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Abstract:

A Lorentz and gauge symmetry preserving regularization method is proposed in 4 dimensions based on a

momentum cutoff. We use the conditions of gauge invariance or equivalently the freedom to shift the loop
momentum to define the evaluation of the terms carrying even number of Lorentz indices, e.g. proportional
to k,k,. The remaining scalar integrals are calculated with a four dimensional momentum cutoff. The finite
terms (independent of the cutoff) are free of ambiguities coming from subtractions in non-trivial cases.
Finite parts of the result are equal to that of dimensional regularization.
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1. Introduction

Several regularization methods are known and used in
quantum field theory: three and four dimensional mo-
mentum cutoff, Pauli-Villars type, dimensional regular-
ization, lattice reqularization, Schwinger’s proper time
method and others directly linked to renormalization like
differential renormalization. Dimensional regularization
(DREQG) [1] is the most popular and most appreciated as
it respects the gauge and Lorentz symmetries. However
DREG is not useful in all cases, for example it is not di-
rectly applicable to supersymmetric gauge theories as it
modifies the number of bosons and fermions differently.
DREG eliminates (does not identify) naive quadratic di-
vergences, which may be important in low energy effective

*E-mail: cyn@general.elte.hu

theories or in the renormalization group method of Wilson.
Another shortcoming is that together with (modified) min-
imal subtraction DREG is a “mass independent” scheme,
particle thresholds and decoupling are put in the theory
by hand [2]. The choice of the ultraviolet regulator always
depends on the problem.

In low energy effective field theories there is an explicit
cutoff, with a well defined physical meaning. The cutoff
gives the range of the validity of the model. There are
few implementations in four dimensional theories: sharp
momentum cutoff in three and four dimensions, modified
operator reqularization (based on Schwinger proper time
method [3]). In the Nambu-Jona-Lasinio model different
reqularizations proved to be useful in calculating different
physical quantities [4].

Using a naive momentum cutoff the symmetries are badly
violated. The calculation of the QED vacuum polariza-
tion function (1,,(q)) exemplifies the problems. The Ward
identity tells us that ¢*T1,,(q) =0, e.g. in

1237



Symmetry preserving regularization with a cutoff

1238

M(9) = ,9.N(q%) — 9 g°T1(q%) (1

M;(g?) and M7(q?) are equal to each other (denoted by
M(g?)). Usually the condition M(0) = 0 is required to
define a subtraction to keep the photon massless at 1-loop.
However this condition is ambiguous when for g? # 0 in
QED or in more general models. For example in the case
of two different masses in the loop, the condition simply
fixes (g%, my, m,) in the limit of degenerate masses at
g*> = 0. Ad hoc subtractions does not necessarily give
satisfactory results.

There have been several proposals how to define a sym-
metry preserving cutoff reqularization. The usual way is to
start with a regularization which respects symmetries and
find the connection using the momentum cutoff. In case of
dimensional reqularization Veltman already observed [5]
that the naive quadratic divergences can be identified with
the poles in two dimensions (d = 2) besides the usual log-
arithmic singularities in d = 4. This idea turned out to
be fruitful. Hagiwara et al. [6] calculated electroweak ra-
diative corrections originating from effective dimension-six
operators, and later Harada and Yamawaki performed the
Wilsonian renormalization group inspired matching of ef-
fective hadronic field theories [7]. Based on Schwinger’s
proper time approach Oleszczuk proposed the operator
regularization method [8], and showed that it can be for-
mulated as a smooth momentum cutoff respecting gauge
symmetries [8, 9] A momentum cutoff is defined in the
proper time approach in [10] with the identification under
loop integrals

1
kyk, — Egﬂvkz )

instead' of the standard d = 4. The degree of the diver-
gence determines d in the result: A? corresponds to d = 2
and In(A%) to d = 4. This way the authors correctly ob-
tain the divergent parts, as they checked them for the QED
vacuum polarization function and for the phenomenologi-
cal chiral model.

