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Abstract: A Lorentz and gauge symmetry preserving regularization method is proposed in 4 dimensions based on a
momentum cutoff. We use the conditions of gauge invariance or equivalently the freedom to shift the loop
momentum to define the evaluation of the terms carrying even number of Lorentz indices, e.g. proportional
to kµkν . The remaining scalar integrals are calculated with a four dimensional momentum cutoff. The finite
terms (independent of the cutoff) are free of ambiguities coming from subtractions in non-trivial cases.
Finite parts of the result are equal to that of dimensional regularization.
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1. Introduction

Several regularization methods are known and used inquantum field theory: three and four dimensional mo-mentum cutoff, Pauli-Villars type, dimensional regular-ization, lattice regularization, Schwinger’s proper timemethod and others directly linked to renormalization likedifferential renormalization. Dimensional regularization(DREG) [1] is the most popular and most appreciated asit respects the gauge and Lorentz symmetries. HoweverDREG is not useful in all cases, for example it is not di-rectly applicable to supersymmetric gauge theories as itmodifies the number of bosons and fermions differently.DREG eliminates (does not identify) naive quadratic di-vergences, which may be important in low energy effective
∗E-mail: cyn@general.elte.hu

theories or in the renormalization group method of Wilson.Another shortcoming is that together with (modified) min-imal subtraction DREG is a “mass independent” scheme,particle thresholds and decoupling are put in the theoryby hand [2]. The choice of the ultraviolet regulator alwaysdepends on the problem.In low energy effective field theories there is an explicitcutoff, with a well defined physical meaning. The cutoffgives the range of the validity of the model. There arefew implementations in four dimensional theories: sharpmomentum cutoff in three and four dimensions, modifiedoperator regularization (based on Schwinger proper timemethod [3]). In the Nambu-Jona-Lasinio model differentregularizations proved to be useful in calculating differentphysical quantities [4].Using a naive momentum cutoff the symmetries are badlyviolated. The calculation of the QED vacuum polariza-tion function (Πµν (q)) exemplifies the problems. The Wardidentity tells us that qµΠµν (q) = 0, e.g. in
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Symmetry preserving regularization with a cutoff

Πµν (q) = qµqνΠL(q2)− gµνq2ΠT (q2) (1)
ΠL(q2) and ΠT (q2) are equal to each other (denoted byΠ(q2)). Usually the condition Π(0) = 0 is required todefine a subtraction to keep the photon massless at 1-loop.However this condition is ambiguous when for q2 6= 0 inQED or in more general models. For example in the caseof two different masses in the loop, the condition simplyfixes Π(q2, m1, m2) in the limit of degenerate masses at
q2 = 0. Ad hoc subtractions does not necessarily givesatisfactory results.There have been several proposals how to define a sym-metry preserving cutoff regularization. The usual way is tostart with a regularization which respects symmetries andfind the connection using the momentum cutoff. In case ofdimensional regularization Veltman already observed [5]that the naive quadratic divergences can be identified withthe poles in two dimensions (d = 2) besides the usual log-arithmic singularities in d = 4. This idea turned out tobe fruitful. Hagiwara et al. [6] calculated electroweak ra-diative corrections originating from effective dimension-sixoperators, and later Harada and Yamawaki performed theWilsonian renormalization group inspired matching of ef-fective hadronic field theories [7]. Based on Schwinger’sproper time approach Oleszczuk proposed the operatorregularization method [8], and showed that it can be for-mulated as a smooth momentum cutoff respecting gaugesymmetries [8, 9]. A momentum cutoff is defined in theproper time approach in [10] with the identification underloop integrals

kµkν →
1
dgµνk

2 (2)
instead1 of the standard d = 4. The degree of the diver-gence determines d in the result: Λ2 corresponds to d = 2and ln(Λ2) to d = 4. This way the authors correctly ob-tain the divergent parts, as they checked them for the QEDvacuum polarization function and for the phenomenologi-cal chiral model.Various authors formulated consistency conditions tomaintain gauge invariance in the evaluation of divergentloop integrals. When finite [11] or infinite [12, 13] num-ber of new regulator terms added to the propagators a’laPauli-Villars, the integrals have at most logarithmic singu-larities and become tractable. The Pauli-Villars regular-ization technique was applied with subtractions to gaugeinvariant and chiral models [14–17]. Differential renor-malization can be modified to fulfill consistency conditions
1 In what follows we denote the metric tensor by gµν bothin Minkowski and Euclidean space.

