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ABSTRACT

The differentially heated rotating annulus is a laboratory experiment
historically designed for modelling large-scale features of the mid-
latitude atmosphere. In the present study, we investigate a modified
version of the classic baroclinic experiment in which a juxtaposition of
convective and motionless stratified layers is created by introducing
a vertical salt stratification. The thermal convective motions are
suppressed in a central region at mid-depth of the rotating tank,
therefore double-diffusive convection rolls can develop only in thin
layers located at top and bottom, where the salt stratification is
weakest. For high enough rotation rates, the baroclinic instability
destabilises the flow in the top and the bottom shallow convective
layers, generating cyclonic and anticyclonic eddies separated by
the stable stratified layer. Thanks to this alternation of layers
resembling the convective and radiative layers of stars, the planetary’s
atmospheric troposphere and stratosphere or turbulent layers at
the sea surface above stratified waters, this new laboratory setup
is of interest for both astrophysics and geophysical sciences. More
specifically, it allows to study the exchange ofmomentum and energy
between the layers, primarily by the propagation of internal gravity
waves (IGW). PIV velocity maps are used to describe the wavy flow
pattern at different heights. Using a co-rotating laser and camera, the
wave field is well resolved and different wave types can be found:
baroclinic waves, Kelvin and Poincaré type waves. The signature of
small-scale IGW can also be observed attached to the baroclinic jet.
The baroclinic waves occur at the thin convectively active layer at the
surface and the bottom of the tank, though decoupled they show
different manifestation of nonlinear interactions. The inertial Kelvin
and Poincaré waves seem to be mechanically forced. The small-scale
wave trains attached to the meandering jet point to an imbalance of
the large-scale flow. For the first time, the simultaneous occurrence
of different wave types is reported in detail for a differentially heated
rotating annulus experiment.
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1. Introduction

Convective flows driven by temperature gradients are ubiquitous in geophysical and in
astrophysical systems. In a large variety of settings, ranging from salinity stratified water
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basins (Boehrer 2012) to regions of planetary and stellar interiors (Medrano et al. 2014)
the direction of the temperature gradient is not co-aligned with that of the local gravity.
Then the interplay between stabilising density stratification and the destabilising thermal
stratification can yield the emergence of double-diffusive convective instability (Chen et
al. 1971). The cases where the initial temperature contrast has a perpendicular component
to the gravity vector are particularly interesting for mid-scale ocean dynamics (Shibley et
al. 2017). If planetary (or stellar) rotation is also taken into account, the complexity of
the phenomena further increases and leads to nontrivial interactions between rotational
and convective instabilities. In the present study, we focus on a rotating double diffusive
system in a conceptual laboratory setup that has been surprisingly rarely investigated in
the literature.

A plethora of experimental works exists dealing with purely thermally-driven rotating
flows (where the density of the fluid parcels is solely determined by their temperature)
utilising lateral heating and cooling since the 1950s. The widely studied thermally driven
rotating annulus, introduced by Hide (1958), Fultz et al. (1959), is a classic laboratory
experiment designed to understand the manner in which the atmospheric circulation
transports heat from equatorial to polar latitudes. The setup of this experiment consists
of a tank with three concentric cylinders filled with pure water. The innermost cylinder
(representing the polar region) is cooled, whereas the outer ring (representing the equator)
is heated and the tank is mounted on a turntable, so it rotates around its own vertical axis
of symmetry. Therefore, the working fluid in the annular cavity is subject to a radial
temperature difference and a Coriolis deflection. The combined effect leads, for high
enough values of the rotation rate, to the baroclinic instability with the formation of
cyclonic and anticyclonic eddies covering the full water column. The baroclinic instability
is at the heart of the mesoscale motions in the atmosphere and ocean and gives rise in
particular to atmospheric weather systems (Vallis 2006). Besides the baroclinic waves,
varying either the magnitude of the temperature difference or the rotation rate, other flow
regimes can develop in the annular gap. The four possible regimes are axisymmetric flow,
steady waves, vacillation, and irregular flow.

Many theoretical (Lindzen et al. 1982), numerical (Ohlsen and Hart 1989, Randria-
mampianina et al. 2006), and experimental (Buzyna et al. 1989, Von Larcher and Egbers
2005, Harlander et al. 2011) studies have focused on the so-called amplitude vacillations,
i.e. the periodic fluctuations in the intensity of the aforementioned baroclinic eddies, the
associated temperature patterns and sought a fundamental understanding of the manner
in which these vacillations arise, which are the processes leading to them and how they
equilibrate by interacting with the mean flow. The findings of these studies suggest that
amplitude vacillations mainly occur because of nonlinear wave-wave interactions and
wave-mean flow interaction but also feedback mechanisms between the fluid interior and
the boundary layers (Früh 2014). A special case of a flow which appears like a modulated
amplitude vacillation (also known as interference vacillation) is the superposition of two
waves with the same horizontal wavenumber, non-orthogonal vertical structures, and
different phase speeds (Lindzen et al. 1982, Vincze et al. 2014).

In addition to the baroclinic waves, inertial Kelvin modes are known to be resonantly
excited in a rotating cylinder in various situations as an elliptic instability (Lacaze et al.
2004), precessional instability (Lagrange et al. 2011, Triana et al. 2012), and parametric
forcing. The name Kelvin waves here refers to inertial waves modified by stratification
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having a specific vertical structure and these are not to be confused with coastal Kelvin
waves, which are shallow water boundary trapped waves. Guimbard et al. (2010) have
theoretically investigated the inertial Kelvinmodes in a rotating cylinder and the behaviour
of the dispersion relation when vertical salinity stratification is introduced. The occurrence
of differentwaves and their interactions can lead to instabilities. For example, the resonance
between Rossby and inertial Kelvin waves induces the Rossby-Kelvin instability, which has
been studied numerically in the two-layer shallow water model by Gula et al. (2009) and
experimentally in a rotating annulus for a two miscible fluid layers by Flór et al. (2011).
In systems with fluid interfaces, as the latter cited ones, other instabilities such as Kelvin-
Helmholtz and Hölmböe can arise. These two instabilities, in particular, have been found
to be a source for the emission of small-scale waves in rotating annulus experiments and
their occurrence is related to the interface thickness, density, and shear, as discussed by
Scolan et al. (2014).

In the present work, we propose a thermohaline version of the differentially heated
rotating annulus, the “barostrat” experiment introduced by Vincze et al. (2016), where a
continuously stratified salinity profile is prepared in the annulus cavity with the so-called
double-bucket technique (Oster and Yamamoto 1963) before the experiment is run. This
particular configuration is not only interesting for investigating the wave regimes that
develop in the fluid depth as well as studying inertial Kelvin/baroclinic wave coupling
and the coexistence of different baroclinic waves, but also to investigate the occurrence
of small-scale waves and in particular inertia gravity waves spontaneously emitted by the
baroclinic wave. Recently, several numerical models (Jacoby et al. 2011, Borchert et al.
2014, Randriamampianina and del Arco 2015) and laboratory experiments (Lovegrove et
al. 2000, Williams et al. 2005) have used different configurations of the rotating annulus
experiment to investigate the interaction between large-scale “balanced” flow components
(quasi-geostrophic baroclinic waves) and “fast”, small-scale, ageostrophic inertia-gravity
waves.

The advantage of the laboratory setup used in this paper in contrast to the classical
configuration is that, by introducing vertical salinity gradient to the setup, the frequency
ratios between the Brunt-Väisälä (or buoyancy) frequency N = √−g/ρ0 dρ/dz – where
ρ0 is a reference density – and the Coriolis frequency f = 2Ω , where Ω is the angular
velocity of the rotation, rises from N/f < 1 (classical setup) to N/f � 10 (barostrat).
Because the ratio is larger than unity, IGW propagation is expected to be qualitatively
similar to the atmospheric case, as it follows from the dispersion relation:

ω2 = N2(k2 + l2) + f 2n2

k2 + l2 + n2
= N2 cos2 (γ ) + f 2 sin2 (γ ), (1)

where the intrinsic frequency in the rotating frame of referenceω of thewave is determined
by the buoyancy frequency N , the Coriolis frequency f , and γ = arctan (n/

√
k2 + l2), the

angle between the phase velocity and the horizontal plane, set by horizontal wavenumbers
k, l and vertical wavenumber n. Due to the finite domain of values of the sine and cosine
functions in (1), IGWs can only exist for specific frequencies ω. More specifically, in
figure 2(b), which represents the buoyancy frequency profile N(z) as calculated from the
measured density profile in panel (a), the two distinct existence regions, according to the
values of f and N , are shown. At the top and the bottom of the tank (green regions) N < f
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and therefore N < ω < f , while in the region in the middle (light blue) f < N and so, in
this case, f < ω < N .