Various authors formulated consistency conditions to
maintain gauge invariance in the evaluation of divergent
loop integrals. When finite [11] or infinite [12, 13] num-
ber of new regulator terms added to the propagators a’la
Pauli-Villars, the integrals have at most logarithmic sinqu-
larities and become tractable. The Pauli-Villars reqular-
ization technique was applied with subtractions to gauge
invariant and chiral models [14-17]. Differential renor-
malization can be modified to fulfill consistency conditions

" In what follows we denote the metric tensor by g,, both
in Minkowski and Euclidean space.

automatically, a method known as constrained differential
renormalization [18]. Another approach, later proved to
be equivalent with the previous one [19], is the method
of implicit reqularization, in which a recursive identity
(similar to Taylor expansion) is applied and all the de-
pendence on the external momentum (q) is transferred to
finite integrals. The divergent integrals contain only the
loop momentum, thus universal local counter terms can
cancel the potentially dangerous symmetry violating con-
tributions [20, 21]. Gauge invariant regularization is im-
plemented in the exact renormalization group method pro-
viding a cutoff without gauge fixing in [23]. Introducing a
multiplicative requlator in the d-dimensional integral, the
integrals can be calculated in the original dimension with
the tools of DREG [24].

In this paper we give a definite method in four dimen-
sions to use a well defined momentum cutoff. We show
that there is a difficulty between naive application of
Lorentz symmetry and gauge invariance. The core of the
problem is that the contraction with g"¥ cannot neces-
sarily be interchanged with the integration in divergent
cases. The proper handling of the k,k, terms in diver-
gent loop-integrals solves the problems of momentum cut-
off reqularizations. This is the new result of the paper.
Working in strictly four dimensions we use the conditions
of respecting symmetries to define the integrals with free
Lorentz indices. Using our method loop calculations can
be reduced to scalar integrals and those can be evalu-
ated with a sharp momentum cutoff. We give a simple and
well defined algorithm to have unambiguous finite and in-
finite terms. The results respect gauge (chiral and other)
symmetries and the finite terms agree with the result of
DREC.

In Section 2 we present the definition of a momentum cut-
off using the method of DREG, then we give the gauge
symmetry preserving conditions which emerge from the
calculation of the vacuum polarization amplitude. In Sec-
tion 4 we discuss the condition of independence of mo-
mentum routing in loop diagrams. Section 5 shows that
gauge invariance and freedom of shift in the loop momen-
tum have the same origin. Next we show that the condi-
tions are related to vanishing surface terms. In Section 7
we give a definition of the new regularization method and
in Section 8 as an example we present the calculation of
a general vacuum polarization function at 1-loop. In Sec-
tion 9 we show that the QED Ward-Takahashi identity
holds at finite order using the new method. Subsequently
we conclude our work.
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2. Momentum cutoff via dimen-
sional regularization

DREG is very efficient and popular, because it preserves
gauge and Lorentz symmetries. Performing standard steps
the integrals are evaluated in d = 4—2¢ dimension. Gen-
erally the loop momentum integral is Wick rotated and the
denominators are combined with a Feynman parameter (x).
Subsequently the order of x and momentum integrals are
changed. Shifting the loop momentum does not generate
surface terms and it leads to a spherically symmetric de-
nominator, terms linear in the momentum are dropped and
(2) is used. Singularities are identified as 12 poles, naive
power counting shows that these are the logarithmic di-
vergences of the theory.? In DREG quadratic or higher
divergences are set identically to zero. However, Veltman
noticed [5] that quadratic divergences can be calculated
in d =2 —2(e —1) in the limit € — 1. This observation
led to a cutoff reqularization based on DREG.

