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Our aim is to unfold phase space structures underlying systems with a drift in their parameters.

Such systems are non-autonomous and belong to the class of non-periodically driven systems

where the traditional theory of chaos (based e.g., on periodic orbits) does not hold. We demonstrate

that even such systems possess an underlying topological horseshoe-like structure at least for a

finite period of time. This result is based on a specifically developed method which allows to

compute the corresponding time-dependent stable and unstable foliations. These structures can be

made visible by prescribing a certain type of history for an ensemble of trajectories in phase space

and by analyzing the trajectories fulfilling this constraint. The process can be considered as a leak-

ing in history space—a generalization of traditional leaking, a method that has become widespread

in traditional chaotic systems, to leaks depending on time. Published by AIP Publishing.
https://doi.org/10.1063/1.5013336

A concept ideally suited for the study of dynamical sys-

tems with arbitrary time-dependence is that of snapshot

attractors
1

(also called pullback attractors in the mathe-

matics and climate-related literature
2–10

). Loosely speak-

ing, a snapshot attractor is an object belonging to a given

time instant that is traced out by an ensemble of trajecto-

ries initialized in a region of the phase space in the past,

with all of the ensemble members governed by the same

equation of motion. In the dynamical systems community,

the concept of snapshot attractors has been known and

successfully applied for many years.11–20 A precursor was

the discovery of synchronization by common noise (i.e.,

by a given realization of a random driving),
21

a case

when the snapshot attractor turns out to be regular. The

use of deterministic driving goes back to Refs. 6 and 11

and to recent approaches in climate science.8,19–22 The

snapshot view has also been applied to systems with high

degrees of freedom23–27 and to experimental situations.28,29

The approach proposed in this paper is concentrating on a

specific aspect of the dynamics of a non-autonomous

dynamical system, which is related to a novel type of leak-

ing manifested as a time-dependent leak in phase space. In

other words, we identify sets of trajectories which follow a

certain type of history. The related mathematical concept

is not that of snapshot attractors, rather, that of snapshot

saddles (Ref. 37, Sec. 4.6.1), and their stable and unstable

manifolds.

I. INTRODUCTION

In an earlier paper,30 we studied how chaos dies out in a

nonlinear oscillator whose driving amplitude is gradually

decreasing, starting from a state governed by a chaotic attractor

and ending with a state of rest. We found that small differences

in the initial conditions lead to drastic differences over the

entire switching off process. Individual trajectories are thus not

representative. It was therefore found worth monitoring an

ensemble of trajectories that traces out, at any instant of time, a

snapshot attractor. As a measure of chaos in such systems, we

proposed the use of the variability of the dynamics, expressed

as the extension of the snapshot attractor in phase space.

There is a recent interest in finding the conditions

under which a snapshot attractor of a system with parame-

ter drift follows, in some sense, the bifurcation diagram of

the same system with frozen-in parameters. For systems

exhibiting only fixed point attractors, the authors of

Refs. 31 and 32 showed that the snapshot attractor may

“track” branches of fixed point attractors for slow drifts.

“Tracking” can fail, if the drift is too fast31 or the system

possesses folded slow (critical) manifolds in the class of

slow-fast systems.33 Using this language, one of the results

of Ref. 30 was that in systems also exhibiting chaotic

dynamics, such “tracking” is impossible, the frozen-in fixed

point attractors are never similar to the snapshot attractors

in the range of non-negligible driving amplitudes. It was

also shown that if tracking is possible at all, for small

enough rates, then the objects that can be tracked should be

the unstable manifolds of transient chaos underlying the

frozen-in dynamics. Here, we investigate the same paradig-

matic model as in Ref. 30 from the point of view of the

underlying phase space structures belonging to certain

restrictions in the history space.