The criterion for baroclinic instability reads (Hide and Mason 1975):

Bu =
(
N
f
D
L

)2
< 0.581, (2)

and we see that for large N/f the aspect ratio D/L needs to be small to find baroclinic
instability. In the thermohaline annulus, this is automatically fulfilled since the convective
layers are thin and hence D has to be replaced by the thickness λ of the convective layers.

The paper is organised as follows: in section 2 we briefly introduce the most important
features of the experiment setup and the measurement techniques used, in section 3 we
described the data analysis methods applied to our measurements. Section 4 first focuses
on the large scale wave regimes and interactions occurring at different fluid heights in our
tank and then investigates inertia-gravity waves along the jet of the baroclinic waves. A
summary and conclusions are given in section 5.

2. Experimental setup and data acquisition

The experiments considered in this paper were performed at the BTUCottbus-Senftenberg
laboratories using the same apparatus introduced in previous work by Vincze et al. (2016).
For a detailed description of the experimental setup, we refer the reader to their paper. In
this section, we will only report the most significant parameters.

2.1. Experimental setup

The annular tank consists of an inner cylinder, cooled by a thermostat, and an outer
cylinder, heated by a heated coil, with radii equal to a = 4.5 cm and b = 12 cm respectively.
The annular cavity of width L = b − a = 7.5 cm has a flat bottom, a free surface, and
was filled up to the height D = 10.5 cm. The lateral temperature difference �T was set
to 10 K, after this value was reached in the experiment, the rotation rate of the turntable
about the vertical axis was slowly increased (�Ω = 0.1 rpm every 2min) until the final
value Ω = 4 rpm. A sketch of experimental setup with the double diffusive convection
developing in the barostrat experiment is shown in figure 1.

Applying the standard two-bucket technique (Oster and Yamamoto 1963) a salinity
profile was created in the annular gap. The prepared stable vertical salinity profiles have
been measured with a conductivity meter at the beginning of the experiment, before
starting the rotation and at the end of the experiment, after stopping the rotation. Suc-
cessively the conductivity has been converted to density. The calculated vertical density
profiles are plotted in figure 2(a), from which we can distinguish three layers in the tank:
two shallow layers (whose thickness, indicated by the grey shading, is approximatively two
centimeters) on the top and the bottom of the tank, both characterised by constant density,
and a middle layer with an almost linear density profile. The distinct interfaces separating
the regions, visible in the plot, correspond to the boundary of the convective layers. The
plot of the time averaged azimuthal velocities for the four measured heights (figure 2(c))
shows that the zonal flow is prograde at the surface (z = 94 mm), then retrograde at
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Figure 1. Sketch of the double-diffusive convection in the barostrat experiment and of the experimental
setup with PIV levels and temperature sensors positions. The red dashed lines indicate the interfaces
between the convective regions and the calm region at the heights ztop = 8.9 cm and zbottom = 2 cm
(Colour online).

z = 75 mm, almost zero in the middle motionless stratified layer (z = 47 mm), and
again prograde at the lowest measured height (z = 21 mm). The plots for the density, the
buoyancy frequencyN , and the azimuthal velocity (figure 2) are in excellent agreementwith
the ones shown by Vincze et al. (2016) for similar experimental settings. The boundary
conditions of no-flux for salinity at the surface and the bottom of the water column
impose a zero concentration gradient at these boundaries even before a temperature
gradient is applied. In this configuration, only the two separate shallow fluid layers can
be baroclinically destabilised. Indeed, the vertical salt stratification opposes the thermal
convective motions until the ratio of the (horizontal) thermal density difference and the
(vertical) salinity-induced density difference exceeds a certain critical threshold. Then
double-diffusive convection rolls develop in thin layers located in regions where the salt
stratification is weakest. An important clarification is needed: the curves plotted in figure
2 for the density and the buoyancy frequency N are obtained measuring the temperature
compensated conductivity, so they depend only on the variations of the salinity content in
the water column. However, density variations depend both on the salinity (δS) and the
temperature (δT) variations in the form δρ/ρ0 = −αδT + βδS, where α is the thermal
expansion coefficient and β is the haline contraction coefficient. Although we do not have
measurements of the thermal gradients and thus no access to the Brunt-Väisälä frequency
associated to the temperature stratification, we know that vertical gradients in temperature
(within a convective cell) can only exists at the top and bottom of the water column,
whereas in the bulk (i.e. outside the top and bottom cells) the thermal contribution toN is



6 C. RODDA ET AL.

zero. In the convective cells, convection and the baroclinic instability mix the temperature
field and consequently decreases the vertical difference of temperature in these layers. For
this reason, we speculate that in the upper/lower mixed layer the value of N is rather low.
Using the numerical simulations of Borchert et al. (2014) and specially their figure 3(c),
the value for N should be constraint in the range 0.08–0.4 rad/s.

For our thermohaline experimental setup, it is useful to introduce a local version of the
Taylor and thermal Rossby numbers:

Ta(z) = 4Ω2L5

ν2λ(z)
, (3)

RoT(z) = λ(z)gα�T
Ω2L2

, (4)

where Ω is the rotation rate, �T is the horizontal difference of temperature, L is the gap
width, λ(z) is the depth of the baroclinically unstable layer, ν is the kinematic viscosity, g
is the acceleration of gravity, and α the volumetric thermal expansion coefficient (whose
value varies according to temperature, salinity, and pressure). These two nondimensional
numbers, generally used to study the flow regime in the differentially heated rotating an-
nulus, are now depending on the vertical extent of a convective cell at height z, λ(z), which
is determined by the initial buoyancy frequency profile N(z) and the lateral temperature
contrast�T . Note that, because the flow states depend not only on the lateral temperature
difference and on the rotation rate but also on the convective cell thickness, different flow
states may be observed at different heights. The condition that the initial saline density
difference between the top and bottom of the cell cannot outreach the horizontal thermal
density difference between the cylindrical walls define the thickness of the cell λ(z), which
can, therefore, be calculated using Chen’s formula:

λ(z) = gα�T
N2(z)

. (5)

For increasing N , λ decreases until it reaches a critical value, λcrit, below which viscous
effects hinder the formation of convective cells (as reported by Chen et al. (1971)). Vincze
et al. (2016) found that the formation of two separate convective layers followed the Chen
relation and the layers at the top and the bottom were observed to be around 2 cm thick.

2.2. PIV and temperature data acquisition

To investigate the flow regimes at different water heights (indicated by the dashed lines in
figure 2 and by the green laser planes in figure 1), a co-rotating particle image velocimetry
(PIV) system is mounted on the cylindrical annulus. A camera (GoPro Hero 4, screen
resolution 1920 × 1080, fps = 30) together with a green laser (Laser Linos Nano 250-
532-100, wavelength λ = 532 nm, maximum power 300 mW) are fixed on a vertical bar
mounted at the outer cylinder. The laser produces a continuous horizontal light plane of
1 mm thickness which illuminates tracer particles (a mixture of hollow glass and silver
coated hollow glass spheres with diameter range distribution 2–20µm and mean density
ρ = 1.1 g/cm3) in the fluid. Applying the Stokes’ law, the settling velocity at which the
particles move towards the middle region of the tank ranges between Vt = 0.05–4.7 cm
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Figure 2. Vertical density (a) buoyancy frequency (b) and azimuthal velocity (c) profiles. The dashed
lines correspond to the PIV measurement heights, the grey shaded areas indicate the convective layers
at the top and the bottom of the tank. (a) the density is measured before starting rotation (red line) and
after stopping the rotation (black line). (b) buoyancy frequency calculated from the density measured
after the rotation. The vertical red line shows the value of the Coriolis frequency f = 2Ω , the two green
areas indicate the frequencies interval in which IGWs can be found (N < ω < f ) for the regions where
the salinity stratification is weak. The central light blue area indicates the frequencies interval in which
IGWs can be found (f < ω < N ) for the region with strong salinity stratification. In the latter case, IGWs
are expected to propagate similarly to the ones in the atmosphere. (c) plot of the azimuthal velocities
averaged over time for the four measured heights. It can be noticed that the zonal flows is prograde at
the surface, then retrograde at z = 75mm, corresponding to the convective region, almost zero in the
middle motionless stratified layer, and again prograde at the lowest z (Colour online).

per hour. The particles are added to the fluid when the density profile is prepared at the
beginning of the experiment. Considering that the experiment runs for maximum 6h, at
least the smallest particles are expected to be found 1.5 cm below the surface and above the
bottom of the tank at the end of it. In addition to the settling velocity, we have to take into
account that the convective motions at the top and the bottom of the tank are mixing the
PIV particles rather effectively. Therefore, at themeasurement heights the particles remain
in neutral buoyancy during the measurement time � 12 min.

