◦ × 1◦, centered at λ = 141◦E, ϕ = 37.5◦N and p0 = 500 hPa at
00 UTC 12 March, 2011 (as a hypothetical emission well above the original
emission height of the Fukushima Power Plant accident). For simplicity, we
study only the effect of the variability in the wind field and do not take
into account the impact of turbulent diffusion and precipitation (Haszpra
et al., 2013; Haszpra and Horányi, 2014). Figure 13 demonstrates that even
with this restriction strong dispersion variabilities may develop between the
members both in the horizontal/vertical location and in the extension of
the pollutant cloud in spite of the rather short time (2.5 days) passed after
the emission.

Figure 14 provides a more systematic illustration of this statement. One
can see that the horizontal locations of the center of mass of the pollutant
clouds in the different ensemble members extend to a quite large area. The
largest distance between the centers of mass is about 3375 km, on the order
of half of the radius of the Earth. Also the standard deviations of the
particles in the clouds, represented by the radii of the circles, vary in a
wide range (from 35 km to 960 km). All this suggests that the problem of
pollutant spreading should also be treated in the spirit of ensemble forecasts.
The ensemble variability turns out to be rather strong and appropriate
statistical measures should be introduced, some of which have been worked
out in Haszpra et al. (2013).

In this paper we argued that a proper treatment of atmospheric material
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Figure 13. Geographical distribution of the pollutant cloud of r = 1 m
particles obtained from the 11th and 19th member of the ensemble forecast
of ECMWF with RePLaT 2.5 days after the release at 00 UTC March 12,
2011 shown in the left and right panel, respectively. Graybar indicates the
altitude of the particles in hPa. Contour lines represent the mean sea level
pressure. The horizontal length of the pollutant cloud is about 2 times
larger in the left than in the right panel, whereas the relation of the vertical
extensions is approximately the opposite with a factor of about 3. The
centers of mass are about 2000 km away from each other. The arrows point
toward the pollutant clouds.

Figure 14. The horizontal geographical location of the center of mass of
the pollutant clouds of r = 1 m particles in the atmosphere for the 51
ensemble members after 2.5 days. The radii of the circles are proportional
to the standard deviation of the clouds.
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dispersion should be based on individual particle tracking using realistic size
and density. The effect of turbulent diffusion and the scavenging of parti-
cles by precipitation can be incorporated as stochastic perturbations. This
approach enables one to investigate the chaotic aspects of particle disper-
sion by means of dynamical systems concepts. The topological entropy and
the escape rate were shown to be two useful measures not applied earlier
in the atmospheric context. The uncertainty in the dispersion due to the
unpredictability of the meteorological forecasts can also be studied.

All these features are, of course, subject to changes in the climatic con-
ditions. For example, more intense local atmospheric circulation with more
frequent and/or stronger cyclones might induce more stretched material
lines generally and, along with this, larger 10-day-topological entropy val-
ues. In spite of these features, the global 10-day- and long-term topological
entropies might become smaller than the corresponding values today due
to the predicted (IPCC, 2013) decrease of the meridional temperature gra-
dients in the future. The occurrence of high precipitation events might
increase the proportion of the outfalling particles locally, while regions with
less precipitation and possibly stronger updrafts than during present cli-
mate conditions can decrease the deposition. The overall effect to the value
of the escape rate would require additional numerical simulations. More in-
tense local circulation might also enhance the uncertainty of meteorological
forecasts and, therefore, it might increase the variability of the ensemble
dispersion simulations based on these forecasts. The detailed investigation
of these issues remains a task for the future.
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