In Sec. II, we briefly introduce the model and define the

parameters used. We construct the distribution of extinction

times, i.e., the time needed for a particular initial condition to

stop by using different conditions for stopping (Sec. III). In

Sec. IV, a partitioning of initial conditions is presented, based

on prescribing the rotational direction of the pendulum over

1054-1500/2018/28(3)/033612/11/$30.00 Published by AIP Publishing.28, 033612-1

CHAOS 28, 033612 (2018)

https://doi.org/10.1063/1.5013336
https://doi.org/10.1063/1.5013336
https://doi.org/10.1063/1.5013336
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5013336&domain=pdf&date_stamp=2018-03-22


longer and longer time intervals. As a generalization of tradi-

tional leaking,34 we consider the case of leakings in history

space in Sec. V by imposing arbitrary constraints for the his-

tories of the trajectories. The previous examples turn out to

be special cases of the general framework. In Sec. VI, we

identify the main components of the horseshoe construction

known from the theory of transient chaos. We refer them as

snapshot saddle, snapshot stable, and unstable manifold.

These structures are found to be heavily time-dependent in

systems with parameter drifts, a property not present in the

case of traditional leakings. We show that these manifolds

are parts of the stable and unstable foliations of the original,

unleaked problem subjected to parameter drift. Finally, in

Sec. VII, we indicate the dependence of the horseshoe struc-

ture on the main characteristic of the model, the speed of the

parameter drift. We also discuss how leaking in history space

is related to the concept of survivability recently proposed in

the literature.35

II. THE MODEL

We consider, as in Ref. 30, a pendulum with a suspen-

sion point periodically oscillating along a horizontal line.

The dimensionless equation of motion is as follows:36

€u ¼ �c2 sin u� 2b _u þ C cos ðuÞ cos ðtÞ; (1)

where u is the instantaneous angle of the pendulum with

respect to the vertical (u¼ 0 in equilibrium). The dimen-

sionless driving period is T¼ 2p, while c represents the

dimensionless frequency of the pendulum’s small ampli-

tude swingings without driving. The parameter b is a fric-

tion constant denoting dissipation. In our numerical study,

we fix the values of c¼ 1/3 (the driving frequency is three

times that of the eigenfrequency) and of b¼ 0.05 (the

dissipative relaxation rate is one twentieth of the driving

frequency). With dimensionless driving amplitude C0¼ 2,

i.e., when the amplitude of the suspension point’s oscilla-

tion is twice as large as the length of the pendulum, the

dynamics is chaotic and possesses an underlying chaotic

attractor.

The amplitude of the suspension point’s oscillation, C,

is chosen to be time-dependent, with the following particular

exponential “scenario”:

CðtÞ ¼
C0; for t < 0

C0 � e�a�t; for t � 0;

(
(2)

where a is a constant switchoff rate. In the bulk of this

paper, we fix a¼ 0.025, a switchoff rate used in the simula-

tions presented in Ref. 30. For visualization of the trajecto-

ries, a stroboscopic map is taken, each trajectory is sampled

only at integer multiples of the driving period T¼ 2p.

Since Eq. (1) represents a typical nonlinear dynamical

system with dissipation and Eq. (2) is a representative

smooth time dependence of one parameter, the model is

expected to exhibit generic features of nonautonomous sys-

tems subjected to drifting parameters.

III. DISTRIBUTION OF EXTINCTION TIMES

For the following investigation, we take the chaotic

attractor at C¼C0 as initial condition, at t¼ 0. To achieve

this, we create an ensemble of N� 1 points and iterate it

from t¼ –10T forward to t¼ 0. We have checked that the

attractor is practically reached by this ensemble latest at

t¼ –7T.

We numerically determine how much time is needed for

the pendulum to “stop” when starting with different initial

conditions on the chaotic attractor. Here and in the following

phase, space plots are presented in the (u, x � du/dt) plane.

First, we consider a trajectory to have stopped if its

phase space distance from the origin is systematically

smaller than a threshold value, chosen to be a disk of radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ x2

p
¼ 0:2. The time instant nT for which this

condition is first fulfilled and kept valid afterwards is called

the extinction time of a given trajectory. The result is shown

in Fig. 1. It is surprising that different extinction times might

belong to initially neighboring points. Moreover, each color

traces out a filamentary structure, whose fibers are more or

less perpendicular to that of the attractor. It seems that the

extinction dynamics opens up a novel structure underlying

the chaotic attractor, but characterizing the full switching off

process.