automatically, a method known as constrained differentialrenormalization [18]. Another approach, later proved tobe equivalent with the previous one [19], is the methodof implicit regularization, in which a recursive identity(similar to Taylor expansion) is applied and all the de-pendence on the external momentum (q) is transferred tofinite integrals. The divergent integrals contain only theloop momentum, thus universal local counter terms cancancel the potentially dangerous symmetry violating con-tributions [20, 21]. Gauge invariant regularization is im-plemented in the exact renormalization group method pro-viding a cutoff without gauge fixing in [23]. Introducing amultiplicative regulator in the d-dimensional integral, theintegrals can be calculated in the original dimension withthe tools of DREG [24].
In this paper we give a definite method in four dimen-sions to use a well defined momentum cutoff. We showthat there is a difficulty between naive application ofLorentz symmetry and gauge invariance. The core of theproblem is that the contraction with gµν cannot neces-sarily be interchanged with the integration in divergentcases. The proper handling of the kµkν terms in diver-gent loop-integrals solves the problems of momentum cut-off regularizations. This is the new result of the paper.Working in strictly four dimensions we use the conditionsof respecting symmetries to define the integrals with freeLorentz indices. Using our method loop calculations canbe reduced to scalar integrals and those can be evalu-ated with a sharp momentum cutoff. We give a simple andwell defined algorithm to have unambiguous finite and in-finite terms. The results respect gauge (chiral and other)symmetries and the finite terms agree with the result ofDREG.
In Section 2 we present the definition of a momentum cut-off using the method of DREG, then we give the gaugesymmetry preserving conditions which emerge from thecalculation of the vacuum polarization amplitude. In Sec-tion 4 we discuss the condition of independence of mo-mentum routing in loop diagrams. Section 5 shows thatgauge invariance and freedom of shift in the loop momen-tum have the same origin. Next we show that the condi-tions are related to vanishing surface terms. In Section 7we give a definition of the new regularization method andin Section 8 as an example we present the calculation ofa general vacuum polarization function at 1-loop. In Sec-tion 9 we show that the QED Ward-Takahashi identityholds at finite order using the new method. Subsequentlywe conclude our work.

1238

Brought to you by | Eotvos Lorand University
Authenticated

Download Date | 10/21/15 11:38 AM



Gabor Cynolter, Endre Lendvai

2. Momentum cutoff via dimen-
sional regularization
DREG is very efficient and popular, because it preservesgauge and Lorentz symmetries. Performing standard stepsthe integrals are evaluated in d = 4−2ε dimension. Gen-erally the loop momentum integral is Wick rotated and thedenominators are combined with a Feynman parameter (x).Subsequently the order of x and momentum integrals arechanged. Shifting the loop momentum does not generatesurface terms and it leads to a spherically symmetric de-nominator, terms linear in the momentum are dropped and(2) is used. Singularities are identified as 1

ε poles, naivepower counting shows that these are the logarithmic di-vergences of the theory.2 In DREG quadratic or higherdivergences are set identically to zero. However, Veltmannoticed [5] that quadratic divergences can be calculatedin d = 2 − 2(ε − 1) in the limit ε → 1. This observationled to a cutoff regularization based on DREG.Carefully calculating the one and two point Passarino-Veltman functions in DREG and for the 4-momentum cutoffthe divergences can be matched as [6, 7]

4πµ2 ( 1
ε − 1 + 1) = Λ2, (3)

1
ε − γE + ln (4πµ2) + 1 = lnΛ2, (4)

where µ is the mass-scale of dimensional regularization.The finite part of a divergent quantity is defined as
ffinite = lim

ε→0
[
f (ε)− R (0) (1

ε − γE + ln 4π + 1)
−R (1) ( 1

ε − 1 + 1)] , (5)

where R (0), R (1) are the residues of the poles at ε = 0, 1respectively. Note that in the usual ε → 0 limit the lefthand side (LHS) of (3) vanishes and no quadratic diver-gence appears in the original DREG.The identifications above define a momentum cutoff calcu-lation based on the symmetry preserving DREG formulae.This cutoff regularization is well defined, but still relies onDREG. Let us see the main properties in the calculationof the vacuum polarization function. In Πµν the quadratic
2 Similar identification can be done in three dimensionalintegrals [25].

