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Timo J. Kärkkäinena and Zoltán Trócsányib

a NICPB, Rävala 10, 10143 Tallinn, Estonia
b Institute for Theoretical Physics, ELTE Eötvös Loránd University
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Abstract

Nonstandard neutrino interactions (NSI) arising from light and heavy medi-
ators probe different sectors of the parameter space of models focusing on phe-
nomena that require the extension of the standard model. High-energy scattering
experiments are not relevant on constraining the NSI hiding a light mediator at
the fundamental level, while flavour-universal NSI cannot be probed with neutrino
oscillation experiments. Currently the only way to measure flavour-universal NSI
with a light mediator is to rely on coherent elastic neutrino-nucleon scattering ex-
periments. We derive bounds for both light and heavy mediator flavour-universal
NSI. We also discuss the implications of the experiments on the allowed param-
eter space of a specific example model, a U(1)-extension of the Standard Model
called super-weak force.

1 Introduction

The discovery of neutrino oscillations [1, 2] kickstarted a plethora of research efforts in
neutrino physics. As the Standard Model (SM) is devoid of neutrino masses, neutrinos
are an exciting option as a portal to new physics, which must contain a mechanism to
generate neutrino masses, and therefore neutrino oscillations. One of the most popular
models of mass generation is the seesaw mechanism [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
The type I mechanism introduces heavy right-handed neutrinos that are sterile under
the SM. As at least two of the three active neutrinos are massive, the minimum extension
includes two sterile neutrinos. Type II mechanism instead extends the scalar sector
with an SU(2)L triplet scalar ∆ = (∆++,∆+,∆0) with hypercharge Y = 2, which is
usually assumed to be leptophilic. Type III seesaw extends the fermion sector with
hyperchargeless SU(2)L triplet Σ = (Σ+,Σ0,Σ−). Other neutrino mass generation
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mechanisms include inverse seesaw [15, 16, 17], radiative mass models [18, 19] and
others.

New physics effects are manifested at low energy scales via effective operators, which
are generated by integrating out the heavy degrees of freedom from the high-energy
theory. In the context of neutrino physics, there are three important operators:

O5 =
C5

Λ
(Lc ·H)(H · L) , (1)

O6a =
C6a

Λ2
(LγµPLL)(fγµPXf) , (2)

O6b =
C6b

Λ2
(L ·H)i��∂(H† · L) (3)

where the dot represents the SU(2)L invariant product of doublets and Λ is the scale
of new physics. The first operator is Weinberg operator [20], which is the only possible
gauge invariant dimension-5 operator that can be constructed from the SM fields. After
spontaneous symmetry breaking this gives a Majorana neutrino mass term. The second
operator corresponds to nonstandard interactions (NSIs) [21] of four charged leptons or
charged lepton – quark NSI, which in general break flavour. The third operator arises
from active-sterile neutrino mixing. The latter two operators are of dimension six.

The scale Λ is interpreted as the energy scale of new physics, typically considered
much higher than the electroweak scale, corresponding to a heavy NSI mediator at the
fundamental level. This expectation is based on the assumption that the couplings
Ci are O(1) coefficients. However, quantum field theory does not a priori force the
couplings to be so large. In the SM, a prime example of small couplings is the Yukawa
coupling of the electron, ye ' 3 · 10−6 � 1. In the case when the couplings Ci � 1,
the scale Λ can be as low as GeV or even MeV, and the mass of the corresponding NSI
mediator may be light or similar to the momentum transfer in the experiment. While
such scenarios do not support models built on naturalness arguments, they are certainly
not ruled out, and also predictive. Such new physics interactions can be probed at high-
intensity, low-energy experiments that are planned for the next decades.

Neutrino interactions have very low cross sections. Nonetheless neutrino-electron
and neutrino-nucleon cross sections have been measured at scattering experiments
where the averaged momentum transfer squared is large, 〈q2〉 = 20 GeV2 [22, 23, 24].
These measurements give stringent bounds to new physics effects originating from the
effective operators, namely the NSI with new physics scale Λ > ΛEW. Recently the first
successful detection of coherent elastic neutrino-nucleon scattering (CEνNS) [25, 26]
allows us to test whether or not NSI effects exist with scale Λ below the electroweak
scale.