Carefully calculating the one and two point Passarino-
Veltman functions in DREG and for the 4-momentum cutoff
the divergences can be matched as [6, 7]

1
4 [ —— +1) =A%, 3
b (e_1 + ) 3)

1
E—yg+ln(47ru2) +1 =A%, (4)

where p is the mass-scale of dimensional reqularization.
The finite part of a divergent quantity is defined as

Finite = lim [f(e)—R(O) (%—Y5+ln47r+1)
Ry (L5 +1]].

where R(0), R(1) are the residues of the poles at e =0, 1
respectively. Note that in the usual € — 0 limit the left

)

hand side (LHS) of (3) vanishes and no quadratic diver-
gence appears in the original DREG.

The identifications above define a momentum cutoff calcu-
lation based on the symmetry preserving DREG formulae.
This cutoff reqularization is well defined, but still relies on
DREG. Let us see the main properties in the calculation
of the vacuum polarization function. In I1,, the quadratic

2 Similar identification can be done in three dimensional
integrals [25].

divergence is partly originating from a k,k, term via

1
E : guka,

which is evaluated at d = 2 instead of the d = 4 in the
naive cutoff calculation. The A? terms cancel if and only
if this term is evaluated at d = 2. This is a warning that
the usual

1
Kk, — Zgwk2

substitution during the naive cutoff calculation of divergent
integrals might be too naive, especially as an intermediate
step, the Wick rotation is legal only for finite integrals. A
further finite term additional to the logarithmic sinqularity
results from the well known expansion in

and it is essential to retain gauge invariance. We stress
that the shift of the loop momentum is allowed in DREG,
hence this property should be inherited by an improved
cutoff reqularization. In the next sections we derive con-
sistency conditions for general reqularizations.

3. Consistency conditions - gauge
invariance

Calculation in a gauge theory ought to preserve gauge
symmetries. Consider the QED vacuum polarization func-
tion with massive electrons. We start generally (see
Fig. 1) with two fermions with different masses in the
loop [26] and restrict it to QED later,

d*k k+m k+ f+my
— _(_iq)2 a
==t [ G (e e

(6)

M,, is calculated with the standard technique, only
the k,k, terms are considered with care. After per-
forming the trace, Wick rotating and introducing the
Feynman x-parameter the loop momentum is shifted

(kEu + Xun) — [Ep,

1238



Symmetry preserving regularization with a cutoff

1240

Guv (IZE + A) - ZX(1 - )unqEv + 2X(1 - X)guqu

_g / dx d*le 2lg,le, —
My (2)*

x(1 — x)g2 + (1 — x)m2 + xm2. In

QED my,=mpy=m and g = e it simplifies to

where A =

Ay = x(1 — x)g% + m?. Having a symmetric denominator
and symmetric volume of integration the terms linear in
lg, are dropped. After changing the order of momentum-
and x-integration the loop momentum is shifted by x-
dependent values, xqg, and sum up the results during
the integration. Different shifts sums up to a meaning-
ful result only if the shift does not modify the value of
the momentum integral (this will be discussed in the next
section).

k+q

Figure 1.

1-loop vacuum polarization diagram.
In QED the Ward identity tells us, that
q"Myuv(q) = 0. (8)

In (7) the terms proportional to gg fulfill the Ward-
identity (8) and what remains is the condition of gauge
invariance

lEu[Ev

/ /(ZJ:E (& +00)°
:ig““/o d/é;)

This condition appeared already in [13, 20]. Any gauge
invariant regulator should fulfill (9). It holds in dimen-
sional regularization and in the momentum cutoff based
on DREG of Section 2. In [11, 13] a similar relation de-
fined the finite or infinite Pauli-Villars terms to maintain

(i +20)

gauge invariance.
So far the x integrals have not been performed. Expand-
ing the denominator in g2, the x-integration can be done

(2 +A)

easily and we arrive at a condition for gauge invariance
at each order of g%. At order g2 we obtain (omitting the
factor (2m)*")

leyley
d415”7
/ (12E+m2)n+1
1 4 1
:Zguv/dlEW, n=12,....

The conditions (10) are valid for arbitrary m? mass, so
it holds for any function A independent of the loop mo-
mentum in 1-loop two or n-point functions with arbitrary
masses in the propagators. These conditions mean that in
any gauge invariant reqularization the two sides of (10)
should give the same result. We will use this condition to
define the LHS of (10) in the new improved cutoff reqular-
ization. This is the novelty of our regularization method.