divergence is partly originating from a kµkν term via
1
d · gµνk

2,

which is evaluated at d = 2 instead of the d = 4 in thenaive cutoff calculation. The Λ2 terms cancel if and onlyif this term is evaluated at d = 2. This is a warning thatthe usual
kµkν →

14gµνk2

substitution during the naive cutoff calculation of divergentintegrals might be too naive, especially as an intermediatestep, the Wick rotation is legal only for finite integrals. Afurther finite term additional to the logarithmic singularityresults from the well known expansion in
14− 2ε 1

ε '
14
(1
ε + 12

)
,

and it is essential to retain gauge invariance. We stressthat the shift of the loop momentum is allowed in DREG,hence this property should be inherited by an improvedcutoff regularization. In the next sections we derive con-sistency conditions for general regularizations.
3. Consistency conditions – gauge
invariance
Calculation in a gauge theory ought to preserve gaugesymmetries. Consider the QED vacuum polarization func-tion with massive electrons. We start generally (seeFig. 1) with two fermions with different masses in theloop [26] and restrict it to QED later,
iΠµν (q)
= −(−ig)2 ∫ d4k(2π)4 Tr(γµ 6 k +ma

k2 −m2
a
γν
66 k+ 6 q+mb(k + q)2 −m2

b

)
.(6)

Πµν is calculated with the standard technique, onlythe kµkν terms are considered with care. After per-forming the trace, Wick rotating and introducing theFeynman x-parameter the loop momentum is shifted(kEµ + xqEµ)→ lEµ ,
1239
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Πµν = g2 ∫ 1
0 dx

∫ d4lE(2π)4 2lEµlEν − gµν (l2E + ∆)− 2x(1− x)qEµqEν + 2x(1− x)gµνq2
E(

l2E + ∆)2 , (7)

where ∆ = x(1 − x)q2
E + (1 − x)m2

a + xm2
b. InQED ma = mb = m and g = e it simplifies to∆1 = x(1− x)q2

E +m2. Having a symmetric denominatorand symmetric volume of integration the terms linear in
lEµ are dropped. After changing the order of momentum-and x-integration the loop momentum is shifted by x-dependent values, xqEµ and sum up the results duringthe integration. Different shifts sums up to a meaning-ful result only if the shift does not modify the value ofthe momentum integral (this will be discussed in the nextsection).

Figure 1. 1-loop vacuum polarization diagram.

In QED the Ward identity tells us, that
qµΠµν (q) = 0. (8)

In (7) the terms proportional to qE fulfill the Ward-identity (8) and what remains is the condition of gaugeinvariance
∫ 1

0 dx
∫ d4lE(2π)4 lEµlEν(

l2E + ∆1)2
= 12gµν

∫ 1
0 dx

∫ d4lE(2π)4 1(
l2E + ∆1) .

(9)

This condition appeared already in [13, 20]. Any gaugeinvariant regulator should fulfill (9). It holds in dimen-sional regularization and in the momentum cutoff basedon DREG of Section 2. In [11, 13] a similar relation de-fined the finite or infinite Pauli-Villars terms to maintaingauge invariance.So far the x integrals have not been performed. Expand-ing the denominator in q2, the x-integration can be done

easily and we arrive at a condition for gauge invarianceat each order of q2. At order q2n we obtain (omitting thefactor (2π)4)
∫
d4lE lEµlEν(

l2E +m2)n+1
= 12ngµν

∫
d4lE 1(

l2E +m2)n , n = 1, 2, . . . . (10)

The conditions (10) are valid for arbitrary m2 mass, soit holds for any function ∆ independent of the loop mo-mentum in 1-loop two or n-point functions with arbitrarymasses in the propagators. These conditions mean that inany gauge invariant regularization the two sides of (10)should give the same result. We will use this condition todefine the LHS of (10) in the new improved cutoff regular-ization. This is the novelty of our regularization method.
4. Consistency conditions – mo-
mentum routing
Evaluating any loops in QFT one encounters the problemof momentum routing. The choice of the internal momentashould not affect the result of the loop calculation. Thesimplest example is the 2-point function. In (6) there isa loop momentum k , and the external momentum q (seeFig. 1) is put on one line (k + q, k), but any partition ofthe external momentum (k+q+p, k+p) must be as goodas the original. The arbitrary shift of the loop momentumshould not change the physics. This independence of thechoice of the internal momentum gives a conditions. Wewill impose it on a very simple loop integral