Although the sets are fractal-looking, compact regions

of a given color can also be seen, in a pronounced way in red

and orange, where these compact regions contain the major-

ity of the points. It is also worth noting that, in contrast to

usual chaotic cases, like, e.g., chaotic scattering,37 the range

of the extinction times is rather short, and their distribution

is not fractal-like at all as the inset of Fig. 1 illustrates.

FIG. 1. Distribution of extinction times on the chaotic attractor represented

by N¼ 2� 105 points for a switching off process with a¼ 0.025. The condi-

tion for “stopping” is that a trajectory reaches and stays afterwards in the

disk of radius r¼ 0.2 around the origin. The lifetime is represented by col-

ors, and only those values are shown, to which a considerable number of

starting points belong to (more than 5% of the ensemble). The probability

distribution P(n) of discrete extinction times (measured in unit of T) can be

seen on a bar chart as an inset. The horizontal and vertical axes of this and

all the forthcoming phase space plots are the angle u, and the angular veloc-

ity x ¼ _u, respectively.
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Let us choose a different “stopping” condition. Now, we

consider a trajectory to have an extinction time nT if it first

reaches the phase space strip jxj < 0:1 at t¼ nT and stays in

it for t> nT. In Fig. 2, we see that an analogous filamentary

structure appears as in Fig. 1, with a rather different stopping

condition of an area of about 10 times larger than there. The

filaments of the different colors seem to run parallel to each

other and perpendicular to the attractor, again, but the details

differ. Note that the distribution P(n) also differs from that

of Fig. 1.

As a next trial, we distribute the initial points (uni-

formly) over the full rectangle of the phase space u 2 (–p, p)

and x 2 (–3.2, 3.2) shown. Parallel to this, we also consider

the extinction times from a cumulative perspective, i.e., we

identify points that have an extinction time at most nT. A

comparison between the cumulative extinction times and

exact extinction times at nT is seen in Fig. 3. Here, the stop-

ping condition is again reaching and staying in the region

jxj < 0:1. To construct the set of trajectories with exactly nT
extinction time, one needs to take the difference of two sets:

those trajectories that have extinction times at most nT and

those that have at most (n – 1)T. In other words, overlaying

the two panels in the left column, one obtains the upper right

panel.

In Fig. 4, the initial points of trajectories that have an

extinction time exactly nT with 22� n� 25 are marked by

colors. The red and the orange components of the figure are

identical to the lower left and lower right panel of Fig. 3,

respectively. A similar pattern appears, as in Fig. 2. This is

FIG. 2. Distribution of extinction times on the chaotic attractor represented

by N¼ 2� 105 points. a¼ 0.025. The condition for “stopping” is that a tra-

jectory reaches and stays in the phase space strip jxj < 0:1. The probability

distribution (P(n)) of extinction times can be seen on a bar chart as an inset.

FIG. 3. Distribution of trajectories with extinction times at most 22 and 23T (first row) and trajectories with extinction times exactly 23 and 24T (second row)

over the phase space. The condition for “stopping” is that a trajectory reaches and stays in the phase space strip jxj < 0:1.
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not surprising, since the initial set chosen now contains the

chaotic attractor as a subset. The distribution P(n) of the

extinction times is also similar. Figure 2 is nothing but

the restriction of Fig. 4 to the chaotic attractor of the case of

the C0¼ 2 frozen-in driving amplitude.

The prominent extinction times belong to distinct

regions of finite area represented with a given color. In cer-

tain parts of the phase space, these regions are mixed rather

strongly, designated by the appearance of thin filaments, pro-

viding an optical appearance similar to that of fractal basin

boundaries.37

IV. PARTITIONING WITH RESPECT TO THE
ROTATIONAL DIRECTION

After having constructed the extinction time distribu-

tions, we demonstrate that the emergence of additional fila-

mentary structures specific to the time-dependent process

appears to be generic. From here on, instead of partitioning

the attractor, we partition the full phase space. We consider a

condition different from the extinction time and look for

points in the (u, x) plane which stay at integer multiples

of T, up to a terminal time t¼ nT, in the regions of either

x< 0 or x> 0, i.e., where the pendulum rotates in a given

direction. To generate the partitioning, we first color points

according to their x at time t¼ 0, and then in each period

we discard those which change their rotational direction.