4. Consistency conditions - mo-
mentum routing

Evaluating any loops in QFT one encounters the problem
of momentum routing. The choice of the internal momenta
should not affect the result of the loop calculation. The
simplest example is the 2-point function. In (6) there is
a loop momentum k, and the external momentum q (see
Fig. 1) is put on one line (k + g, k), but any partition of
the external momentum (k + g + p, k + p) must be as good
as the original. The arbitrary shift of the loop momentum
should not change the physics. This independence of the
choice of the internal momentum gives a conditions. We
will impose it on a very simple loop integral

k k, +p
dh gt — = [ dk =0, (1)
k?—m (k+p)—m

which turns up during the calculation of the 2-point func-

tion. Expanding (11) in powers of p we obtain a series of
condition, meaningful at p, p3,p°.... At linear order we

arrive at

P kuk - p
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which is equivalent to (10) for n = 1. At order p° the
linear combination of two conditions should vanish

4k k, g
a d4k [ ( akp _ aB )
PpP pB/ (k2 — m2)3 (k2 — mz)z Gup 3
_ak ( 2kakgk,  gapk, )] —0
PNk = m)t (k2 = m2)?

These two conditions become separated if the freedom of
the shift of the loop momentum is considered in

]d"kL.
(k2 — m?)’

At leading order it provides

p”/d4k((/<2

equivalent with (10) for n = 2. Using (14) twice the sec-

k,k,

(k2 = m?)

Guv
—_ mZ)

0, (14)

2

ond part of the condition (13) connects 4 loop momenta

|

2

d*k ky(k,+q.)+ ko (ks +Gu) — guv (kZ +k-q— mamb)

numerators to 2 k's. Symmetrizing the indices we obtain

/

d4k9a89up + Gaugpp + gapgﬁu.
(k2 — m2)’

[ i tebabids 1
(k2—m2)* 24

(1)

Invariance of momentum routing provides conditions for
symmetry preserving regularization and these conditions
are equivalent with the conditions coming from gauge in-
variance.

5. Gauge invariance and loop mo-
mentum shift

We show at the one loop level that gauge invariance of
the vacuum polarization function is equivalent to invari-
ance of a special loop integrand to shifting the loop mo-
mentum (11). Consider I1,, defined in (6), performing the
trace we obtain

iMy(g)=—g 271)°

In particular in QED m, = m, = m, gauge invariance
requires (8), which simplifies to

iq"Muw(q)

d*k
- 92/ 2n) (

This example shows that the Ward identity is fulfilled only

ky + qyu .
((k + q)* — m?)

-0

(17)

(k= )

if the shift of the loop momentum does not change the value
of the integral, as in (11).

In [21] based on the general diagrammatic proof of gauge
invariance it is shown that the Ward identity is fulfilled
if the difference of a general n-point loop and its shifted
version vanishes

n

—i [ d'pT i L i
l/ P1 r[/)n—my p1—my

Hn

_pn+ ﬁ_my T ﬁ_myuw]zo.

(18)

(k

2

= m3) ((k+ q)? = m}) o)

(

We interpret (17) and (18) as a necessary condition for
gauge invariant reqularizations.

6. Consistency conditions - vanish-
ing surface terms

All the previous conditions are related to the volume in-
tegral of the total derivative
k

4 u
J “V+mw)
K,k 1 1
— 4 MV -
a /d - ( (k2 +m)™ 209" k2 me)”
n=12,....
(19)

5}
okv

The total derivative on the LHS leads to surface terms [22],
which vanish for integrals with finite value and should
vanish for symmetry preserving regularization. In our im-
proved regularization this will follow from new definitions.
The LHS is in connection with an infinitesimal shift of the




Symmetry preserving regularization with a cutoff

1242

loop momentum k, it should be zero if the integral of the
term in the delimiter is invariant to the shift of the loop
momentum. The vanishing of this surface term reproduces
the previous conditions (12) and (10) on the RHS. In (19)
starting with an odd number of k's in the numerator we
end up with some conditions, three k's for n = 3 pro-
vide (15) after some algebra. Starting with even number
of k,'s in the numerator on the LHS in (19) we obtain
relations between odd number of k,'s in the numerators,
which vanish separately.