The field of view recorded by the co-rotating camera, fixed at close range to the water
surface, covers approximatively one third of the annulus and allows to gain close-ups
of the velocity fields, giving a better resolution in particular on the small-scale features.
The recorded videos, having each a total duration of 12min, are processed with the free
Matlab toolboxUVmat (see http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat) and
the horizontal components of the velocities are obtained. The percentage of velocity vectors
excludedduring thePIVanalysis and then interpolated is less than 1.5%.The rms difference
between the CIV (Correlation Image Velocimetry) and the smoothed velocity field is
rms = 0.5 − 0.6 pixels for a typical displacement of 5 pixels. This gives an estimation of
the PIV error 10–12%, comparable with the a posteriori error estimation (see appendix A
for more details).

In addition to the PIV system, five temperature sensors have been placed at the same
levels for which we also do the PIV measurements, i.e. 94, 75, 47, and 21 mm. The sensors

http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
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are placed in the centre of the annulus gap and diametrically opposite to the side where we
do the PIVmeasurements. Hence the sensors, having a diameter of 500µmand a Reynolds
number of the orderRe = 1, do not affect the PIVmeasurements. The temperature sensors
have a sampling time interval �t = 1 s and are able to record the data for the entire
duration of the experiment (about 2 h). Thanks to the temperature sensors, we have long
time measurements simultaneously at all the chosen fluid heights. A schematic drawing
of the experimental setup with the temperature sensors and the PIV apparatus is given in
figure 1.

3. Data analysis methods

In this section we describe the two statistical methods, i.e. harmonic analysis and empirical
orthogonal functions, we use to analyse our velocity fields. In particular, we are interested
in studying whether the baroclinic dynamics are different in the two unstable layers.

The harmonic analysis is a form of signal demodulation in which the user specifies the
frequencies to be examined and applies least square techniques to solve for the constituents,
(for an extensive description of themethodwe refer to the textbook of Thomson andEmery
2001). This method is very useful to investigate the spatial patterns associated with a single
given frequency and in particular we use it to emphasise the waves modes at different
heights. Moreover, it has the advantage to be very robust even for short time series.

Besides harmonic analysis, we apply the empirical orthogonal function (EOF) analysis to
the PIVdata (a complete description of themethod can be found in the textbook ofNavarra
and Simoncini 2010). Without specifying particular frequencies in advance this method
provides a description of the spatial patterns of variability of the data series and their
temporal variation, breaking the data into orthogonal functions or “modes of variability”
and thus is widely used in geosciences (e.g. Lorenz 1956). One mode of variability can
detect more than one frequency and therefore can comprise a more complex dynamics
such as interactions between waves. The advantage of using both methods independently
is that we can investigate time dependent patterns (with the EOF analysis, whereas the
harmonic analysis gives only the spatial patterns) and give them a physical interpretation
by comparing the results obtainedwith the two techniques. Indeed,while the interpretation
of the spatial patterns obtained by the harmonic analysis is clear, connecting the EOFs to
the physical modes is not trivial.

The emission of inertia-gravity wave packets from the baroclinic jet is a phenomenon
highly localised in space and time (Viúdez andDritschel 2006). Therefore, it is very difficult
to capture these small-scale waves using the two statistical methods described in this
section.A quantity often used as an indicator for IGWs is the horizontal velocity divergence
∇h·u = ∂u/∂x + ∂v/∂y (O’sullivan and Dunkerton 1995, Borchert et al. 2014). The
horizontal divergence contains a balanced part, as defined by quasi-geostrophic balance,
and an imbalanced part that is related to IGWs. We use the horizontal divergence to study
the small-scale waves, their behaviour in time, their wavenumbers and frequencies. The
last ones are obtained by computing two dimensional fast Fourier transforms.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 9

3.1. Harmonic analysis

We consider the velocity field V , measured by PIV at an arbitrary grid point in our
measured domain V(tn). This quantity can be expressed by a Fourier expansion

V(tn) = V +
M∑
q=1

(
Aq cos (ωqtn) + Bq sin (ωqtn)

)
+ Vr(tn) (6)

with q = 0, 1, . . . ,M where M is the number of distinct frequencies to be analysed, V
is the temporal mean, Vr the residual of the time series (it could contain other kinds of
components), tn = n�t the time, ωq a constant frequency, Aq and Bq are the harmonic
coefficients of the Fourier series. The amplitude of the frequency component q is

Cq = (
A2
q + B2q

)1/2, (7)

and the phase is
φq = tan−1(Bq/Aq

)
. (8)

The M distinct frequencies to be analysed are chosen as the main peaks in the hori-
zontal velocity spectra at each measured fluid height. The horizontal velocity components,
measured along one radial line taken in the middle of the camera field of view, are selected.
The frequency spectrum for each of these points is then calculated by using a fast Fourier
transform algorithm and then the spectrum is averaged for the points of this particular
chosen line.

A truncatedFourier series is thereafter fitted to the time series containing the frequencies
to be analysed, ωq. The variance e2 is computed for each point

e2 =
{
V(t) −

[
V +

M∑
q=1

(
Aq cos (ωqt) + Bq sin (ωqt)

)]}2

, (9)

where V(t) are the measured PIV velocities, V is the temporal mean and Aq, Bq are the
Fourier coefficients of the harmonics obtained by a least-square fit.

We estimate the amplitudes, Cq, and phases, φq, of the various components by min-
imising the variance. Once the amplitudes and the phase for a certain frequency are
calculated, the corresponding velocity field can be plotted on the domain recorded by the
camera (approximately one third of the tank). For rather steady waves, we can graphically
reconstruct the entire annulus using symmetric properties. The reconstructed plots are
made by combining together 3 or 4 partial plots obtained from the harmonic analysis.
These are shifted by a phase φ = 120◦, when 3 images are used or φ = 90◦ when 4
images are used. The figures have then been combined together (with some overlapping)
to reconstruct the full annulus, relying on the hypothesis of patterns regular in space.

3.2. Empirical orthogonal functions

To analyse data that contain oscillations in time or in space and time as a propagating
signal, it is useful to use a modified version of the standard EOF analysis, the so called
complex empirical orthogonal functions (CEOFs) (Pfeffer et al. 1990).
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For a harmonic wave of the form V(x, t) = Re
{
U(x) exp ( − iωt)

}
a peculiar phase

relation that indicates propagation is a quarter wavelength shift. CEOF analysis enhances
this phase relation changing the available data by adding a new data set obtained by shifting
all data by one quarter wavelength by using a Hilbert transform (Navarra and Simoncini
2010). Therefore, a single CEOF represents a single mode split into two patterns with a
phase difference of π/2 (the real and imaginary part of the CEOF).

To calculate the CEOFs we follow the same approach described in Harlander et al.
(2011), considering the CEOFs method for a simultaneous analysis of more than one field.
Such a coupled analysis is useful in our case where one field is the u- and the other is the
v-component of the velocity.We proceed in the following way to find coupled propagating
patterns: complex time series of the velocity components are formed from the original time
series and their Hilbert transforms:

uc(x, t) = u(x, t) + iuH(x, t), (10)
vc(x, t) = v(x, t) + ivH(x, t), (11)

where u(x, t), v(x, t) are the time series of the horizontal components of the velocity
measured by PIV at each location in the recorded domain, uH(x, t) and vH(x, t) are the
Hilbert transforms of u(x, t), v(x, t) and i is the imaginary unit.