Figure 5 shows the sequence up to t¼ 19T.

The partitioning is time-dependent. Although between

t¼ 6T and t¼ 18T, no drastic change appears in the ensem-

ble of points, at t¼ 19T, suddenly most of the blue points

disappear. The same happens to the red points, but they sur-

vive for one more period, and at t¼ 20T (not shown), they

also vanish. There is thus no point, which would rotate all

the time in the same direction, since the driving ceases, and

dissipation stops the motion.

More generally formulated, we are looking for those

points in phase space that have a certain prescribed “history”

(in the example of Fig. 5, the constant rotational direction

for periods up to t). In this sense, we have constructed the

basin for this particular history. For completeness, we pre-

sent in a supplementary material,38 the basin for a given sign

of the rotation in continuous time (not only at integer multi-

ples of T) as a movie. The patterns are similar but shrink

faster than in discrete time due to the frequent change of the

rotational direction over the first few periods.

The basins in Fig. 5 consist of compact regions in

phase space with filamentary looking components as well.

In contrast to basins of attraction in usual chaotic systems

including periodically driven cases,37 the basins here are

non-periodically time-dependent. The area of the basins

shrinks monotonously, with the length of the considered

history, and at a threshold value, nth of n suddenly drops to

zero. This is a characteristic feature of systems with drifts

in their parameters. It is worth noting that the analogous

process with a constant amplitude C0¼ 2 but with a tradi-

tional leak34 would provide basins that converge to a frac-

tal of zero area, the stable manifold of the chaotic saddle

underlying trajectories which rotate in the same direction

up to unlimited time.

V. GENERAL LEAKING IN THE HISTORY SPACE

Leaking of traditional chaotic systems means that one

defines an artificial leak in the phase space of an originally

closed system and investigates the statistics of trajectories

leaving the system via the leak. This method opens up a sub-

set of the original phase space structures and can be consid-

ered as a tool by which one can look into the details of the

original dynamics.34 Since the condition of entering the leak

does not depend on time, this traditional leaking might also

be considered as a special leaking in the history space in

which no temporal constraint is applied. The concept of

FIG. 4. Distribution of extinction times on the whole phase space region (a¼ 0.025). The condition for “stopping” is that a trajectory reaches and stays in the

phase space strip jxj < 0:1. Left panel: extinction times over the phase space, marked by colors. Right panel: probability distribution of extinction times, P(n).

Points in the tiny white regions possess an extinction time either less than 22T or larger than 25T.
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history space is used here in a similar sense as in the study

of dynamical entropies, like e.g., the Kolmogorov-Sinai

entropy, in low dimensional ordinary differential equations

and maps: we consider the information gained in a series of

measurements which follows the coarse grained time devel-

opment of a system on a given partitioning of the phase

space.39,40 In contrast to these traditional studies, we allow

the partitioning to be time-dependent in our setup and this

partitioning follows from the constraints used to define the

leak in history space. In systems with drifting dynamics, like

the decay of the driving in our example, the interest lies in

the finite time behavior; therefore, it is rather natural to con-

sider histories prescribed over certain time windows only.

In fact, all of the constraints used up to now can be inter-

preted as consequences of leaks in the history space. In Figs.

1 and 2, each of the colors represent certain histories which

are arbitrary up to time t and end by entering and remaining

in a prescribed phase space region. For example, the green

foliation in Fig. 2 corresponds to a history which fulfills the

condition jxj < 0:1, for t� 22T, while the history for red

points is similar with t� 23T. More generally, we can say,

that the histories considered in Figs. 1 and 2 are determined

by the conditions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ x2

p
< 0:2; t � nT with n¼ 23,…, 26

and jxj < 0:1; t � nT with n¼ 22,…, 25, respectively. The

leaks in history space can be identified as the complements

of histories prescribed in time and phase space. Just like in

the case of traditional leaking, whenever a trajectory enters

the leak in the history space, it is no longer relevant for the

purposes of the observer.