Different extensions of the SM produce different NSI textures. A subclass of these
extensions is flavour conserving. Consequently, the NSI matrix is diagonal and real,
containing only three elements, which have contributions from up-type quarks, down-
type quarks and charged leptons. If in addition the extension is flavour universal,
then the NSI matrix is isotropic (proportional to the unit matrix). In the bottom-to-
top approach, current experimental bounds can be used to constrain the high-energy
theory parameters. In contrast, the top-to-bottom approach can be used to predict the
texture and region NSI available for a particular model.

In this paper, we discuss the NSI formalism and both approaches by considering
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the constraints with light and heavy NSI mediators. We derive bounds for flavour-
universally coupled NSI mediator in both the light and the heavy case. We then consider
a specific example, the super-weak extension of the standard model (SWSM) which
exhibits tiny flavour-universal couplings to fermions. It contains an NSI mediator that
is light in scattering experiments and therefore it evades detection, but not so in CEνNS,
which is sensitive for NSI originating from SWSM. We derive bounds on the new gauge
coupling and ratio of the vacuum expectation values in the SWSM based on the results
of COHERENT [25, 26, 27] and our previous analyses on dark matter [28] in the SWSM.

2 Experimental constraints on the NSI parameters

2.1 NSI formalism

In our study we focus on the O6a operator of Eqn. (2) that is relevant to neutrino-
matter interactions. In the usual parametrization of the NSI Lagrangian the interaction
strength is set by the Fermi coupling GF,

LNSI = −2
√

2GF

∑
f,X=±,`,`′

εf,X`,`′ (ν̄`γ
µPLν`′)(f̄γµPXf) (4)

where εf,X`,`′ parametrizes the strength of the new interaction with respect to GF, with
`, `′ denoting charged lepton flavours and f being a charged fermion in the standard
model.

When one matches the NSI Lagrangian (4) with the effective Lagrangian obtained
from a high-energy theory, the NSI parameters are proportional to the propagator of
the mediator, i.e. to εf,X`,`′ ∝ (q2 −M2)−1, where qµ is the four-momentum (q2 = qµq

µ)
carried by the mediator and M is its mass. In a neutrino scattering experiment, we
may approximate the propagator either as

εf,X`,`′ ∝ +
1

q2
if q2 �M2, (5)

or

εf,X`,`′ ∝ −
1

M2
if q2 �M2. (6)

The first case in Eq. (5) corresponds to “light NSI mediator”, while the second one
to “heavy NSI mediator”. For concreteness, let us consider M = 50 MeV. Then the
mediator is considered heavy from the viewpoint of neutrino oscillation experiments,
but light for high-energy neutrino scattering experiments, such as CHARM [22] and
NuTeV [23]. However, if q2 is similar in size to M2, as in the case of CEνNS in our
example, we cannot take any of these limits. Nevertheless, we can still apply the NSI
formalism using the full propagator with q2 being the characteristic momentum transfer
squared in the scattering experiment. The resulting NSI couplings interpolate smoothly
between the light and heavy limits. We present an example in Sect. 4.2.

2.2 Global fit of the heavy NSI parameters

In Ref. [29] the authors perform a global fit to current experiments for the NSI couplings
with heavy mediators and in the absence of CP violation, that is, the NSI parameters are
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Figure 1: Determinations of 2σ and 90 % confidence intervals from minimized ∆χ2-
distributions given in [29]. Down-type quark NSI above and up-type quark NSI below.
Vertical black line (∆χ2 = 4) corresponds to the 2σ bound.

assumed to be real. The authors performed a χ2-test, minimizing the χ2-function, and
presented the dependence of the ∆χ2-distributions (the difference of a χ2-test value
to χ2 best-fit value), that is, the statistical significance of the NSI parameters. We
reproduced those plots here in Fig. 1, with 2σ and 90 % confidence intervals exhibited.
We read off the best-fit points directly from these graphs, and presented those together
with the confidence intervals in Table 1.