These surface terms all vanish in DREG and give the basis
of DREG respecting Lorentz and gauge symmetries. Van-
ishing of the surface term is inherent in any regularization,
such as the improved momentum cutoff, if the identifica-
tion (9) is understood to evaluate integrals involving an
even number of free Lorentz indices, e.g. numerators such
as k,k,. The value of integrals with odd number of ks in
the numerator are similarly dictated by symmetry, these
are required to vanish by the symmetry of the integration
volume.

7. Improved momentum cutoff regu-
larization

We propose a new symmetry preserving regularization
based on a 4-dimensional momentum cutoff. For this im-
proved momentum cutoff reqularization method a simple
sharp momentum cutoff is introduced to calculate the di-
vergent scalar integrals in the end. The evaluation of
loop-integrals starts with the usual Wick rotation, Feyn-
man parametrization and loop momentum shift. The only
crucial modification is that the potentially symmetry vi-
olating loop integrals containing the loop momenta with
free Lorentz indices are calculated explicitly with the iden-
tification

[EulEv 1 / 1
e e (20
e = wo way @

under the loop integrals or with more momenta using the
condition (15) or generalizations of it, e.g.

9iw9ps + GupGve + GusGup
4n(n —1)

The momentum integrals containing further the loop mo-
mentum with summed indices (e.g. [2) in the numerator

leplevleples
(le +A)n+‘|

(21)

are simplified in the standard way cancelling a factor in

the denominator

Algyle, ...
(IZE + A)n+1 :

2 lgle,y ... :[ IEHIE\,..;] B 22)
(2 +a)"" (2 +4)

Integrals with odd number of loop momenta vanish iden-
tically. These identifications quarantee gauge invariance
and freedom of shift in the loop momentum. Under any
regularized momentum integrals the identifications (20)
or generalizations such as (21) are understood as a part
of the regularization procedure for n =1,2,.... For finite
integrals (non divergent, for high enough n) the standard
calculation automatically fulfills (20), (21). The connection
with the standard substitution of free indices is discussed
in Appendix A.

Fulfilling the condition (10) via the substitution (20) the
results of the momentum cutoff based on DREG of Sec-
tion 2 are completely reproduced performing the calcula-
tion in the physical dimensions d = 4 [26, 27]. The next
two examples show that the new reqularization provides
a robust framework for calculating loop integrals and re-
spects symmetries.

8. Vacuum polarization function

As an example let us calculate the vacuum polarization
function of Fig. 1 in a general gauge theory with fermion
masses mg, my. Performing the calculation in 4 dimen-
sions generally the Ward identities (required by the the-
ory) are restored by ambiguous and ad hoc subtractions.
The finite terms of different calculations do not match each
other in the literature, see [28], papers citing it and [29].
For sake of simplicity we consider only vector couplings.
Performing the trace in (6) we obtain (16). Now we can in-
troduce a Feynman x-parameter, shift the loop momentum
and obtain (7) after dropping the linear terms. Generally
we are interested in low energy observables like the pre-
cision electroweak parameters and need the first few terms
in the power series of [1,,(g). Using the rule (20) for n =1
and expanding the denominator in g2 the scalar loop and
x-integrals can be easily calculated with a 4-dimensional
momentum cutoff (A). The result in this construction is
automatically transverse

2
Mauld) = 3 (%9 = 4,0.) [1(0) + ¢’M(0) + .. ].
(23)
The terms independent of the cutoff completely agree with
the results of DREG [27] the logarithmic singularity can
be matched with the % terms using (4). Up to O (%22) we
obtain
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M(0) = —(m? + m}) —

_ 2
4 2 (ma mb) ln (

N\ mg e+ my = 2mgmy (mg + mp) n
mqmp

4 (mg — m)

The first derivative is

I‘I’(O):—g— 4mimp —3mamy, (m2 + m3) +1ln A2
9 6(m§—mf])2 3 mamp
(m%—l—m%) (m2—4m(2,m127+m2) +6m3m} | m? (23)
" 6(mf,—m12,)3 n(m—g)

The photon remains massless in QED, as in the limit, m, = m;, we obtain 1(0) = 0.