The Hilbert transform of the original time series Xt with Fourier decomposition

Xt =
∑
ω

ζ(ω) exp ( − 2π iωt), (12)

is defined as

XH
t =

∑
ω

ζH(ω) exp ( − 2π iωt), (13)

where ζH(ω) = iζ(ω) for ω ≤ 0 and ζH(ω) = −iζ(ω) for ω > 0. For the computation of
the Hilbert transforms, we used the algorithm described by Marple (1999).

Thereafter, we form extended time series by combining the vc(x, t) time series with the
uc(x, t) time series and rewriting them as a row-vector in the form of U = (u1, . . . , uM ,
v1, . . . , vM). The data matrix D is written in the form of

D =

⎡
⎢⎢⎢⎢⎣

U1(t0) U2(t0) · · · UM(t0)
U1(t1) U2(t1) · · · UM(t1)

...
...

...

U1(tN ) U2(tN ) · · · UM(tN )

⎤
⎥⎥⎥⎥⎦ , (14)

where the rows represent the state vector at the spatial grid points
U(tn) = [

U1(tn), . . . ,UM(tn)
]
at time tn, and the columns represent the time series

Um(t) = [
Um(t0), . . . ,Um(tN )

]T at the spatial pointm.
From the data matrix, we calculate the covariance matrix

F = DT D, (15)
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Figure 3. Velocity frequency spectra for the different heights. On the left the low frequencies, 0 < ω < f ,
on the right high frequencies, f < ω. Note that the ordinate of the left plots is different from the one of
the right plots. The vertical dashed line indicates the value ofN .

The CEOFs are the eigenvectors of F and the so called Principal Components (PCs) are
the corresponding time-dependent coefficients.

4. Results

4.1. Propagatingwaves at different fluid heights

A puzzling result from the experiments done by Vincze et al. (2016) was that baroclinic
waves have been found only in the upper convective layer (see figure 1). The reason for this
might be damping due to bottom Ekman layer effects. In order to obtain a clear picture of
the waves developing at the different fluid heights in the tank, we first consider frequency
spectra of the horizontal velocity, obtained as described in section 3.1, from which we can
identify the dominant frequencies at each height, (i.e. measured from the bottom of the
tank: 94, 75, 47, and 21 mm).

We have separated the spectra into two windows: 0 < ω < f (figure 3 left) and f < ω

(figure 3 right). The grey dashed lines in the figures indicate the value of the buoyancy
frequency N at the measurements heights where known. Peaks for low frequencies appear
in the upper layer, for the frequency ω = 0.03Ω , at heights z = 94 mm (stronger) and
z = 75 mm (weaker) and in the bottom layer (z = 21 mm), for the frequency ω = 0.14Ω .
In the middle layer (z = 47 mm), instead, there is no peak in the low frequency range.
Another peak, at ω = Ω , can be seen for all the layers, with a stronger signal at the bottom
of the tank. Finally, in all layers there are peaks at frequencies larger than f .
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Figure 4. Regime diagram in the Ta-RoT space. The flow regime observed in the top and bottom layers
in the barostrat experiment are compared with data available from literature for the same experimental
setup, but for the purely thermal configuration (see text and table 1 for more details) (Colour online).

Using the harmonic analysis as described in section 3.1, we can reconstruct the velocity
fields corresponding to the most prominent peaks (figure 5). The left column shows the
baroclinic waves, one in the uppermost layer (z = 94 mm and z = 75 mm) close to the
surface, and one in the bottom layer (z = 21mm), with different azimuthal wave numbers,
m = 3 andm = 4 respectively.

It is instructive now to use the Ta-RoT regime diagram to compare the flow regimes
observed for the two baroclinically unstable top and bottom layers with data from the
literature for the non-salinity-stratified, purely thermal configuration. Once baroclinic
instability has set in, for the experimentswhere purewater is used, the convective cell covers
the whole fluid depth. For the comparison we consider two separate data sets collected at
the BTU laboratory using the same experimental apparatus described in section 2. The first
data set is an investigation of the flow regimes in a broad range of the Ta-RoT parameter
space by Von Larcher and Egbers (2005). We reproduced the regime diagram proposed
in their paper in figure 4, where the different flow regimes are indicated by the lines and
the wavenumbers are given. The second data set here considered is a study by Vincze
et al. (2015) which investigates the properties of the baroclinic instability by considering
different initial conditions (i.e. the lateral difference of temperature was kept constant
whilst the rotation rate was increased (spin-up condition ↑) or decreased – spin-down
condition ↓ table 1 – between each measurement). The four cases chosen for comparison
are plotted (black-diamond shaped marker) in figure 4 and indicated by the letters A-D.
Our barostrat experiment data for the top and bottom layer are plotted in red and blue
dots respectively. The values of Ta and RoT calculated using (4) and (3), the thickness of
the layer (λ) or the total fluid depth, and the observed wavenumbers are listed in table 1
for the second data set and the barostrat top and bottom layers.

One can clearly see that the thin layers of the thermohaline experiment data are located
in a region where baroclinic waves withm = 3 andm = 4 have both been observed in the
experiments by Von Larcher and Egbers (2005) and between m = 3 and m = 4 from the
study by Vincze et al. (2015) (note that our initial conditions correspond to the spin-up
ones).

As we mentioned before, besides baroclinic waves also other waves can be expected to
rise in our experimental setup. The middle column of figure 5 shows the velocity pattern
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Table 1. Comparison of the wavenumbers and RoT and Ta numbers calculated with (4) and (3) for the
data from the paper by Vincze et al. (2015) and the two baroclinically unstable layers at the top and the
bottom of the barostrat experiment. λ is the total fluid depth for the classical setup and the thickness
of the convective layer for the barostrat experiment. The values of the thermal expansion coefficient α
have been corrected for the salinity and the temperature. The arrows at the side of the wavenumbers
mark spin-up ↑ and spin-down ↓ initial conditions.

λ (cm) α (10−6 K−1) RoT Ta Wavenumber m

Classical setup
A 13.5 207 3.95 6.88 × 106 0-2
B 13.5 207 0.72 3.75 × 107 3(↑); 4 (↓)
C 13.5 207 0.44 6.20 × 107 3(↑); 4 (↓)
D 13.5 207 0.12 2.21 × 108 4

Barostrat
Bottom layer barostrat 2 327 0.38 8.87 × 107 4
Top layer barostrat 1.7 297 0.34 9.95 × 107 3

corresponding to the peak at frequency ω = Ω . We identify this pattern as inertial Kelvin
wave modified by stratification. There are several examples in the literature of inertial
Kelvin modes, also called the spin-over inertial modes, driven by precession either due to
the rotation of the laboratory by the Earth (i.e. in a spherical shell, Triana et al. 2012) or in
a precessional cylinder (i.e. Lagrange et al. 2011). Moreover, inertial Kelvin wavesmight be
excited by elliptical instability, as reported by Lacaze et al. (2004). In our case the inertial
Kelvin mode is more likely due to imperfect alignment of the rotation axis with respect
to gravity. In a system with a free surface this imperfection might force an inertial Kelvin
mode even if a true precession of the rotation axis is absent (personal communication with
Patrice Meunier).

Due to the fact that our measurements are not simultaneous, we do not have phase
information and hence we cannot investigate in detail the vertical structure of the inertial
Kelvin wave and compare it with the analytical solutions found by Guimbard et al. (2010)
for a rotating stratified cylinder. Nevertheless, our experiment shows that the amplitude
of the inertial Kelvin waves varies with depth as can be noticed in figures 3 and 5 (see
colorbar). This suggests that a structure of thewave along the vertical axis is indeed present.
Moreover, it can be noticed in figure 5 that at the top (z = 94 mm and z = 75 mm) and
at the bottom (z = 21 mm) of the tank the inertial Kelvin wave has a radial structure that
differs from themiddle region (z = 47 mm), namely it shows a higher radial wavenumber.
This spatial modulation along the radius might originate from the existence in the top and
bottom layers of the baroclinic instability. Gula et al. (2009) and Flór et al. (2011) reported
instabilities resulting from resonances between Rossby and inertial Kelvin eigenmodes for
a two layer flow in a rotating annulus. However, no clear signal of such resonance can be
observed in our experiment, in particular since the mean Rossby number is too small and
this resonance just happens for large Ro although some interactions are detected.