We then combined the individual ∆χ2-distributions to test flavour-universal cou-
plings by summing the three ∆χ2-distributions [30]:

∆χ2
isotropic = ∆χ2

ee + ∆χ2
µµ + ∆χ2

ττ . (7)

We present the combined up- and down-type isotropic NSI coupling ∆χ2-distributions in
Fig. 2, with the individual original distributions overlaid. The relative incompatibility
of different flavour distributions results in tension with experimental data indicating
that both the up- and down-type quark isotropic NSI scenario are excluded at 2σ. We
compare the individual and combined bounds in Fig. 3. For isotropic NSI we have
summarized our results in Table 2. These bounds are relevant for theories which are
accessible via high-energy experiments, where the mediator has at least massO(10) GeV
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Parameter Best-fit point µi 2σ CI σ2,i 90 % CI σ90,i

εdee 0.301 [–0.015, 0.556] [0.019, 0.504]

εdµµ 0.003 [–0.004, 0.010] [–0.003, 0.009]

εdττ 0.006 [–0.004, 0.073] [–0.001, 0.044]

εuee 0.297 [0.006, 0.493] [0.044, 0.451]

εuµµ −0.001 [–0.009, 0.006] [–0.008, 0.005]

εuττ −0.001 [–0.011, 0.067] [–0.009, 0.035]

Table 1: Best-fit points for diagonal quark NSI parameters, and also 90 % and 2σ
confidence intervals (CI) derived from using Fig. 4 of [29]. The bounds apply only for
heavy mediator NSI (M2 � 20 GeV2).

Figure 2: Combined χ2-distributions and the individual components overlaid.

and couples to quark flavours universally.

Parameter Best fit 3σ CI

εu −5.5× 10−4 [−0.0073, 0.0063]

εd 5.3× 10−3 [−0.0026, 0.0114]

Table 2: Best-fit points and 3σ confidence intervals for isotropic NSI. The constraints
from high-energy experiments have been taken into account, hence the bounds apply
only for heavy mediator NSI (M2 � 20 GeV2).

For leptonic NSI, one can use the constraints given in Fig. 2 of Ref. [31], where the
authors performed both one-parameter- and flavour-conserving fits. Their χ2-analysis
takes into account the data from LEP experiments (ALEPH, DELPHI, L3 and OPAL),
LSND experiment, reactor experiments (MUNU and Rovno) and CHARM II experi-
ment.
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Figure 3: Comparisons of 2σ and 90 % confidence intervals for the diagonal elements,
including best-fit value. Left: down-type quark NSI, right: up-type quark NSI. Isotropic
NSI included. The best-fit of εee is not visible at this range.

2.3 Flavour universal NSI from the COHERENT experiment

For obtaining constraint on light NSI parameters oscillation experiments can be utilized.
However, those cannot observe the diagonal elements of the NSI matrix themselves.
Instead, they measure off-diagonal couplings and differences of the diagonal couplings.
In Ref. [32] the authors have chosen the convention that εµµ is subtracted from the
effective Mikheyev-Smirnov-Wolfenstein neutrino oscillation Hamiltonian as a phase
rotation, so the observable parameters are εfee−εfµµ and εfee−εfττ . Consequently, flavour-
conserving NSI (that is, diagonal NSI matrix) can be detected in neutrino oscillations
only if it is not flavour-universal. In flavour-universal case the NSI matrix is isotropic
and manifests itself as an unphysical phase rotation, undetectable in such experiments.

Another resource to test the light NSI couplings is coherent elastic neutrino-nucleon
scattering (CEνNS). In this experiment the differential cross section for in the recoil
energy T (T . 10 keV) of the nucleus in this process is given by

dσ

dT
=
G2

FM

π

(
1− |q|

2

4E2
ν

)
Q2
W (8)

where M is the mass of the nucleus and |q|2 = 2MT is the momentum transfer squared.
Eν is the energy of the neutrino, while QW denotes the weak charge for a nucleus of Z
protons and N neutrons, which in the standard model reads as

QSM
W = gnVNFn(q) + gpVZFp(q) , gnV = −1

2
, gpV =

1

2
− 2 sin2 θW . (9)