The proposed regularization is robust and gives the same result if the calculation is organized in a different way.
Introducing Feynman parameters and shifting the loop momentum can be avoided if we need only the first few terms in
the Taylor expansion of gq. For small g the second denominator in (16) can be Taylor expanded, for simplicity we give

the expanded integrand for equal masses, up to O(q*)

d'ke 1 T 4 (ke - qe)°
My(q) = — ¢* 2k, k, - £
=5 i 2o G G e 29
_ 2(keuqev + kevqeg) ke - qe 1 _ qt 2 (ke - qe)?
(k2 + m?)’ Tl kgm) o (k+m)’ (kR4 m?)

Taking into account that kg - gr = keaGeq, (20) and (21)
can be used and the remaining scalar integrals can be
easily calculated. The result agrees with (24) and (25)
and the finite terms with DREG if and only if we use the
proposed symmetry preserving substitutions. Applying the
naive kg, ke, — %gwkg substitution in both approaches
the finite terms will differ from each other and also from
the result of DREG. This is why finite terms differ from
each other in [28] and [29].

The calculation of the I1,, function at 1-loop shows that
the new regularization gives a robust gauge invariant re-
sult and the finite terms agree with DREG.

9. The Ward-Takahashi identity

In this section we show with explicit calculation that the
QED Ward-Takahashi identity is fulfilled for infinite and

|

o
dpy

1 2
a A
= 2 dx|l=xy" [tn | —— 2 ) 1
Jem 27r/0 X[ Xy ( n((1 — x)2m? + xp? +

(

finite terms using the proposed regularization at 1-loop.
Following the notation of [30] it has to be proved that

dr
Jo | == 0p.p) , (27)
Pu #=m #=m
where I is the electron self-energy (see Fig. 2 left panel)

—ia(p)Xu(p

)
o d'l _ —2x p+4m (28)
- 0 dX/(27r)4U(p)(12—A2+i€)2u(p)’

here Ay = —x(1 — x)p? + (1 = x)m? + xp®, L=k —xp, m
is the mass of the electron and p is the infrared regulator.

22— x)(1 = x) )] (29)

(1 —x)2m? + xp?
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P P p pta

k k k+q

Figure 2. 1-loop diagrams for the Ward identity.

ol'" is the electron vertex correction (see Fig. 2 right panel)

d'k alp) [ ky" k+ f) + m*y" = 2m(k + (k+q))] u(p)

a(p')or* u(p) = 2ie? :
a(portulp) = 2ie” | o sa k= py + ie) ((k + q)F — 2 + i€) (k2 — m? + ie) (30)
After using the Dirac equation in the limit p = p’ and ¢ = 0 we obtain
1 d'alp) [ |+ (22— 4z + )m*y*] u(p)
—ia(p)oru :2e2/ dxdydzo(x +y +2z —1 / x , 31
(p)ol*u(p) | dxdydzolx+y V| @y Mt ie) 1)

where Az = (1 —22)m? + zp? and [ = k — zp. Here [y* | = 211y, — y*[2, for the first term (20) should be used for
n = 2 or directly (B6) from Appendix B. After the momentum and x, y integration

oo a | N? (1-4z+79
e R I e R e | .

The result of the new method is the constant —1 after the log, with the naive calculation using (A1) one would obtain
—%. Calculating the Feynman-parameter integral taking care of the infrared requlator the identity (27) is valid up to

%z terms at 1-loop

d¥
dpll #=m

1

We have seen that the proposed method provides regular-
ized 1-loop electron self-energy and vertex correction in
QED which fulfill the Ward-Takahashi identity.