Some leaks in history space can be represented as simple

curves on the plane spanned by one of the phase space varia-

bles and the time. Figure 6 shows a few examples. For sim-

plicity, we only present here restrictions in the x coordinate,

not in u or both. In the history representation used, tradi-

tional leaking34 corresponds to defining a forbidden region

in phase space, which is independent of time (see inset). The

new feature of leaking in history space is that it allows for

the time dependence of phase space leaks.

In principle, any history, which lies outside a leak in the

history space, can be considered to have a basin.41 To illus-

trate general leaks in history space and the basins of the pre-

scribed histories, we consider an asymmetric condition in x
(exemplified by the grey dashed lines in Fig. 6). In the tradi-

tional view, these imply applying no leaking up to time 1T
(2T) when suddenly a phase space leak x 62 ð0:3; 0:7Þ
appears up to time 3T (4T).

FIG. 5. Partitioning with respect to the trajectories’ rotational direction, on the phase-space region shown (a¼ 0.025). Initially, N¼ 106 points are distributed

uniformly. Blue (red) points correspond to a positive (negative) rotational direction, x> 0 (x< 0). In the individual figures, only those points are displayed,

which do not change the rotational direction in the stroboscopic map up to time t indicated above the figures.
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Figure 7 shows the basin for the history of 0.3<x
< 0.7, 1T� t� 3T, in the right panel, and 2T< t< 4T, in the

left panel. Both patterns are sparser than those of the previ-

ous figures at similar times (see, e.g., the first row of Fig. 5),

because the prescribed property is much stricter, much less

trajectories can satisfy it. To make the structure visible, we

had to take an ensemble of much more initial points, than

earlier. These structures have the same characteristics as

seen before. Mostly, they contain fine filaments and exhibit a

clear dependence on the temporal component of the leaking.

Next, we consider two different phase-space constraints

in the x coordinate (Fig. 8), while keeping the time con-

straint the same as for the right panel of Fig. 7. This implies

that these three basins must be disjoint.

A comparison of Figs. 4, 5, 7, and 8 illustrates a general

property of leaking in the history space. When comparing

the slope of the filaments about a given point [this is espe-

cially clear at (u¼ –1.5, x¼ 1.5)], we find that the slopes

are almost identical. The filaments themselves do not neces-

sarily match, but their orientation is the same. This is true

despite the histories’ different constraints. The conclusion is

that in the system under consideration on the plane of initial

conditions the slopes about a given point are the same, inde-

pendent of all the properties of the leaks in history space.43

Many filaments running parallel to each other in this region

also stay similar farther away, as a comparison of the differ-

ent panels illustrates. In general, leaking in the history space

offers the possibility to visualize the filamentation of the

dynamics with parameter drift, which is usually dense and

therefore not visible without applying any leaking. This

observation finally explains the appearance of the striking

colored stripes discovered in Figs. 1 and 2 as a kind of stable

foliation, more precisely, as the basin of extinction times nT,

restricted in these figures to the chaotic attractor.

It is also interesting to investigate how the number of

trajectories within the basin of a history depend on time.

That is, we measure the number of trajectories which fulfill

the condition of being outside a leak, as a function of the ter-

minal point n of the history’s temporal component. As an

example, we take the phase space constraint used in Figs. 7

and 8 applied in subsequently widening time windows, e.g.,

2T� t� nT, with n¼ 2, 3,…, in the left panel of Fig. 7. The

result is presented in Fig. 9, where we display the probability

of finding a trajectory that satisfies the history P	N/N0 vs. n
where N is the number of trajectories satisfying the history

and N0 is the number of uniformly distributed initial

conditions.