The functions Fn and Fp are nuclear form factors for the neutron and the proton
distribution in the nucleus, parameterized using Helm’s parameterization in Ref. [27]:

Fx(|q|) =
3j1(|q|Rx,0)

|q|Rx,0

e−|q|
2s2/2, R2

x,0 = 5s2 − 5

3
R2
x, x = n or p . (10)

In this formula Rx,0 is obtained using the surface thickness s = 0.9 fm and the the
root mean square radii of the proton and neutron distributions inside the nucleus.
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For instance, Rp(
133Cs) = 4.804 fm and Rn(133Cs) = 5.01 for Cesium and Rp(

127I) =
4.749 fm and Rn(127Cs) = 4.94 for Iodine used in the experiments. The function j1(x) =
sinx
x2
− cosx

x
is the spherical Bessel function of the first kind, order 1.

CEνNS was predicted by Freedman in 1974, and finally observed for the first time
in COHERENT experiment in 2017. The first run used Cesium-133 and Iodine-127
nuclei in 2017 and the second run in 2020 liquid argon-40.

The generalization of the weak charge in Eq. (9) to the case of generic NSI is

Q2
W,e =

(
(gpV + 2εuee + εdee)ZFp(|q|) + (gnV + εuee + 2εdee)NFn(|q|)

)2
+
∣∣(2εueµ + εdeµ)ZFp(|q|) + (εueµ + 2εdeµ)NFn(|q|))

∣∣2
+
∣∣(2εueτ + εdeτ )ZFp(|q|) + (εueτ + 2εdeτ )NF(|q|))

∣∣2 (11)

where εf``′ = εf,+``′ + εf,−``′ .
We remark that the leading order contribution to the flavour-breaking NSI param-

eters εf``′ (` 6= `′) is proportional to the second order of those parameters, while the
flavour-conserving parameters contribute at both first and second order (linear and
square terms). If both flavour-conserving and flavour-breaking NSI parameters have
approximately the same magnitude and are significantly less than one, then we may
neglect the second order terms. Then, the flavour-conserving NSI parameters dominate
the distortion to the weak charge Q2

W :

Q2
W,e = QSM

W,e

+ 2(gnV )2
(
εuee + 2εdee

)
N2F 2

n + 6gnV g
p
V

(
εuee + εdee

)
NZFnFp + 2(gpV )2

(
2εuee + εdee

)
Z2F 2

p ,

(12)

Presently large values (larger than one) for the light NSI parameters are still allowed
experimentally for both flavour-conserving and flavour-breaking case [27]. In such a
case, one should use the complete formula for the weak charge as given in Eq. (11).

We may utilize the COHERENT limit given by [27] to constrain εqee. Analogously,
the same argument can be used to demonstrate the dominance of the µµ elements on
Q2
W,µ.

We performed the combination of ∆χ2-distributions also for COHERENT experi-
ment, which is sensitive to εqee, ε

q
eµ and εqµµ but not to εqττ , where q = u, d. In isotropic

NSI models εqee = εqµµ. We assume the COHERENT measurements of these two cou-
plings to be independent and sum the ∆χ2-distributions related to these parameters,
following the instruction of Ref. [30]. We then derive the COHERENT bounds for
isotropic NSI parameters. We reproduce the individual ∆χ2-distributions are taken
from Ref. [27], and show them together with the combination in Fig. 4. The corre-
sponding confidence intervals are given in Table 3.

3 NSI couplings derived in the SWSM

In this section we provide an example of a model that naturally yields an isotropic
NSI matrix, namely, the super-weak extension of the Standard Model [33]. We recall
the details of the SWSM only to the extent needed to derive the NSI couplings. For
more details on the model, we call attention to Refs. [34, 28, 35, 36] where various
phenomenological aspects were studied.
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Figure 4: Combined ∆χ2-distributions and the individual components overlaid. Only
COHERENT data is taken into account.

Parameter 2σ CI 90 % CI 1σ CI

εu [−17.25, 17.16] [−14.85, 14.79] [−10.01, 9.42]

εd [−15.31, 16.05] [−13.19, 13.84] [−8.61, 9.23]

Table 3: Confidence intervals for isotropic NSI couplings based on the COHERENT
constraints.