In the right column of figure 5 the reconstructed velocity field for one of the main peaks
with frequencies larger than f , for instance ω = 6.8Ω , is shown. Similar structures can
be found for the other prominent peaks for frequencies ω > Ω and are present in all
layers. It is also interesting to notice that most of these peaks appear at the same frequency,
not changing with the height. Obviously, the horizontal structure is similar to the inertial
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Kelvin wave, but in this case the amplitude does not decrease in the direction of the
outer wall and the wave propagates prograde. Remarkably, we found very similar high
frequency waves in an experiment carried out with the same setup, but where we only
rotate the cylindrical tank without any lateral temperature difference and vertical salinity
stratification. We speculate that these waves with frequencies ω > f might be surface wave
modes of the Poincaré type. They might be excited by a weak sloshing at the free surface
and, in the case of the barostrat experiment, also at the interface between the layers of
different density. We do not further investigate these weak gravity wave modes but will
focus on the signature of frontal gravity waves that are very localised in space and time.
Such localised wave packets move with the baroclinic jet and Fourier analysis of local time
series is hence not a proper tool to detect those waves.More details on the IGWfield related
to the baroclinic front shall be given in section 4.3 after discussing the baroclinic waves in
the next section.

4.2. Determination of the baroclinic wave dynamics in the two unstable layers

In this section we investigate in more detail the similarities and differences between the
baroclinic waves appearing in the top and bottom layer.

To do so, we performed a CEOF analysis (see section 3.2) of the measured horizontal
velocity field. figure 6 shows the first ten eigenvalues of the covariance matrix in the
uppermost layer in the tank (figure 6(a)) and in the bottom layer (figure 6(b)). Each
eigenvalue stands for the variance that can be explained by the corresponding complex
function, the CEOF.

For the top layer (z = 94 mm), the first and the second eigenvalues, explaining together
85% of the total variance, are related to the baroclinic mode and its first harmonic (a power
spectrum of the PCs shows one single peak for each PC at ω = 0.04Ω and ω = 0.08Ω
respectively, these peaks correspond to the ones detected previously by the FFT analysis).
The third eigenvalue, explaining 3.4% of the variance, corresponds to the second harmonic
of the baroclinic wave and the inertial Kelvin wave (two peaks in the PC spectrum at
ω = 0.12Ω and ω = Ω). The fourth eigenvalue, explaining 2.6% of the variability, is
related to the inertial Kelvin mode.

The eigenvalue spectrum for the bottom layer (z = 21 mm) is quite different as can
be seen in figure 6(b). Also in this case, the first eigenvalue is related to the dominant
baroclinic mode, but it explains only 39% of the total variance and the power spectrum
of its correspondent PC shows a multitude of peaks with frequencies very close to the
ones shown in figure 9, and in addition a peak for ω = Ω , suggesting a complex
dynamics and interactions among waves. We shall discuss these interactions in more
detail in the following text. The second eigenvalue, 29% of the variance, is related to
the inertial Kelvin mode interacting with the baroclinic wave (the PC spectrum shows
a peak for ω = 0.14Ω and ω = Ω). The third and the fourth, explaining 4.8 and
3.4% of the total variance, show a broad spectrum of frequencies and are not easy to
interpret as physical modes. The fifth and sixth eigenvalues, explaining 2.6 and 1.8% of
the variability, are related to the second harmonic of the inertial Kelvin mode ω = 2Ω .
With respect to the eigenvalues of the covariant matrix for the uppermost layer (figure
7(a)) we have a significant reduction of the first eigenvalue. Moreover, an interaction
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Figure 5. Reconstructed velocity field, using the harmonic analysis, for the principal peaks in the three
layers. In the first column on the left are shown the baroclinic waves, m = 3 in the uppermost layer
(first and second lines from the top) andm = 4 for the bottom layer (bottom line in figure). The central
column shows the inertial Kelvin wave, for all layers. In the column on the right is shown the field
obtained for the main peak at high frequencies ω = 6.8Ω . All the frequencies are normalised by Ω

(Colour online).

between the baroclinic wave and the inertial Kelvin wave seems to play an important role
in the dynamic of this layer, as both frequencies are contributing to the second CEOF.

A similar behaviour, for which the dominant component is smaller by about 20%
compared to the steady wave regime has been observed by Hignett (1985) in case of an
amplitude vacillating regime (AV). If we now consider the first CEOFs for the top layer
(figure 7(c)) and for the bottom layer (figure 7(d)) and their respective PCs (figure 7(a),(b))
we can see that in the top layer the fluid is in a steady wave regime, where the baroclinic
wave shows a regular behaviour and has a very low phase speed (0.0057 rad/s), while in
the bottom layer the baroclinic wave shows a variation of the amplitude in time with a
phase speed of 0.0157 rad/s. Usually ametastable transient AV has a very high phase speed,
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Figure 6. Variance of the first 10 eigenvalues of the coupled u and v velocities for the top layer (a)
z = 94mm and the bottom layer (b) z = 21mm.

Figure 7. Comparison between the first CEOFs and PCs for the top layer (z = 94mm) and the bottom
layer (z = 21mm). (a) PC of the first eigenvalue z = 94mm, (b) PC of the first eigenvalue z = 21mm.
(c) real part of the CEOF of the first eigenvalue at z = 94 mm and (d) real part of the CEOF of the first
eigenvalue at z = 21mm.

circa 5 times faster than the finally equilibrated flow (Früh and Read 1997). This supports
our assumption that the flow in the bottom layer is in the vacillation regime. For AV
the amplitude of the wave varies periodically while the shape of the wave pattern remains
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Figure 8. (a) low frequency spectra from temperature data at z = 94mm. The three peaks correspond
to a baroclinic wave and its first and second harmonics: ωt

0 = 0.04Ω , ωt
1 = 0.08Ω and ωt

2 = 0.12Ω ;
the velocity fields corresponding to these most energetic modes reconstructed using the CEOF analysis
are plotted in (b),(c) and (d) respectively. The three waves of frequenciesωt

0,ω
t
1 andωt

2 (at z = 94mm)
form a harmonic triad with azimuthal wavenumbersmt

0 = 3,mt
1 = 6, andmt

2 = 9.

constant. The strength of the vacillation is characterized by a vacillation index Iv defined
over one vacillation cycle as

Iv = Amax − Amin

Amax + Amin
. (16)

Hignett (1985) indicates as critical vacillation index Iv = 0.05. This value separates the
flow to be in steady regimes (Iv < 0.05) and amplitude vacillation regimes (Iv > 0.05). For
the bottom layer of our experiment the value for the vacillation index is Iv = 0.19, while
for the top layer Iv = 0.03.
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Figure 9. (a) low frequency spectra from temperature data at z = 21mm. The five peaks (whose velocity
fields, reconstructed using the harmonic analysis, are shown in (b)-(f)) correspond respectively to two
baroclinic waves (ωb

1 = 0.089Ω , ωb
2 = 0.13Ω andm = 4 ), their nonlinear interactions with the mean

flow (2ωb
1 − ωb

2 = 0.048Ω , 2ωb
2 − ωb

1 = 0.17Ω and m = 4), and the nonlinear interaction between
the two main waves (ωb

1 + ωb
2 = 0.22Ω andm = 8) (Colour online).
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For a steady wave regime it has been observed in many baroclinic wave experiments
(e.g. Hide et al. 1977, Hignett 1985, Früh and Read 1997) that the amplitude spectrum
is composed almost entirely of the dominant component and its harmonics. This is also
the case for the upper layer of our barostrat experiment. The peaks corresponding to
the dominant wavenumber m = 3 and its harmonics are dominating the low frequency
spectrum plotted for temperature measurements at z = 94 mm in figure 8(a). In figure
8 the reconstructed waves, baroclinic, first and second harmonics with frequencies and
wavenumbers ωt

0 = 0.04Ω , mt
0 = 3, ωt

1 = 0.08Ω , mt
1 = 6, and ωt

2 = 0.12Ω , mt
2 = 9

respectively, are shown. Differently from what was observed by Hignett (1985) and Hide
et al. (1977), for which in most of the experiments the second harmonic was strongly
pronounced, in our case the fundamental wave and the first harmonic are the most
energetic ones. Moreover, it has been shown by Früh and Read (1997) that for steady
waves the harmonic triad shows a more persistent and pronounced phase locking than the
long wave triads.