Over the first few steps, the trend appears to be roughly

exponential, but later it becomes much faster, the points fall

below the dashed lines. The form exp ð�jnÞ provides thus

FIG. 6. Schematic diagram of leaks in the history space (not to scale). The

regions bounded by colored lines and shaded strips mark different prescribed

histories. The complements of these regions, the unshaded regions, are the

leaks in history space. In the right part of the figure, the colored lines corre-

spond to the two upper panels of Fig. 3 where the extinction time is t� nT
(for n¼ 22 and 23). The constraints (dotted lines) in the lower left region

represent the partitioning condition with respect to the negative rotational

direction of Fig. 5, with gradually increasing width along the time axis. The

curves in the upper left region (dashed lines) correspond to more general,

arbitrarily chosen histories. The feature that these constraints are bounded in

time expresses the fact that we consider the dynamics to be irrelevant after

the terminating time instant. These particular constraints will be used as fur-

ther examples in the text. In the inset, an example of a traditional leak repre-

sented in the history space is shown.

FIG. 7. Basins for staying outside general leaks in the history space. Initially, an ensemble of N¼ 107 points is distributed uniformly in phase space for a

switching off process with a¼ 0.025. Those points are shown which are in the region 0.3<x< 0.7 on the stroboscopic map for periods 2T� t� 4T in the left

panel and for periods 1T� t� 3T in the right panel.
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an upper bound to P(n). In addition, in all these cases, N � 0

beyond a threshold nth (which is on the order of 10 here).

Thus, the decay lasts over a finite time interval only. This is

in contrast to usual leakings where the exponential behavior

PðnÞ 
 exp ð�jnÞ holds, in principle, up to unlimited times.

VI. UNDERLYING HORSESHOE-LIKE STRUCTURES

System (1) with frozen-in driving amplitudes C is found

to exhibit long-lived transient chaos37 for a broad range of

driving amplitudes (see Fig. 2 of Ref. 30). For fixed C val-

ues, this finite-time chaotic dynamics is governed by a nonat-

tracting subset of phase-space, the chaotic saddle. The

saddle can be approached by trajectories along its stable
manifold. This is a fractal invariant set of the dynamics,

made up of trajectories that converge to the saddle asymptot-

ically. Other trajectories are repelled, along the saddle’s

unstable manifold. This is also a fractal invariant set and

consists of trajectories that converge to the saddle in reversed

time.

It is important to note that the saddle is exactly the inter-

section of the stable and unstable manifolds. Together with

the manifolds, this pattern is referred to as a horseshoe struc-
ture, the presence of which is known to be a strong indica-

tion of chaotic dynamics.42

The filamentary patterns seen up to now are reminiscent

of manifolds characterizing transient chaos, which might

arise due to a traditional leak,34 i.e., leaks opened forever.

Let us, therefore, briefly recall how chaotic saddles and their

stable and unstable manifolds are constructed in systems

with constant or periodic driving.

In one of the main algorithms (the so-called sprinkler

method37), one starts with N0� 1 trajectories distributed

uniformly over an extended phase space region. One then

chooses a time t and follows the time evolution of each ini-

tial point up to this time. Only trajectories that do not escape

the region outside the leak are kept. If t is sufficiently large

(but not too large such that only a few points remain inside),

trajectories with a lifetime this long come close to the saddle

during the course of their dynamical evolution, implying that

their initial points must be in the immediate vicinity of the

stable manifold of the saddle (or of the saddle itself), and

their end points must be close to the unstable manifold of the

saddle. The latter is so because most points still inside after

time t are about to leave. The points from the middle of these

trajectories (belonging to time	 t/2) are then in the vicinity

of the saddle.

For finite values of t, the set of initial points kept, the

approximant of the stable manifold, can also be considered

to be the basin (possessing a finite area) for the history that

the trajectory stays outside the leak for time t. Here, we

construct analogous sets of points for the case of decaying

amplitude, by choosing leaks in history space.

We consider the case of a given rotational direction and

construct the analogues of the stable manifold, the chaotic

saddle, and the unstable manifold. These sets, called as

FIG. 8. Basins for staying outside general leaks in the history space, constrained in the same time window. Initially, N¼ 4� 107 points are distributed uni-

formly. Left panel: initial position of trajectories that are in the region 0.7<x< 1.1 (left panel), and in �0.6<x<�0.2 (right panel), on the stroboscopic

map, for periods 1T� t� 3T, with a¼ 0.025.