3.1 Super-weak extension of the standard model

The SWSM is based on the SU(3)c⊗SU(2)L⊗U(1)Y⊗U(1)z gauge group. The U(1)
gauge couplings are denoted by gy and gz. The anomaly-free U(1)z charges for the
fermions are presented in Table 4. The SU(2)L⊗U(1)Y symmetry is broken by the
vacuum expectation value v of the usual Brout-Englert-Higgs field, while the U(1)z
symmetry is spontaneously broken by the vacuum expectation value w of a complex
scalar singlet (under transformations of the SM), making the corresponding neutral
gauge bosons Z and Z ′ massive. These bosons mix weakly with mixing angle θZ .

The covariant derivative related to the Abelian sector of the model is

Dµ ⊃ DU(1)
µ = ∂µ − i(y, z)

(
gy −ηgz
0 gz

)
Rε

(
Bµ

B′µ

)
(13)

where Rε is an unphysical rotation matrix (whose rotation angle can be absorbed in
θZ), y and z are the U(1) charges, and the parameter η is a more convenient way
to parametrize the kinetic mixing between the U(1) gauge fields. It depends on the
renormalization scale scale µ mildly, and its value at the electroweak scale will vary
according to the free choice of the scale µ0 where the mixing vanishes, η(µ0) = 0. For
µ0 chosen in the range [MZ ,MGUT one finds η(MZ) ∈ [0, 0.656] [34]. The largest value

Field QL uR dR LL `R NR

U(1)z charge 1
6

7
6
−5

6
−1

2
−3

2
1
2

Table 4: Charges of the extra U(1) symmetry of the fermions in SWSM.
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corresponds to a special case, where we assume that the kinetic mixing vanishes near
the Planck scale.

The interaction vertices can be obtained using the implementation of the model [35]
in SARAH [37, 38, 39]. For the Z ′-neutrino interactions, we find

−ieCL
Z′νiνk

= − i

2

[ 3∑
j=1

(Ui,j)(U
†)j,k

(
e

sin θW cos θW
sin θZ + (η − 1)gz cos θZ

)
(14)

− gz cos θZ

3∑
j=1

Ui,j+3(U
†)j+3,k

]
(15)

where θW is Weinberg’s angle and U is the neutrino mixing matrix. The model contains
three extra heavy sterile right-handed neutrinos NR,i (i = 1, 2, 3), so this matrix is a
6× 6 unitary matrix. The sterile neutrinos of the SWSM are much more massive than
the active ones. We may safely assume that active-sterile neutrino mixing is negligible
(that is, the off-diagonal 3 × 3 blocks vanish), and hence the active neutrino mixing
matrix is unitary (the 3×3 upper left block of U, ie. Pontecorvo-Maki-Nakagawa-Sakata
matrix). Using these conditions, we can perform the matrix element sums and obtain
the simplified expression:

−ieCL
Z′νν = − i

2

(
e

sin θW cos θW
sin θZ + (η − 1)gz cos θZ

)
. (16)

The other Z ′-fermion couplings (multiplied by i for easier reading) are

eCL
Z′dd = −1

6
tan θW

(
e
(
3 cot2 θW + 1

)
sin θZ + (η − 1)gz cot θW cos θZ

)
(17)

eCR
Z′dd = +

1

6

(
2e tan θW sin θZ + (2η − 5)gz cos θZ

)
(18)

eCL
Z′uu = −1

6
tan θW

(
e(1− 3 cot2 θW ) sin θZ + (η − 1)gz cot θW cos θZ

)
(19)

eCR
Z′uu = −1

6

(
4e tan θW sin θZ + (4η − 7)gz cos θZ

)
(20)

eCL
Z′ee = −1

2
tan θW

(
e
(
cot2 θW − 1

)
sin θZ − (η − 1)gz cot θW cos θZ

)
(21)

eCR
Z′ee = +

1

2

(
2e tan θW sin θZ + (2η − 3)gz cos θZ

)
(22)

Now we may write the Feynman amplitude for virtual Z ′-mediated ν`f → ν`f -scattering.
Then we obtain the NSI couplings derived from the SWSM as

εf,X(gz, η, tan β) = − v2

2(q2 −M2
Z′)

(eCL
Z′νν)(eC

X
Z′ff ) , (23)

which interpolates smoothly between the limits of heavy or light NSI couplings given
by

εf,X ≈ 1

2
(eCL

Z′νν)(eC
X
Z′ff )×


v2

M2
Z′
, when M2

Z′ � q2,

−v
2

q2
, when M2

Z′ � q2.