Buzyna et al. (1989) have represented a particular case of amplitude vacillation regime
as due to an interference of two waves with the same azimuthal wavenumber and different
phase speed. This regime is referred to as interference vacillation. The basis of this approach
has been that a travelling, modulated wave can be represented as a linear superposition
of two waves of the same azimuthal wavenumber, but with different phase speeds or
frequencies. Figure 9(a) shows the spectrum obtained from the temperature sensor at z =
21 mm. We identify two identical shaped baroclinic waves with m = 4 at the frequencies
ωb
1 = 0.089Ω andωb

2 = 0.13Ω , indicated in figure 9(a). Three other peaks with significant
variance are recognisable, one at 2ωb

1 − ωb
2 = 0.048Ω , at 2ωb

2 − ωb
1 = 0.17Ω , and at

ωb
1 + ωb

2 = 0.22Ω . The first two frequencies indicate the nonlinear interaction of the
baroclinic waves ωb

1 and ωb
2 and the mean zonal flow as reported in detail in Buzyna et al.

(1989). Figures 9(d), (e) show the velocity fields, obtained with the harmonic analysis, for
the frequencies 2ωb

1 − ωb
2 and 2ωb

2 − ωb
1. The spatial pattern of a baroclinic wave m = 4

can be seen in both figures, as one would expect from the wave-mean flow interaction.
A second nonlinear interaction can be identified in our experiment: the two baroclinic

waves (ωb
1 andωb

2) interact nonlinearly forming a triadωb
1+ωb

2 thatmight become resonant.
The reconstructed velocity fields are shown in figures 9(b),(c),(f). As we have seen, the
interaction scenario is more complex then in the case of a steady wave. Moreover, in
addition to the linear interaction between baroclinic waves, also the inertial Kelvin wave
seems to interact with them, as already discussed. Früh and Read (1997) also observed a
complex interaction scenario in amplitude vacillation regimes, and found that in this case
long wave triads are usually observed.

It is interesting to notice that interference vacillation has been observed by Harlander
et al. (2011) in the classical configuration of the thermally driven annulus. However, in
their case there was no indication that the two waves were coupled through nonlinear
interactions but they appeared to be a linear superposition of two modes of different zonal
wavenumberdrifting at different speeds. Inour thermohaline versionof the experiment, on
the contrary, the amplitude vacillation results from linear interactions between two waves
having the same wave number leading to a mean zonal flow and nonlinear interactions
between the two waves and the mean zonal flow, more in agreement to the results from
Buzyna et al. (1989).
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4.3. Inertia-gravity waves

So far we focused on the large-scale modes and their interactions. However, besides the
already discussed baroclinic waves and inertial Kelvin waves, it is instructive to investigate
IGWs occurrence at the baroclinic wave fronts. Such waves are very localised in space and
time. In the paper by Vincze et al. (2016) wave trains whose characteristics are compatible
with IGWs have been detected and a qualitative inspection of the PIV measurements
with numerical simulations of spontaneous emission of IGWs from baroclinic fronts by
O’sullivan and Dunkerton (1995) show a good qualitative agreement.

4.3.1. Wave trains at z = 94mm
We start the discussion on small-scale structures considering the uppermost layer, at
z = 94 mm, and in the next subsection we shall present the results obtained for the height
z = 75 mm. The other measurement heights are not presented because no clear signal of
small-scale wave trains has been found.

In order to identify possible signals of IGWs, we consider the divergence of the hori-
zontal velocity field shown in figure 10(a) for the measurement height z = 94 mm. The
signal-to-noise ratio, defined as SNR = μ/σ where σ is the square root of the mean
variances of the background noise and μ is the locally averaged divergency, spans the
range of values 2–4 in the region along the jet where the small-scale waves are visible,
indicating that this signal can be distinguished from the measurement noise (as it can be
seen in figure 10(b)). See appendix A for more details about SNR.

It can be noticed that for the shown layer most of the divergence signal is associated
to the small-scale waves. Moreover, we can see a wave train structure clearly related to
small-scale phenomena attached to the baroclinic jet. Similar structures are visible in most
of our data, embedded in the baroclinic wave and showing up intermittently.

It is instructive to further investigate how these small-scale waves travel with respect
to the baroclinic jet. The reason is that observations in the atmosphere by Uccellini and
Koch (1987) identified intense low frequency IGW in the jet exit regions and hypothesised
spontaneous imbalance as source mechanism. Other observations by Fritts and Nastrom
(1992) have highlighted a conspicuous enhancement of gravity wave activity in the vicinity
of jets and fronts and our experimental study seems to be in line with these numerical and
observational findings. To examine these regions, at z = 94 mm, we took two different
cuts, one parallel to the entrance of the baroclinic wave (figure 11) and one parallel to
the exit of the baroclinic wave (figure 12). Because we record our data in the system of
reference co-rotating with the tank and the baroclinic wavemoves prograde, the wavefront
is crossing our line just for a short time, as it can be seen in figures 11(a),(b) and 12(a),(b).
Hence, the most prominent travelling waves can be found in the period 10 s < t < 20 s
in figure 11(c) and 15 s < t < 30 s in figure 12(c), when the red line in figures 11(a),
11(b) and figures 12(a), (b) is along the entrance and the exit region of the jet respectively.
For a quantitative comparison, we plotted in figures 11(c) and 12(c) the drift speed of the
baroclinic wave (dashed line) and the mean value of the zonal flow in the jet region (red
line). Remarkably, the phase velocity of the small-scale waves (blue lines) is in both cases
similar to the one of the zonal flow. Compared to the baroclinic wave, the wave packets
move faster, with phase speed equal to 3 mm s−1 at the entrance and 5 mm s−1 at the exit
region of the baroclinic wave respectively, but are attached to it.
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Figure 10. (a) Horizontal divergence at z = 94 mm, for t = 535 s. The arrows are showing the
velocity field while the colour map represents the horizontal divergence. The horizontal wavelengths
are: (λx = 1 cm, λy = 0.8 cm). (b) Signal-to-noise ratio, defined as SNR = μ/σ . In the region along
the jet the signal of small waves can be clearly distinguished from the background noise (Colour online).

Subsequently, we want to verify whether the intrinsic frequency of the measured small-
scale waves is consistent with IGW dispersion relation. The intrinsic frequency ωi is the
frequency of a wave relative to the flow, i.e. the wave frequency measured by an observer
drifting with the mean flow:

ωi = ωm − u0k, (17)

ωm is the frequency measured in the co-rotating system of reference, u0 is the wind speed
and k the wave vector along the jet.

For the uppermost layer (z = 94mm), considering a zonal flow in the jet u � 3mm s−1,
consistent with the PIV measurement, wavevector k = 2π/λ � 3 cm−1 and the measured
frequency ωm = 1/6 s−1 = 1.04 rad s−1 the obtained intrinsic frequency is ωi �
0.1 rad s−1. The finding of a frequency lower than f might seem surprising, however
we recall that at this measurement height the salinity stratification is weak, as we already
have shown in the green areas in figure 2(b), where we can notice that the value of N
due to the salinity at z = 94 mm is zero. As we previously pointed out, the contribution
of temperature stratification to the value of N close to the water surface is not measured
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Figure 11. Baroclinic wave jet and position of the line along which the Hovmöller plot is taken (a) at
t0 = 0, i.e. the beginning of the Hovmöller plot in (c) and (b) at t1 = t0 + 75 s, i.e. the end of the
Hovmöller plot in (c). (c) Hovmöller plot for the divergence at the entrance of the baroclinic wave at
z = 94mm. The dashed line is plotted to show the drift speed of the baroclinic wave, and the red line
shows the mean value of the zonal flow in the jet region (u0 = 3 mm s−1). The phase velocity of the
small-scale waves, measured from this plot and indicated by the blue line is 3mm s−1, the same as u0
(Colour online).

experimentally and thus the gradients are difficult to estimate. However, keeping in mind
that convection and baroclinic instability imply a strong mixing, added to the fact that
heat losses at the surface weaken the temperature gradients in the top layer, it is not
unreasonable to consider N < 0.1 rad/s and hence the waves inside the IGW frequency
range, although we cannot prove it firmly:

|N |< ω � 0.1 rad s−1 < 0.836 rad s−1 = | f |. (18)

From figures 11(c) and 12(c) we realised that the wave packet travels with the jet. This
is further in agreement with our finding for the frequency, where ωm = 1.04 rad s−1 �
u0k = 0.94 rad s−1 that suggests small-scale waves travelling with the jet.
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Figure 12. Baroclinic wave jet and position of the line along which the Hovmöller plot is taken (a)
at t0 = 0, i.e. the beginning of the Hovmöller plot in (c), and (b) at t1 = t0 + 75 s, i.e. the end of
the Hovmöller plot in (c). (c) Hovmöller plot for the divergence at the exit of the baroclinic wave at
z = 94mm. The dashed line is plotted to show the drift speed of the baroclinic wave, and the red line
shows the mean value of the zonal flow in the jet region (u0 = 3 mm s−1). The phase velocity of the
small-scale waves, measured from this plot and indicated by the blue line is 5mm s−1 (Colour online).