∫
d4k kµ

k2 −m2 −
∫
d4k kµ + pµ(k + p)2 −m2 = 0, (11)

which turns up during the calculation of the 2-point func-tion. Expanding (11) in powers of p we obtain a series ofcondition, meaningful at p, p3, p5 . . .. At linear order wearrive at
∫
d4k

(
pµ

k2 −m2 − 2 kµk · p(k2 −m2)2
) = 0, (12)
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which is equivalent to (10) for n = 1. At order p3 thelinear combination of two conditions should vanish
pρpαpβ

∫
d4k

[( 4kαkβ(k2 −m2)3 − gαβ(k2 −m2)2
)
gµρ

−4kµ ( 2kαkβkρ(k2 −m2)4 − gαβkρ(k2 −m2)3
)] = 0. (13)

These two conditions become separated if the freedom ofthe shift of the loop momentum is considered in
∫
d4k kµ(k2 −m2)2 .

At leading order it provides
pν
∫
d4k

(
gµν(k2 −m2)2 − 4 kµkν(k2 −m2)3

) = 0, (14)
equivalent with (10) for n = 2. Using (14) twice the sec-ond part of the condition (13) connects 4 loop momenta

numerators to 2 k ’s. Symmetrizing the indices we obtain
∫
d4k kαkβkµkρ(k2 −m2)4 = 124

∫
d4k gαβgµρ + gαµgβρ + gαρgβµ(k2 −m2)2 .

(15)
Invariance of momentum routing provides conditions forsymmetry preserving regularization and these conditionsare equivalent with the conditions coming from gauge in-variance.
5. Gauge invariance and loop mo-
mentum shift
We show at the one loop level that gauge invariance ofthe vacuum polarization function is equivalent to invari-ance of a special loop integrand to shifting the loop mo-mentum (11). Consider Πµν defined in (6), performing thetrace we obtain

iΠµν (q) = −g2 ∫ d4k(2π)4 kµ (kν + qν ) + kν (kµ + qµ)− gµν (k2 + k · q − mamb
)

(k2 −m2
a) ((k + q)2 −m2

b
) . (16)

In particular in QED ma = mb = m, gauge invariancerequires (8), which simplifies to
iqνΠµν (q)
= g2 ∫ d4k(2π)4

(
kµ + qµ((k + q)2 −m2) − kµ(k2 −m2)

) = 0.(17)
This example shows that the Ward identity is fulfilled onlyif the shift of the loop momentum does not change the valueof the integral, as in (11).In [21] based on the general diagrammatic proof of gaugeinvariance it is shown that the Ward identity is fulfilledif the difference of a general n-point loop and its shiftedversion vanishes
−i
∫
d4p1T r

[
i

6 pn −m
γµn . . . i

6 p1 −mγµ1

− i
6 pn+ 6 q − mγµn . . . i

6 p1+ 6 q − mγµ1
] = 0.(18)

We interpret (17) and (18) as a necessary condition forgauge invariant regularizations.
6. Consistency conditions – vanish-
ing surface terms
All the previous conditions are related to the volume in-tegral of the total derivative
∫
d4k ∂