FIG. 9. Probability (P) for a randomly chosen trajectory on the plane of

initial conditions to have histories prescribed in Figs. 7 and 8 displayed

semi-logarithmically, as a function of the terminating time instant (n) of the

history. The different symbols label the histories, while the dashed lines

indicate exponential trends (of slopes j¼ 2.50 and 2.75).
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snapshot manifolds and snapshot saddle, are known to be

well defined in genuinely open dynamical systems with arbi-

trary but never vanishing driving.37

The results for decaying driving are shown in Fig. 10 for

time windows of different length t¼ nT. The prescribed his-

tory considered is to have a fixed sign of x on the strobo-

scopic map in the time window (0, t). The time window in

the last row is only 1 period longer than above, in order to

illustrate the drastic change that occurred during the last

period to the blue points, as also seen in Fig. 5.

By construction, the snapshot stable manifolds exactly

coincide with the basins shown in Fig. 5 but the saddles and

the unstable manifolds have not yet been discussed. These

sets depend strongly on the time constraint of the prescribed

history and can be considered to be snapshot objects. It is the

right column here, the snapshot unstable manifold, which is

similar in appearance to snapshot attractors, like e.g., the

ones found in Ref. 30. The snapshot “saddle” becomes more

and more sparse, but exhibits some kind of direct product

structure, as usual chaotic saddles do. All of these sets are, of

course, of finite area. The unstable manifolds are filamentary,

but by times t¼ 18T or 19T they are hardly folded, indicating

that the dynamics is, by these long times, no longer chaos-

like.

Let us now analyze how these stable and unstable snap-

shot manifolds look like when we start the decay of the driv-

ing not at C¼C0¼ 2, but at C¼C(4T)¼ 1.0669. Figure 11

shows these sets in a different time window which is also of

length 18T. Here, initialization itself takes place at time

t¼ 4T and the investigation ends at t¼ 22T, i.e., the time

constraint of the prescribed history is 4T� t� 22T. Even

though the time windows have the same length, all the pat-

terns differ considerably from those in the middle row of

Fig. 10, a typical property of systems with drifting parame-

ters. Both the stable manifold (the basin for the history) and

the saddle are much sparser than in Fig. 10. By taking the

plane of initial conditions at a later time, i.e., at t¼ 4T
(C¼ 1.0669), we impose a much stricter non-escape condi-

tion since the end of the prescribed time window (t¼ 22T) is

at an instant when chaotic motion has nearly stopped. This is

FIG. 10. Snapshot stable manifold (left column), saddle (middle column), and unstable manifold (right column). Red (blue) points represent trajectories with

negative (positive) sign of x up to t on the stroboscopic map, a¼ 0.025. From the top row to bottom, t¼ 6T, t¼ 18T, and t¼ 19T. Stable manifolds are approx-

imated by the trajectories’ initial point [t¼ 0], the saddle by their mid-point [at time	 t/2], and unstable manifolds by their endpoint [at time t]. The initial

ensemble consisted of N¼ 106 points.
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indicated by the fact that the saddle is made up of a few iso-

lated points (or very short intervals) only. The stable folia-

tion of the left panel therefore differs from those of Figs. 4,

5, 7, 8, and 10, which all belong to an initial state with C0.44

The time-dependence of the horseshoe pattern is in

strong contrast to cases with persistent time-periodic driving.

The latter are exemplified by Fig. 12 where one clearly sees

that the increase in the length of the time window from 18T
to 22T only leads to a better convergence to the asymptotic

fractal patterns. Here, the number of points fulfilling the

non-escape condition decreases exponentially up to long

times, with an approximate escape rate j¼ 0.28 for both

signs of the rotation (for both the blue and red points).

The chaotic saddle of cases with such traditional leaking

does not depend on the temporal part of the leak (time of

opening, the length of the time window, provided it is long

enough), only on the leak’s geometry in phase space. (In this

example, the leak for the blue points is x< 0.)

We thus conclude that in dynamics with parameter

drifts the analogues of the stable manifold, of the chaotic

saddle, and of the unstable manifold depend on the details of

the leak in history space. Nevertheless, a horseshoe-like

structure seems to govern the full dynamics, which can be

explored by time-dependent leaks.