Despite the fact that the waves observed in the experiment are not plane and the
dispersion relation ignores latitudinal and vertical shear, using the intrinsic frequency
we can get an estimation of the vertical wavelength using the dispersion relation solved
for λz :

λz =
√√√√ λ2xλ

2
y

(λ2x + λ2y)

(ω2
i − f 2)

(N2 − ω2
i )

. (19)

The estimated vertical wavelength is therefore λ94z � 5 cm (for N = 0) this order of
magnitude being compatible with the thickness of the convective layer.
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4.3.2. Wave trains at z = 75mm
We continue the discussion on the small-scale waves signal in this section considering
now the data at the measurement height z = 75 mm. We recall that this height is in
the stratified region where N > f , for this reason IGWs are expected to show similarities
with atmospheric gravity wave packets; the frequencies range for IGWs at this height is
highlighted by the light blue coloured central region in figure 2(b). Furthermore, we want
to recall that the baroclinic wave with m = 3 is present at z = 75 mm even though it is
weaker and drifts in the opposite direction with respect to the baroclinic wave observed at
the height z = 94 mm (see figure 5).

We follow the data analysis presented in the previous subsectiondiscussing the analogies
and the differences between the waves observed at the two heights.

Figure 13 shows the plot of the horizontal divergence (a) in a snapshot at the time
t = 706 s where a wave train can be seen, similarly to the one found at z = 94 mm (figure
10(a)). The related signal-to-noise ratio, calculated as described in appendix A, is plotted
in figure 13(b). The maximum of SNR corresponds to the position of the wave train in the
plot above, pointing to a clear distinction of the signal from the background noise. It can
be noticed that, contrarily to what we observed for z = 94 mm, at this height the wave
train is not positioned on the baroclinic wave jet, but ahead of the cold front.

Because the baroclinic jet is weaker at this fluid height, and moreover the small-scale
waves are not positioned along it we decided not to repeat the analysis done for z = 94mm
where we have chosen two lines along the entrance and the exit regions of the jet (figures
11 and 12).

Instead, for the z = 75 mm level we chose an arc of the circle of radius r = 8 cm (see
figure 14(a)), i.e. at the middle of the gap width, to construct a space-time diagram from
which we derive a frequency-wavenumber diagram. The Hovmöller plot of the divergence
along this arc is shown in figure 14(b) and the correspondent 2D spectra in figure 14(c).
By Doppler shifting the dispersion relation using u0 = 1 mm s−1 and the horizontal
wavenumber KH = 5 cm−1 we obtain the dispersion curves plotted with red, black and
yellowdashed lines in figure 14(c) for verticalwavelengthsλ75z = 1, 0.3, 0.2 cm respectively.
Obviously, the curve with 3λ

75
z = 0.2 cm best fits the plotted data. We hence find that the

estimated values for the vertical wavelengths at the two different fluid heights (by using (19)
for z = 94 mm and by plotting the dispersion curves for z = 75 mm) are very different:
λ94z � 5 cm and λ75z � 0.2 cm. This tells us that the upper layer waves have a horizontal
phase speed and a vertical group speed (vertical particle motion). Since λz is large, and
energy goes downward the waves can trigger motion in the lower layer. Here, due to
the strong stratification, vertical motion is suppressed and the particles move horizontally
(horizontal group velocity and vertical phase speed), implying a frequency close to f , a very
small vertical wavelength and important dissipation. Therefore, because the wave packets
cannot move deep into the stratified layer, it is no surprise that we cannot see much wave
activity in the stratified layers.

In figure 14(b) the red contour lines indicate the values of the local Rossby number
exceeding the threshold Ro > 1. An increment of the local Rossby number above 1,
defined as
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Figure 13. (a) Horizontal divergence at z = 75mm, for t = 706 s. The arrows are showing the velocity
field while the colour map represents the horizontal divergence. (b) Signal-to-noise ratio, defined as
SNR = μ/σ . In the region along the jet the signal of small waves can be clearly distinguished from the
background noise (Colour online).

RoL = U
fL
, (20)

where U = √
u2 + v2 is the local velocity, f = 2Ω is the Coriolis parameter and L =

1/5(b − a) is the typical jet width, can indicate a local imbalance. While at this fluid
height only two wave packets are visible at t � 400 s and t � 700 s, a different behaviour
is observed in the uppermost layer (z = 94 mm) where the wave trains appear to be
emitted continuously from the jet stream where the Rossby number has typical values of 2
(plot of Ro not shown here). Despite this difference, in both cases a clear spatial-temporal
correlation between the highest values of the local Rossby number and the waves emission
is found. This suggests spontaneous imbalance as generating mechanism, since stronger
IGWs radiation is to be expected from regions of imbalance where wind speeds are strong
(O’sullivan and Dunkerton 1995).

A complete analysis of the generation mechanisms of the short scale waves observed
in our experiment is beyond the purpose of this paper. Nevertheless, some possible wave
excitation mechanisms can be investigated with the available data. One is excitation due
to convection, and this can be excluded since the gravity waves have not been found in our
experimental setup without rotation, i.e. without the baroclinic jet.
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Figure 14. (a) circle of constant radius r = 8 cm along which the data are taken for the plots (b) and
(c). (b) Hovmöller plot of the divergence at z = 75 mm, the red contour lines are Ro > 1. (c) 2D fft of
the divergence space-time data plotted in (b). The dashed coloured lines show the dispersion relation
for gravity waves (1) considering a horizontal wavenumber KH = √

(k2 + l2) ranged from −12 cm−1

to 12 cm−1 and vertical wavenumbers n1 = 2π/1λz = 6.3 cm−1, n2 = 2π/2λz = 18.8 cm−1,
and n3 = 2π/3λz = 31.4 cm−1. The dispersion curves are Doppler shifted according to (17) with
u0 = 1mm s−1 and a horizontal wavenumberKH = 5 cm−1 (Colour online).

Kelvin-Helmholtz and Hölmböe instabilities are also mechanisms that might be re-
sponsible for small-scale wave emission. To distinguish between these two instabilities, it
is necessary to know the interface thickness in shear and density. When their ratio exceeds
a threshold usually considered being equal to 2, or more in general in the condition where
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a thick shear layer and a sharp density interface develop, Hölmböe instability can occur.
A detailed analysis of these two instabilities and on other wave generation mechanisms
can be found in the paper by Scolan et al. (2014). Because we do not know precisely the
thickness of the interfaces, we can not distinguish between these two shear instabilities.
Nevertheless, we can estimate the Richardson number

Ri = N2

(du/dz)2
, (21)

where u(z) is the horizontal velocity profile, and check whether the Miles criterion for
stratified shear instability is satisfied. Ri ≥ 1/4 is the sufficient condition for the stability
of a sheared, stratified flow. We can use the values of the azimuthal velocity at z = 94 mm
and z = 75 mm to estimate the vertical shear and the values of N estimated previously
to calculate the Richardson number at these two locations. Note that this is only a crude
estimation because we used only measurements from two different heights. If we use the
value of N (� 0.1 rad/s) that permits the existence of IGWs, the Richardson number at
z = 94 mm is Ri94 = 0.39 which is above but close to 1/4, i.e. just around the limit
to rule out shear instabilities. The paradox being of course that if we imagine a higher
estimated value of N (say N = 0.2 rad/s for instance), then we cannot interpret the small
scales waves observed at z = 94 mm neither by IGWs (the dispersion relation will not
be fulfilled) nor by shear instability as the Richardson number will strongly differ from
1/4. Fortunately, at z = 75 mm, the situation is different as the dispersion relation for
IGWs is clearly validated and moreover, using the value N75 = 3.8 rad/s, the Richardson
number at this location is Ri75 = 564. This value, being strongly larger than 1/4, confirms
a stably stratified shear flow that rules out any Kelvin-Helmholtz or Hölmböe instability.
Moreover, the position of small-scale waves with respect to the baroclinic jet and their
occurrence related to an enhanced value of the local Rossby number (figure 14(b)) does
point to spontaneous imbalance as generating mechanism. However, even if we are fully
confident for the results at z = 75 mm, our analysis is rather coarse compared to the one
done for the two-layer case by Scolan et al. (2014) and further investigations are needed to
confirm the generation mechanism of the small-scale waves in the continuously stratified
case.