10. Conclusions

In this paper we have presented a new method for the
reliable calculation of divergent 1-loop diagrams (not in-
volving ys) with a four dimensional momentum cutoff. Var-
tlous conditions were derived to maintain gauge symmetry,
to have the freedom of momentum routing or shifting the

a
= oM (p, ==
(p.p) Lm 5n (2

A2 1 m? 12
ﬁ)-i-ln(ﬁ)—i—Z)—i—O(ﬁ,ﬁ). (33)

(

loop momentum. These conditions were known by several
authors [11, 13, 20, 21]. Our new proposal is that these
conditions will be satisfied for the regularization process if
terms proportional to loop momenta with an even number
of free Lorentz indices (e.g. ~ k,k,) are calculated accord-
ing to the special rules (20) and (21) or generalizations
thereof. In the end the scalar integrals are calculated with
a simple momentum cutoff. The calculation is robust — at
least at 1-loop level — as we have shown via the fermionic
contribution to the vacuum polarization function. The fi-
nite terms agree with the ones from DREG in all exam-
ples. The connection with DREG is more transparent if
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one uses alternatively the k,k, — g, k? or (A6) sub-
stitution and d takes different values determined by the
degree of divergence in each term (A3), (A4), (A5). We
stress that this new reqularization holds without DREG
as the substitutions (20), (21) and scalar integration with
a cutoff are independent of DREG. The success of both
regularizations based on the property that they fulfill the
consistency conditions of gauge invariance and momentum
shifting.

At 1-loop the finite terms in the improved momentum cut-
off are found to be equivalent with DREG. For practical
calculations we propose to use the same renormalization
scheme, the MS or MS subtractions with the BPHZ for-
est formula as with DREG. DREG is not just the gener-
ally used method, but it is proved to be a mathematically
rigorous reqularization within the Epstein-Glaser frame-
work [31, 32]. The equivalence of the results of the pro-
posed method and DREG gives a hint that the improved
cutoff method with e.g. MS subtraction and BPHZ can be
used as a renormalization scheme for more complicated
diagrams.

Reqularization schemes based on consistency conditions
have been applied to more involved cases. Differential
renormalization fulfilling similar conditions is proved to
be equivalent to regularization within the Epstein-Glaser
framework [33]. Constrained differential renormalization
is useful in supersymmetric [34] and non-Abelian gauge
theories, it fulfills Slavnov-Taylor identities at one and
two loops [35]. Implicit regularization [20, 21] requires the
same conditions as we used and it was successfully ap-
plied to the Nambu-Jona-Lasinio model [20] and to higher
loop calculations in gauge theory. It was shown that the
conditions guarantee gauge invariance generally and the
Ward identities are fulfilled explicitly in QED at two-loop
order [21]. In an effective composite Higgs model, the
Fermion Condensate Model [36] oblique radiative correc-
tions (S and T parameters) were calculated in DREG and
with the improved cutoff, too, the finite results completely
agree. The calculation involved vacuum polarization func-
tions with two different fermion masses and no ambiguity
appeared [26, 27].

The new reqularization is advantageous in special loop-
calculations where one wants to keep the cutoff of the
model, like in effective theories, derivation of renormal-
ization group equations, extra dimensional scenarios or
in models explicitly dependent on the space-time dimen-
sions, like supersymmetric theories. We arque that the
method can be successfully used in higher order calcu-
lations containing terms up to quadratic divergences in
(non-Abelian) gauge theories, as it allows for shifts in
the loop momenta, which guarantees the 't Hooft iden-
tity [21, 37]. This symmetry preserving method can be

used also in automatized calculations (similar to [38]) as
even the Veltman-Passarino functions [39] can be defined
with the improved cutoff. The calculation of the famous
triangle anomaly with the proposed method needs special
care and treatment [40].