(24)
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These NSI couplings are flavour universal, hence we have suppressed the corresponding
lower indices. Also, flavour is conserved.

The mass of the Z ′ in Eq. (23) is fixed according to Eq. (A.14) of Ref [34], reproduced
in an equivalent form here:

M2
Z′(gz, η, tan β) =

g2zv
2 tan2 β

1 + 1
e
(2− η)gz sin θW cos θW

, (25)

with tan β = w/v being the the ratio of the two VEVs. In addition, the mixing angle
θZ also depends on the same parameters (see Eq. (A.13) of [34]),

tan 2θZ =

(
1− η

2

)
gz cos θW

gL

1
4
−
((

1− η
2

)2
+ tan2 β

)(
gz cos θW

gL

)2 . (26)

3.2 Numerical estimates

Solving the Eq. (25) for gz, we obtain for positive gz that

gz =
1

4ev2 tan2 β

×
(√

M2
Z′

(
16e2v2 tan2 β + (η − 2)2M2

Z′ sin2 (2θW )
)
− (η − 2)M2

Z′ sin (2θW )

)
' 3.94 · 10−6

tan β
× MZ′

MeV

(27)

where we substituted η = 0 and took into account only the leading order contribution.
We justify this by noting that in our investigation the dependence of η on other pa-
rameters is weak and its inclusion is manifested by multiplying the right hand side of
Eq. (27) with a multiplicative factor of O(1). Similarly,

θZ ≈ (2− η) cos θW
gz
gL
' 1.354(2− η)gz = gz ×O(1) . (28)

Assuming θZ � 1 (i.e. super-weak coupling), we can derive the following expressions
for NSI couplings:

εu ' 1

2

(
v

MZ′

)2(
g2z
12

(
−5η2 + 13η − 8

)
+ 0.2355gzθZ(1.766− η) + 0.0469θ2Z

)
, (29)

εd ' 1

2

(
v

MZ′

)2(
g2z
12

(
η2 − 5η + 4

)
− 0.0626gzθZ(1.881 + η)− 0.0885θ2Z

)
, (30)

εe ' 1

2

(
v

MZ′

)2(
g2z
4

(
3η2 − 7η + 4

)
+ 0.5335gzθZ(1.338− η)− 0.00536θ2Z

)
. (31)

Scanning over the possible η, we find

θZ ∈ [1.820, 2.708]gz and |εf | ∈ inf

(
vgz
MZ′

)2

, (32)
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with flavour dependent intervals

inu = [0.248, 0.402] , ind = [0.339, 0.651] , ine = [0.4275, 1.486] . (33)

Note that the NSI parameters are not independent of each other, which can be seen by
taking the ratio of up- and down-type quark NSI in SWSM,

R =
εu

εd
=
eCL

Z′uu + eCR
Z′uu

eCL
Z′dd + eCR

Z′dd

=
e (5− 3 cot2 θW ) sin θZ + (5η − 8)gz cot θW cos θZ
e (3 cot2 θW − 1) sin θZ − (η − 4)gz cot θW cos θZ

, (34)

from which we can express η as

η =

e
gz

tan θW tan θZ (3(R + 1) cot2 θW −R− 5) + 4R + 8

R + 5
. (35)

It turns out that the resulting valid benchmark points are confined to a very narrow
region (see the next section).

Finally we remark that assuming a universal bound εmax for the NSI couplings, we
may present a simple analytic bound in the (MZ′ , gz) plane, namely

gz <
√
εmax

(
MZ′

v

)
×O(1) . (36)

4 Results

Our results are two-fold. First we present constraints on the parameters of the SWSM
and also on the NSI parameters originating from the SWSM. Next we discuss our
predictions for those NSI couplings.