Finally, we want to mention that optical deformation of the free surface due to capillary
waves would have a much larger phase speed than the waves we observed. We conclude
that capillary waves are not responsible for the small-scale structures at the free surface.

5. Conclusions

The differentially heated rotating annulus is a classical laboratory experiment to study
large-scale baroclinic waves and their interactions. Here, in contrast, we focused on the
existence and interaction of different wave types in a modified version of the classical
experiment: instead of stratification due to differentially heating the lateral walls alone
we added salt stratification in the axial direction and hence considered a thermohaline
version of the experiment. The novel feature in this configuration is the occurrence of thin
convectively mixed layers at the top and the bottom where baroclinic instability can take
place and a thicker stable stratified, dynamically less active layer in between.
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For this configuration, we experimentally observed two different baroclinic waves with
azimuthal wavenumber 3 for the top and 4 for the bottom layer. The former was in a steady
state with a slow drift rate exciting higher harmonics by self-interaction. The latter showed
amplitude vacillations and a fast drift. The vacillations result from the interaction between
two m = 4 waves with different phase speeds as was described earlier by Buzyna et al.
(1989) for a classical annulus experiment. Though nonlinear triadic interaction between
thewaves in the individual layers can clearly be seen in the spectra it is not clear yet whether
the baroclinic waves in the surface and bottom layers are coupled. What is striking is the
close correspondence of some prominent peaks in the spectra: the wave peak in the top
layer is very close to the difference of the frequencies of the two dominant wavenumber
4 modes in the bottom layer implying a “frequency triad” between top and bottom layer
waves. Moreover, the two harmonic frequencies of the upper layer wave nearly correspond
to the frequency of the two wavenumber 4 waves in the bottom layer.

Besides the large-scale baroclinicwaves, we further observe an inertial Kelvin type global
mode and a higher frequency surface wave of Poincaré type. The inertial Kelvin mode
shows similarity with a shallow water boundary trapped Kelvin wave, has an azimuthal
wavenumber 1 but has the frequency of the tank’s rotation and not f . It is hence not a
shallow water mode but an inertial wave Kelvin mode with a certain vertical structure.
Unfortunately, since we did not measure simultaneously at different vertical levels we do
not know the vertical wave number.We just know that the inertial Kelvinmode is strongest
in the non-convective zone and the bottom layer. The mode is very likely mechanically
driven by a slight deviation of the rotation axis from vertical.

The origin of the Poincaré type modes with frequencies larger than f is not yet clear.
Theymight also be triggeredmechanically by a veryweak sloshing of the tank. A theoretical
treatment of those modes (as done by Mougel et al. 2015 for the homogeneous case) is
hampered by the nonlinear vertical density profile. For a thorough analysis, effects at the
internal interfaces have to be considered in addition to the surface wave modes. Such a
study is postponed to the future when more data, in particular in the high frequency range
and from vertical cross sections are available.

A long standing problem is whether in differentially rotating annulus experiments
instabilities of baroclinic fronts and in particular spontaneous imbalance of the frontal
flow can be observed. Short interfacial wave patterns have been observed in experiments
by Lovegrove et al. (2000) and Williams et al. (2005), even though the source for these
patterns is not fully clear yet (Flór et al. 2011). In contrast to the global modes described
above such short-wave inertia-gravity waves are hard to be found in the wave spectra
since they typically occur sporadically and are spatially localized since they are tightly
connected to the baroclinic front. Although spontaneous imbalance has been documented
from a number of numerical simulations also for the annulus configuration (Borchert
et al. 2014, Hien et al. 2018) for which Reynolds number like in the experiment was
rather small (Re � 100) it has never been experimentally observed for the continuously
stratified annulus for which in general the Rossby numbers are rather small and the flow
is in a nearly balanced state. In our experiments the top layer shows wave packets in the
horizontal divergence field travelling mainly with the frontal mean flow and hence much
faster than the drift speed of the baroclinic waves. These structures are not unlike the wave
trains described by O’sullivan and Dunkerton (1995). We have shown that their signal
is above the noise level, their frequencies are in the inertia-gravity wave range and that
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the frequency-wavenumber plot roughly follows one branch of the dispersion curves. We
speculate that compared to the classical “Hide" experiment its thermohaline version is
more suitable to find such waves. However for sound evidence, whether the waves in the
mixed baroclinically unstable layer are generated by shear instability or spontaneously, we
need data on the temperature relatedN . Then we can also determineN/f in the baroclinic
layers which is larger than one for the atmosphere but smaller than one for the “Hide"
experiment. For the classical annulus, inertia is dominant and the baroclinic fronts do
occur over the full depth of the tank and not just in thin layers. The latter might be more
favourable to generate frontal waves. Moreover, we want to mention that in contrast to the
classical setup, no numerical simulation is available for the barostrat case.

Wehave experimentally demonstrated that the thermohaline versionof thedifferentially
heated rotating annulus is not only a testbed to study large-scale wave interactions but is
also a setup suitable to study interactions of different wave types. The natural layer forma-
tion offers the possibility to investigate wave resonance but also wave propagation between
the different layers. The dynamically passive layer in the annulus centre might be seen as a
model for the stratosphere comprised between baroclinically unstable tropospheres as was
proposed by Vincze et al. (2016).
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Appendix A. PIV error
An estimation of the error coming directly from the PIV software used to get the velocities field
from the images (UVmat) is given by two quantities directly calculated by the software, namely the
rms difference between the CIV (Correlation Image Velocimetry) and the smoothed velocity field,
and secondly thenumber of vectors excludedbecause attributed to false vectors (http://servforge.legi.
grenoble-inp.fr/projects/soft-uvmat/wiki/Tutorial/CorrelationImageVelocimetryOptimisation). For
our data the values are rms = 0.5–0.6 pixels for a typical displacement of 5 pixels. This gives an
estimation of the PIV error 10–12%. The percentile of excluded vectors is less than 1.5%, so most
vectors are preserved.

http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat/wiki/Tutorial/CorrelationImageVelocimetryOptimisation
http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat/wiki/Tutorial/CorrelationImageVelocimetryOptimisation
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The a posteriori quantification of the error on the PIV data we propose here is done by taking two
consecutive PIV images (�T = 0.03 s) and subtracting the velocity fields. Because our flow is rather
slow, one can expect that the fields do not differ too much and they are completely uncorrelated
from one to the other because to compute the PIV we use two different sets of images. From this we
can calculate the relative error for the velocity components as

err = V1 − V2

V1 + V2
(A.1)

Repeating this procedure for the entire time serie, we can estimate the mean error associated to the
PIV data analysis for the U and V components of the velocity. The calculated mean error is less
than 15% across the whole domain, comparable with the error estimation obtained from UVmat
software.

The signal-to-noise ratio, used to compare the level of the IGWs signal to the level of the
background noise, is calculated as

SNR = μ

σ
(A.2)

where σ is the square root of the mean variances of the background noise, i.e. calculated in an area
where no IGWs signal is visible in the divergence field and μ is the locally (over a square running
filter of dimensions 10 × 10 mm) averaged divergence field.
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