Appendix A: CONNECTION WITH THE
STANDARD TECHNIQUE

What is the relation of the new method to the standard
(textbook)

k,k, — % g k? (A1)

substitution? We have to modify it in case of divergent
integrals to respect gauge symmetry, i.e to fulfill (10).
Lorentz invariance dictates that in (10) the LHS must be
proportional to the only available tensor g,,, i.e.

1
lEu[Ev I gguvle (AZ)

can be used, where d is a number to be determined.> Now
both sides of equation (10) can be calculated with a simple
4-dimensional momentum cutoff. The different powers of A
can be matched on the two sides, and for n = 1 we obtain
the following conditions (from gauge invariance) for the
value of d,

1
A2 a2
d/\ — 2/\ , (A3)
1 A%+ m? 1 A + m? 1
Eln ( mz ) - Z (l.n ( mz ) + E) ,(A4)
! ! for finite term (A5)
- = - .
P 2 0 ite terms

We see that for finite valued integrals when the Wick-
rotation is applicable, the condition (10) and the rule (20)
gives the usual substitution (A1), but for divergent cases
we obtain the identification partially found by [6, 7, 10]
and others. Quadratic divergence goes with d = 2, loga-
rithmic divergence goes with d = 4 plus a finite term (a
shift), it is the +1 in equation (4). For more than 2 even

3 The usual method is to calculate the trace (and obtain
d = 4), but interchanging the order of tracing (multipli-
cation with g"*) and calculating the divergent integrals
cannot be proven to be valid.
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number of indices generalizations of (A2) should be used, works.
for example in case of 4 indices the substitution

1 . We emphasize again that for non-divergent integrals the
leylevleples — dd+2) (9w Gpo + GupGva + GuoGup) li- rules (20) and (21) give the same result as the usual cal-
(A6) culation (A1).

|

Appendix B: BASIC INTEGRALS

In this appendix we list the basic divergent integrals calculated by the regularization proposed in this paper. In the
following formulae m? can be any loop momentum (k) independent expression depending on the Feynman x parameter,
external momenta, etc., e.g. A(x, g, m,, mp). The regularized integrals are denoted by f/\reg meaning fIkEKA’ the integration
is understood for Euclidean momenta with absolute value below A. The integrals (B1) and (B5) are just given for

comparison, those calculated with a simple momentum cutoff.

Ik 1 N+ m?
=— N —m?l , B1
. = = o (=t (2 e
d*k Kk, 1 gw [ 2 ) A + m?
= — N — L , B2
fo i = (=t (%)) (2
d'k  k,k,kyk, 1 GwGpo+9upGvet9ucGup (2 2 A+ m?
= A — l , B3
/ 20 (@ —m2p  (@n)p 8 R )
d'k  Kk,k, 1T guw 5 2 N + m? 2 m*
/Areg i2n) (k2 —m2?  (4m)? 4 (2/\ —mn ( m? ) TNy mz) ' (B9
d*k 1 1 A2 + m? m?
= _1
[\reg i(27r)4 (k2 — mz)z (47[)2 (ln ( 2 ) + N m? ) ' (B5)
d*k k, k, 1 v N2 2 2
/ : . ! .= 29;/ (l ( +2m )+ 2m 2_1), (B6)
Areg [(27[) (k2 — m2) (47T) 4 m A2+ m
4 2 2 2 2 4
/ .d k4 kkuk\,4: 1zguv (3ln(/\ +2m )+ 2m - m 2_4) (B7)
Areg {(270)Y (k2 — m?) (4m)% 12 m AN +m? (A2 4+ m?)
/ d*k Kk koks _ 1 9wGpo+9upGve+9ucGvp n N +m? m’ 1 (B8)
oo (27 (k2 — m2)' ()2 24 m? J

(B1)-(B3) depend on the same function of A. (B2), (B3) are traced back to (B1) via (20) and (21). (B4) and (B7) have
a different A dependence. Evaluating these integrals at first step (22) is used, then (20) or (21) can be applied to the
remaining free indices.
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