4.1 Free parameters and constraints

The NSI couplings depend on the gauge sector parameters gz, η and on tan β, which
we choose as free parameters in the model. For the neutrino masses we consider, we
may assume that the PMNS matrix is unitary, since nonunitary effects contributing to
the NSI are negligible [36].

We scanned the (log10 tan β, log10 |gz|, η) right rectangular prism by a uniformly
distributed random sampling in [−2, 2] × [−10, 0] × [0, 0.656] to determine the region
consistent with current bound on isotropic NSI couplings, derived in Sec. 2.3. Larger
values of tan β are possible in principle, but in such cases the new scalar sector decouples
almost completely, hence remains inaccessible. Also values tan β & 100 are disfavored
by the overproduction of dark matter if the SWSM is to explain the origin of dark matter
energy density observed [40]. We used the 2σ limits for the NSI couplings as given in
Table 3. We present the allowed values in histograms in Fig. 5 and in Table 5. We see
that the model prefers small values of MZ′ and tan β. The distribution of gz (hence
also θZ) is fairly flat within the allowed range gz ∈ 5 · [10−6, 10−4] (approximately), with
the full allowed range being somewhat larger. We note that the average value (or also
the median) of the asymmetric εu and εd distributions are positive and negative, since
they are skewed to the respective values.
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Figure 5: Histograms (containing 50 bins) of the scan (with total number of points
N = 106) corresponding to MZ′ , log10 θZ , log10 gz, tan β, εu, εd, εeL and εeR. Note that
the first three of the histograms have linear, while the last five ones have logarithmic
vertical axis.
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Parameter Scan range BP range (2σ) BP range (1σ)

η [0,0.656] [0,0.656] [0,0.656]

tan β [0.01,100] [0.02,100] [0.03,100]

log10 gz [−10,1] [−6.38,−2.31] [−6.38,−2.41]

MZ′/MeV [10,135] [10,135] [10,135]

log10 θZ – [−6.09,−1.94] [−6.09,−2.05]

εu [−17.25, 17.16] [−17.25, 17.16] [−10.00, 9.42]

εd [−15.31, 16.05] [−15.31, 16.05] [−8.606, 9.221]

εeL – [−1.504, 1.462] [−0.856, 0.808]

εeR – [−19.87, 19.84] [−10.91, 11.55]

Table 5: Scan and benchmark point ranges corresponding 2 and 1σ allowed regions of
COHERENT experiment.

4.2 Predictions

The NSI couplings εu and εd derived from the SWSM are anticorrelated, as can be seen
on Fig. 6 obtained using those in Eq. (23) with q2 ' (51 MeV)2 as the characteristic
energy transfer squared in the COHERENT experiment. Three distinct Z ′ mass regions
emerge. The region with red colour in the left plot is inconsistent SWSM freeze-out
dark matter scenario, which requires that the mass of the Z ′ boson falls into the (10–
135) MeV mass range [34]. Restricting our scan to this constrained region, shown on
the right plot, reveals additional predictions: if q .MZ′ ≤ mπ, then εu < 0 < εd but if
10 MeV ≤MZ′ . q, then εd < 0 < εu.

In the left panel of Fig. 7 we can see that the parameter η is almost a linear func-
tion of the ratio (εu/εd) as one expects based on the discussion after Eq. (34). This
information is visualized as a heat map in the right panel of Fig. 7, which shows that
the COHERENT limits are compatible with εu > 0 at the 2σ confidence level only for
η . 0.3 at the electroweak scale.