∂kν

(
kµ(k2 +m2)n

)
= ∫ d4k

(
kµkν(k2 +m2)n+1 − 12ngµν 1(k2 +m2)n

)
,

n = 1, 2, . . . .(19)
The total derivative on the LHS leads to surface terms [22],which vanish for integrals with finite value and shouldvanish for symmetry preserving regularization. In our im-proved regularization this will follow from new definitions.The LHS is in connection with an infinitesimal shift of the
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loop momentum k , it should be zero if the integral of theterm in the delimiter is invariant to the shift of the loopmomentum. The vanishing of this surface term reproducesthe previous conditions (12) and (10) on the RHS. In (19)starting with an odd number of k ’s in the numerator weend up with some conditions, three k ’s for n = 3 pro-vide (15) after some algebra. Starting with even numberof kµ ’s in the numerator on the LHS in (19) we obtainrelations between odd number of kµ ’s in the numerators,which vanish separately.These surface terms all vanish in DREG and give the basisof DREG respecting Lorentz and gauge symmetries. Van-ishing of the surface term is inherent in any regularization,such as the improved momentum cutoff, if the identifica-tion (9) is understood to evaluate integrals involving aneven number of free Lorentz indices, e.g. numerators suchas kµkν . The value of integrals with odd number of k ’s inthe numerator are similarly dictated by symmetry, theseare required to vanish by the symmetry of the integrationvolume.
7. Improved momentum cutoff regu-
larization
We propose a new symmetry preserving regularizationbased on a 4-dimensional momentum cutoff. For this im-proved momentum cutoff regularization method a simplesharp momentum cutoff is introduced to calculate the di-vergent scalar integrals in the end. The evaluation ofloop-integrals starts with the usual Wick rotation, Feyn-man parametrization and loop momentum shift. The onlycrucial modification is that the potentially symmetry vi-olating loop integrals containing the loop momenta withfree Lorentz indices are calculated explicitly with the iden-tification ∫ lEµlEν(

l2E + ∆)n+1 → 12ngµν
∫ 1(

l2E + ∆)n (20)
under the loop integrals or with more momenta using thecondition (15) or generalizations of it, e.g.

∫ lEµlEνlEρlEσ(
l2E + ∆)n+1 → gµνgρσ + gµρgνσ + gµσgνρ4n(n − 1)

·
∫ 1(

l2E + ∆)n−1 .
(21)

The momentum integrals containing further the loop mo-mentum with summed indices (e.g. l2E ) in the numeratorare simplified in the standard way cancelling a factor in

the denominator
∫ l2E lEµlEν . . .(

l2E + ∆)n+1 = ∫ lEµlEν . . .(
l2E + ∆)n −

∫ ∆ lEµlEν . . .(
l2E + ∆)n+1 . (22)

Integrals with odd number of loop momenta vanish iden-tically. These identifications guarantee gauge invarianceand freedom of shift in the loop momentum. Under anyregularized momentum integrals the identifications (20)or generalizations such as (21) are understood as a partof the regularization procedure for n = 1, 2, . . .. For finiteintegrals (non divergent, for high enough n) the standardcalculation automatically fulfills (20), (21). The connectionwith the standard substitution of free indices is discussedin Appendix A.Fulfilling the condition (10) via the substitution (20) theresults of the momentum cutoff based on DREG of Sec-tion 2 are completely reproduced performing the calcula-tion in the physical dimensions d = 4 [26, 27]. The nexttwo examples show that the new regularization providesa robust framework for calculating loop integrals and re-spects symmetries.
8. Vacuum polarization function
As an example let us calculate the vacuum polarizationfunction of Fig. 1 in a general gauge theory with fermionmasses ma, mb. Performing the calculation in 4 dimen-sions generally the Ward identities (required by the the-ory) are restored by ambiguous and ad hoc subtractions.The finite terms of different calculations do not match eachother in the literature, see [28], papers citing it and [29].For sake of simplicity we consider only vector couplings.Performing the trace in (6) we obtain (16). Now we can in-troduce a Feynman x-parameter, shift the loop momentumand obtain (7) after dropping the linear terms. Generallywe are interested in low energy observables like the pre-cision electroweak parameters and need the first few termsin the power series of Πµν (q). Using the rule (20) for n = 1and expanding the denominator in q2 the scalar loop andx-integrals can be easily calculated with a 4-dimensionalmomentum cutoff (Λ). The result in this construction isautomatically transverse

Πµν (q) = g24π2 (q2gµν − qµqν) [Π(0) + q2Π′(0) + . . .
]
.(23)The terms independent of the cutoff completely agree withthe results of DREG [27] the logarithmic singularity canbe matched with the 1

ε terms using (4). Up to O(m2Λ2
) weobtain
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Π(0) = 14 (m2
a +m2

b)− 12 (ma −mb)2 ln( Λ2
mamb

)
−
m4
a +m4

b − 2mamb
(
m2
a +m2

b
)

4 (m2
a −m2

b
) ln(m2

b
m2
a

)
. (24)

The first derivative is
Π′(0) =− 29 − 4m2

am2
b − 3mamb

(
m2
a +m2

b
)

6 (m2
a −m2

b
)2 + 13 ln( Λ2

mamb

)
+ (

m2
a +m2

b
) (
m4
a − 4m2

am2
b +m4

b
) + 6m3

am3
b6 (m2

a −m2
b
)3 ln(m2

b
m2
a

)
.