VII. DISCUSSION

We have shown that generic systems with parameter

drift possess a stable and unstable foliation, and an underly-

ing topological horseshoe-like structure, at least for a finite

period of time. These structures become visible by prescrib-

ing a certain type of history for an ensemble of trajectories in

phase space and by analyzing the trajectories fulfilling this

constraint. The process is a generalization of traditional leak-

ing to leaks in the history space. This form of leaking might

FIG. 11. Snapshot stable manifold (left column), saddle (middle column), and unstable manifold (right column) for a horseshoe-like structure as in Fig. 10,

appearing in a time window starting later. Red (blue) points represent trajectories with constant sign of x for 4T� t� 22T on the stroboscopic map, a¼ 0.025.

FIG. 12. Stable manifold (left column), saddle (middle column), and unstable manifold (right column) on the stroboscopic map for dynamics with constant

C¼C0 and a¼ 0. Top (bottom) row shows the horseshoe structure associated with 0< t< 18T (0< t< 22T) and N0¼ 2� 105 (N0¼ 107). There is practically

no dependence on the length of the time window.
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become a method for a detailed analysis of dynamics driven

by arbitrarily time dependent forcings.

After having seen that the “chaotic sets” depend essen-

tially on the structure of the leak in history space, we briefly

turn now to the dependence on the speed of the drift.

Throughout the text, we used the switchoff rate a¼ 0.025,

which is less than the rate of dissipation, b¼ 0.05. Now, we

compare it to a¼ 0.1, which corresponds to a much faster

scenario.

Figure 13 suggests a strong dependence of the horseshoe

structures on the switchoff rate. With a faster scenario, the cha-

otic set is much sparser; the unstable manifold is much less

folded indicating that chaos-like features disappear faster.

In Ref. 35, the concept of survivability was introduced.

Similarly to our problem, a subset of phase space is declared

to be safe, in the sense that the trajectories of interest are those

that never leave this region when starting with a uniform ini-

tial distribution in the phase space. This appears to be a gener-

alization of the concept of a “tolerable window” introduced

much earlier in the context of climate research.45,46 There,

after specifying the desired region of phase space, the tolera-

ble trajectories are computed backwards. Moreover, the con-

straint of the tolerable window is prescribed in one of the

variables (in a projection of the phase space), while in Ref. 35

the full phase space is taken into account. The conditions in

phase space considered in Ref. 35 are independent of time.

The system’s survivability S(t) is then defined to be the num-

ber of trajectories that stay in the safe region up to time t. This

concept is similar to traditional leaking, just the observation

time is allowed to be finite. Among our examples, Fig. 5 and

the dotted curves in the lower left part of the schematics of

Fig. 6 also correspond to this concept. By contrast, in our gen-

eral setup, we let the safe region be an arbitrarily prescribed

history, the complement of which is the leak in the history

space. We can extend and generalize the concept of surviv-

ability to such cases to be the number of initial conditions that

obey a prescribed history in a certain time interval. Thus, e.g.,

the PDF P(n) given in the inset of Figs. 1, 2, and 4 (n being a

discrete time) can be considered as examples of such general-

ized survivabilities.

Survivability is defined in Ref. 35 for systems of arbi-

trary dimensions. Our aim has been the exploration of

the phase space patterns related to survivability in low-

dimensional problems, and an extension of the concept of

leaking. In particular, we investigated the phase space geom-

etry of the basin of history (basin of survival), i.e., the region

in which the condition of survival is fulfilled, for a finite

amount of time at least, and found that such a basin typically

contains a filamentary structure, if the underlying determinis-

tic dynamics involves transient chaos. The authors of Ref. 35

consider survivability conditions applied from time zero up

to arbitrarily long times. We have shown that the survivabil-

ity conditions do not need to be time-independent and can be

applied in finite time windows starting at any time instants,

implying a general leaking in the history space. This exten-

sion allowed us to find the analogue of a horseshoe construc-

tion for any drifting dynamics, for which the finite time

analogues of saddles, unstable and stable manifolds can be

constructed, shedding light on the filamentation of the origi-

nal, unleaked problem with parameter drift.
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