We present additional benchmark points (BPs) in Fig. 8 over the (gz, X) planes
(X = η, θZ and MZ′) as heat maps depending on the mass of the Z ′. All these plots are
relevant in the context of explaining dark matter within the SWSM. The BPs do not
exhibit any particular dependence on the parameter η representing the kinetic mixing.
The second plot visualizes precisely the approximate relation in Eq. (28). We show
the available parameter space in (tan β, gz) plane separately in Fig. 9 where we present
approximate analytic bounds superimposed (green dashes). In addition we added the
NA64 constraint obtained by searching for dark photons, identified here with the Z ′

(red solid curve) [40]. For tan β we find the lower bounds corresponding to NA64
slightly depending on the value of the coupling gz. The gauge coupling is constrained
to 2σ confidence interval between 4.17 ·10−6 and 4.90 ·10−3, where the lower and upper
bounds correspond to MZ′ > 10 MeV and MZ′ < mπ. We see that the mass of the Z ′

does not significantly affect this tan β bound, but the favoured values of θZ increase
with MZ′ (see Fig. 8).

While large NSI couplings are still allowed, according to Fig. 5 for the benchmark
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Figure 6: Left: Available parameter space in (εu, εd) plane corresponding to the scan
ranges in Table 5 except that for the mass of the Z ′, for which MZ′ ∈ [1, 109] keV.
We used the momentum transfer squared q2 corresponding to that in the COHERENT
experiment. The region between black lines is consistent with the 2σ bounds from
COHERENT. The data points are coloured according to the mass of the Z ′. In the lower
right sector two clearly different Z ′ mass regions can be identified: light (turquoise) and
heavy (red) areas. Right: benchmark points consistent with SWSM freeze-out dark
matter scenario.

Figure 7: Left: The η parameter as a function of εu/εd. Right: As in Fig. 6 right
panel, but the data points are coloured according to η, which corresponds to azimuthal
angle in (εu, εd) plane. Region between dotted lines corresponds to 1σ bounds from
COHERENT.

point distributions small couplings are favoured in εu, εd, εeL and εeR. The corresponding
BPs are shown in Fig. 10.

5 Conclusions and future prospects

We have considered an exciting possibility for NSI, which escapes the high-energy exper-
imental constraints and detection by neutrino oscillation experiments. Former experi-
ments are unable to probe the interactions with a light mediator, while flavour-universal
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Figure 8: Benchmark points in (gz, X) planes, with X = η, θZ and MZ′ . The colour
corresponds to MZ′ in MeV units.

Figure 9: Available parameter space in (tan β, gz) plane, where colour corresponds to
MZ′ . Lower and upper bounds for MZ′ are imposed by dark matter scenario of SWSM
[34]. We have superimposed NA64 constraint and analytical bounds from Eq. (27),
where lower bound is achieved with η = 0 and upper bound with η = 0.656.

couplings between the mediator and a neutrino are manifested as an irrelevant phase
factor in neutrino oscillation Hamiltonian. In the presence of sterile neutrinos the factor
does not disappear, but is suppressed [41].

The only viable avenue to probe flavour-universal light NSI couplings is then to
consider CEνNS. We derived the bounds for flavour-universal NSI both in light and
heavy mediator case, and found that large NSI couplings (ε ' 10) are allowed for the
light NSI scenario, while ε . 10−2 for the heavy case.

We then considered a specific model, the super-weak extension of the Standard
Model. We obtained the NSI couplings in the SWSM, which allowed us to investigate
the parameter space SWSM as allowed by the existing constraints of CEνNS on the NSI
parameters. We found that in this range the model prefers small values for the mass
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Figure 10: Benchmark points in (gz, log10(±εu)) and (gz, log10(±εd)) planes. Note that
different signs of the NSI parameters correspond to two regions of parameter space:
MZ′ < 51 MeV and MZ′ > 51 MeV. We have separated the cases corresponding to
positive and negative values of εu and εd. The colour corresponds to MZ′ .

of the new gauge boson and also for the ratio w/v of the VEVs. The kinetic mixing
parameter is weakly constrained, but we found that its possible values are compatible
with εu/εd ∈ [−1.17,−0.92]. If we added the constraint set by the NA64 experiment
on the mass of dark photon, we could constrain further the viable parameter space to
tan β & 2 and gz ∼ 10−6 − 10−3.

Our study demonstrated that even low-energy experiments have significant potential
on constraining new physics discovery. Both higher-intensity and higher-energy exper-
iments are needed for the progressive discovery of light and heavy NSI interactions.
While the limits from CEνNS are quite loose at present, their expected improvement
will constrain the parameter space of the SWSM severely.
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