(25)

The photon remains massless in QED, as in the limit, ma = mb we obtain Π(0) = 0.The proposed regularization is robust and gives the same result if the calculation is organized in a different way.Introducing Feynman parameters and shifting the loop momentum can be avoided if we need only the first few terms inthe Taylor expansion of q. For small q the second denominator in (16) can be Taylor expanded, for simplicity we givethe expanded integrand for equal masses, up to O(q4)

Πµν (q) =− g2 ∫ d4kE(2π)4
[2kµkν ( 1(

k2
E +m2)2 − q2

E(
k2
E +m2)3 + 4 (kE · qE )2(

k2
E +m2)4

)

−2 (kEµqEν + kEνqEµ) kE · qE(
k2
E +m2)3 − gµν

( 1(
k2
E +m2)2 − q2

E(
k2
E +m2)3 + 2 (kE · qE )2(

k2
E +m2)4

)]
.

(26)

Taking into account that kE · qE = kEαqEα , (20) and (21)can be used and the remaining scalar integrals can beeasily calculated. The result agrees with (24) and (25)and the finite terms with DREG if and only if we use theproposed symmetry preserving substitutions. Applying thenaive kEµkEν → 14gµνk2
E substitution in both approachesthe finite terms will differ from each other and also fromthe result of DREG. This is why finite terms differ fromeach other in [28] and [29].The calculation of the Πµν function at 1-loop shows thatthe new regularization gives a robust gauge invariant re-sult and the finite terms agree with DREG.

9. The Ward-Takahashi identity
In this section we show with explicit calculation that theQED Ward-Takahashi identity is fulfilled for infinite and

finite terms using the proposed regularization at 1-loop.Following the notation of [30] it has to be proved that
dΣ
dpµ

∣∣∣∣
6p=m = − δΓµ(p, p) ∣∣∣∣

6p=m , (27)where Σ is the electron self-energy (see Fig. 2 left panel)
−iū(p)Σu(p)

= −e2 ∫ 1
0 dx

∫ d4l(2π)4 ū(p) −2x 6 p+ 4m(l2 − ∆2 + iε)2 u(p), (28)

here ∆2 = −x(1− x)p2 + (1− x)m2 + xµ2, l = k − xp, mis the mass of the electron and µ is the infrared regulator.
dΣ
dpµ

∣∣∣∣
6p=m = α2π

∫ 1
0 dx

[
−xγµ

(ln( Λ2(1− x)2m2 + xµ2
)
− 1 + 2(2− x)(1− x)(1− x)2m2 + xµ2

)]
, (29)
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Figure 2. 1-loop diagrams for the Ward identity.

δΓµ is the electron vertex correction (see Fig. 2 right panel)
ū(p′)δΓµu(p) = 2ie2∫ d4k(2π)4 ū(p′) [6 kγµ(6 k+ 6 q) +m2γµ − 2m(k + (k+q))µ]u(p)((k − p)2 + iε) ((k + q)2 −m2 + iε) (k2 −m2 + iε) . (30)

After using the Dirac equation in the limit p = p′ and q = 0 we obtain
−iū(p)δΓµu(p) = 2e2 ∫ 1

0 dxdydzδ(x + y+ z − 1) ∫ d4l(2π)4 × ū(p) [6 lγµ 6 l+ (z2 − 4z + 1)m2γµ]u(p)(l2 − ∆3 + iε)3 , (31)
where ∆3 = (1 − z2)m2 + zµ2 and l = k − zp. Here 6 lγµ 6 l = 2lµlνγν − γµl2, for the first term (20) should be used for
n = 2 or directly (B6) from Appendix B. After the momentum and x, y integration

δΓµ|6p=m = α2π
∫ 1

0 dz
[(1− z) (ln( Λ2(1− z)2m2 + zµ2

)
− 1 + (1− 4z + z2)(1− z)m2 + zµ2

)]
. (32)

The result of the new method is the constant −1 after the log, with the naive calculation using (A1) one would obtain
− 12 . Calculating the Feynman-parameter integral taking care of the infrared regulator the identity (27) is valid up to
m2Λ2 terms at 1-loop

− dΣ
dpµ

∣∣∣∣
6p=m = δΓµ(p, p) ∣∣∣∣

6p=m = α2π
(12 ln( Λ2

m2
)+ ln( µ2

m2
)+ 2) +O(m2Λ2 , µ

2Λ2
)
. (33)

We have seen that the proposed method provides regular-ized 1-loop electron self-energy and vertex correction inQED which fulfill the Ward-Takahashi identity.
10. Conclusions

In this paper we have presented a new method for thereliable calculation of divergent 1-loop diagrams (not in-volving γ5) with a four dimensional momentum cutoff. Var-ious conditions were derived to maintain gauge symmetry,to have the freedom of momentum routing or shifting the

loop momentum. These conditions were known by severalauthors [11, 13, 20, 21]. Our new proposal is that theseconditions will be satisfied for the regularization process ifterms proportional to loop momenta with an even numberof free Lorentz indices (e.g. ∼ kµkν ) are calculated accord-ing to the special rules (20) and (21) or generalizationsthereof. In the end the scalar integrals are calculated witha simple momentum cutoff. The calculation is robust – atleast at 1-loop level – as we have shown via the fermioniccontribution to the vacuum polarization function. The fi-nite terms agree with the ones from DREG in all exam-ples. The connection with DREG is more transparent if
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one uses alternatively the kµkν → 1
dgµνk

2 or (A6) sub-stitution and d takes different values determined by thedegree of divergence in each term (A3), (A4), (A5). Westress that this new regularization holds without DREGas the substitutions (20), (21) and scalar integration witha cutoff are independent of DREG. The success of bothregularizations based on the property that they fulfill theconsistency conditions of gauge invariance and momentumshifting.At 1-loop the finite terms in the improved momentum cut-off are found to be equivalent with DREG. For practicalcalculations we propose to use the same renormalizationscheme, the MS or MS subtractions with the BPHZ for-est formula as with DREG. DREG is not just the gener-ally used method, but it is proved to be a mathematicallyrigorous regularization within the Epstein-Glaser frame-work [31, 32]. The equivalence of the results of the pro-posed method and DREG gives a hint that the improvedcutoff method with e.g. MS subtraction and BPHZ can beused as a renormalization scheme for more complicateddiagrams.Regularization schemes based on consistency conditionshave been applied to more involved cases. Differentialrenormalization fulfilling similar conditions is proved tobe equivalent to regularization within the Epstein-Glaserframework [33]. Constrained differential renormalizationis useful in supersymmetric [34] and non-Abelian gaugetheories, it fulfills Slavnov-Taylor identities at one andtwo loops [35]. Implicit regularization [20, 21] requires thesame conditions as we used and it was successfully ap-plied to the Nambu-Jona-Lasinio model [20] and to higherloop calculations in gauge theory. It was shown that theconditions guarantee gauge invariance generally and theWard identities are fulfilled explicitly in QED at two-looporder [21]. In an effective composite Higgs model, theFermion Condensate Model [36] oblique radiative correc-tions (S and T parameters) were calculated in DREG andwith the improved cutoff, too, the finite results completelyagree. The calculation involved vacuum polarization func-tions with two different fermion masses and no ambiguityappeared [26, 27].The new regularization is advantageous in special loop-calculations where one wants to keep the cutoff of themodel, like in effective theories, derivation of renormal-ization group equations, extra dimensional scenarios orin models explicitly dependent on the space-time dimen-sions, like supersymmetric theories. We argue that themethod can be successfully used in higher order calcu-lations containing terms up to quadratic divergences in(non-Abelian) gauge theories, as it allows for shifts inthe loop momenta, which guarantees the ’t Hooft iden-tity [21, 37]. This symmetry preserving method can be

used also in automatized calculations (similar to [38]) aseven the Veltman-Passarino functions [39] can be definedwith the improved cutoff. The calculation of the famoustriangle anomaly with the proposed method needs specialcare and treatment [40].
Appendix A: CONNECTION WITH THE
STANDARD TECHNIQUE
What is the relation of the new method to the standard(textbook)

kµkν →
14gµνk2 (A1)

substitution? We have to modify it in case of divergentintegrals to respect gauge symmetry, i.e to fulfill (10).Lorentz invariance dictates that in (10) the LHS must beproportional to the only available tensor gµν , i.e.
lEµlEν →

1
dgµνl

2
E (A2)

can be used, where d is a number to be determined.3 Nowboth sides of equation (10) can be calculated with a simple4-dimensional momentum cutoff. The different powers of Λcan be matched on the two sides, and for n = 1 we obtainthe following conditions (from gauge invariance) for thevalue of d,
1
dΛ2 → 12Λ2, (A3)1

d ln(Λ2 +m2
m2

)
→ 14

(ln(Λ2 +m2
m2

)+ 12
)
, (A4)

1
d →

14 for finite terms. (A5)
We see that for finite valued integrals when the Wick-rotation is applicable, the condition (10) and the rule (20)gives the usual substitution (A1), but for divergent caseswe obtain the identification partially found by [6, 7, 10]and others. Quadratic divergence goes with d = 2, loga-rithmic divergence goes with d = 4 plus a finite term (ashift), it is the +1 in equation (4). For more than 2 even
3 The usual method is to calculate the trace (and obtain
d = 4), but interchanging the order of tracing (multipli-cation with gµν ) and calculating the divergent integralscannot be proven to be valid.
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number of indices generalizations of (A2) should be used,for example in case of 4 indices the substitution
lEµlEνlEρlEσ →

1
d(d+ 2) ·(gµνgρσ + gµρgνσ + gµσgνρ

)
l4E .(A6)

works.
We emphasize again that for non-divergent integrals therules (20) and (21) give the same result as the usual cal-culation (A1).

Appendix B: BASIC INTEGRALS
In this appendix we list the basic divergent integrals calculated by the regularization proposed in this paper. In thefollowing formulae m2 can be any loop momentum (k) independent expression depending on the Feynman x parameter,external momenta, etc., e.g. ∆(x, q,ma, mb). The regularized integrals are denoted by ∫Λreg meaning ∫|kE |6Λ , the integrationis understood for Euclidean momenta with absolute value below Λ. The integrals (B1) and (B5) are just given forcomparison, those calculated with a simple momentum cutoff.

∫
Λreg

d4k
i(2π)4 1

k2 −m2 = − 1(4π)2
(Λ2 −m2 ln(Λ2 +m2

m2
))

, (B1)∫
Λreg

d4k
i(2π)4 kµkν(k2 −m2)2 = − 1(4π)2 gµν2

(Λ2 −m2 ln(Λ2 +m2
m2

))
, (B2)∫

Λreg
d4k
i(2π)4 kµkνkρkσ(k2 −m2)3 =− 1(4π)2 gµνgρσ+gµρgνσ+gµσgνρ8

(Λ2 −m2 ln(Λ2 +m2
m2

))
, (B3)∫

Λreg
d4k
i(2π)4 k2kµkν(k2 −m2)3 = − 1(4π)2 gµν4

(2Λ2 − 3m2 ln(Λ2 +m2
m2

)+m2 − m4Λ2 +m2
)
, (B4)∫

Λreg
d4k
i(2π)4 1(k2 −m2)2 = 1(4π)2

(ln(Λ2 +m2
m2

)+ m2Λ2 +m2 − 1) , (B5)∫
Λreg

d4k
i(2π)4 kµkν(k2 −m2)3 = 1(4π)2 gµν4

(ln(Λ2 +m2
m2

)+ m2Λ2 +m2 − 1) , (B6)∫
Λreg

d4k
i(2π)4 k2kµkν(k2 −m2)4 = 1(4π)2 gµν12

(3 ln(Λ2 +m2
m2

)+5 m2Λ2 +m2 − m4(Λ2 +m2)2 −4) , (B7)∫
Λreg

d4k
i(2π)4 kµkνkρkσ(k2 −m2)4 = 1(4π)2 gµνgρσ+gµρgνσ+gµσgνρ24

(ln(Λ2+m2
m2

)+ m2Λ2+m2 −1) . (B8)
(B1)-(B3) depend on the same function of Λ. (B2), (B3) are traced back to (B1) via (20) and (21). (B4) and (B7) havea different Λ dependence. Evaluating these integrals at first step (22) is used, then (20) or (21) can be applied to theremaining free indices.
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