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ABSTRACT

We review the recent results of large ensemble climate projections considering them to be the simulations of chaotic systems. The quick spread
of an initially localized ensemble in the first weeks after initialization is an appearance of the butterfly effect, illustrating the unpredictability of
the dynamics. We show that the growth rate of uncertainty (an analog of the Lyapunov exponent) can be determined right after initialization.
The next phase corresponds to a convergence of the no longer localized ensemble to the time-dependent climate attractor and requires a
much longer time. After convergence takes place, the ensemble faithfully represents the climate dynamics. Concerning a credible simulation,
the observed signal should then wander within the spread of the converged ensemble all the time, i.e., to behave just as any of the ensemble
members. As a manifestation of the chaotic-like climate dynamics, one can imagine that beyond the single, observed time-dependent climate,
a plethora of parallel climate realizations exists. Converged climate ensembles also define the probability distribution by which the physical
quantities of the different climate realizations occur. Large ensemble simulations were shown earlier to be credible in the sense formulated.
Here, in addition, an extended credibility condition is given, which requires the ensemble to be a converged ensemble, valid also for low-
dimensional models. Interestingly, to the best of our knowledge, no low-order physical or engineering systems subjected to time-dependent
forcings are known for which a comparison between simulation and experiment would be available. As illustrative examples, the CESM1-LE
climate model and a chaotic pendulum are taken.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0136719

We demonstrate that a plethora of parallel climates can be
thought to coexist with our observed reality. We also demon-
strate that a decadal characteristic time should be passed after
the initialization of a simulation before credible projections can
be made. The known chaotic nature of climate dynamics is illus-
trated by pointing out similarities between a complex state-of-
the-art climate model and a simple chaotic pendulum. A more
detailed analysis leads, however, to the conclusion that climate
modeling can be considered to be moved further ahead than
current dynamical system research.

I. INTRODUCTION

In terms of physics, the dynamics of weather and of the
fluid components of the climate system are turbulent (Vallis,

2017). They can be considered to be chaotic-like in the sense
that they are unpredictable and that they possess an extended
chaotic attractor. The dynamics of the entire climate can, there-
fore, be called chaotic-like, too. The widely used term in climate
science “internal variability” (see, e.g., Deser ef al., 2012; Collins
et al., 2013; Deser, 2020; Ghil and Lucarini, 2020; Bodai et al., 2021;
and Lee and Bddai, 2021) might be considered an analog of the
existence of a chaotic attractor representing a plethora of permitted
states. This observation might have played a role in the appear-
ance and currently increasing role of climate ensemble simulations
(Collins, 2007; Deser et al., 2020; Bach et al., 2021; and Maher
et al., 2021). Notable examples are single-model initial-condition
ensembles, SMILEs (Kay ef al., 2015; Kirchmeier-Young et al., 2017;
Mabher et al., 2019; Swart et al., 2019; Danabasoglu et al., 2020; and
Rodgers et al., 2021), and multi-model ensembles (Meehl ef al., 2009;
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Taylor et al., 2012; Eyring et al., 2016; and Lehner ef al., 2020). In our
argumentation, we shall rely on SMILEs.

Our aim here is to consider such climate ensembles as spe-
cial instances of chaos in a huge dimensional phase space. An
unusual feature from the point of view of traditional chaos the-
ory is that the system is subjected to parameter drift, as important
forcings, like, e.g., the greenhouse gas concentrations, are strongly
time-dependent. The emerging literature on chaos in such systems
clearly shows that on long term, only an ensemble-based statistical
description is meaningful [as suggested already in Romeiras ef al.
(1990)]. We also address the question if a condition for the con-
sistency of a large-scale climate model with the measured reality
can be given. Within the realm of single-trajectory simulations, the
question is ill-defined and no reliable answer exists. In the class of
SMILEs, however, a necessary condition can be and was given, for
global quantities at least (Deser ef al., 2020; Maher ef al., 2021; and
Suarez-Gutierrez et al., 2021).

A qualitative picture provided by the “theory of parallel cli-
mate realizations” constitutes a proper background regarding the
comparison of simulations and reality. This theory (Herein ef al.,
2017; and Tél et al., 2020) states that it is worth imagining many
replicas of the Earth System that evolve in parallel, but differently,
although they all are subjected to the same physical laws and to
the same time-dependent set of forcings and boundary conditions
(e.g., in terms of irradiance and greenhouse gas concentration). This
view in itself is a reformulation of the chaotic-like behavior of the
dynamics and is also a concept that helps make the term “internal
variability” more plausible. We note that the idea of parallel climates
appeared in nearly the same formulation as above already in 1978 in
a paper by Leith (1978), based on an analogy with classical statistical
mechanics.

More generally, the view that instead of a single history, all
the possible parallel dynamical evolutions should be considered is
well spread in other disciplines, such as nonequilibrium phenomena
(Presse et al., 2013) and evolutionary biology (Gould, 1989), and has
very recently appeared in chaos theory too (Janosi et al., 2021).

Il. EMERGENCE OF THE PARALLEL REALIZATIONS

We have access to the downloadable meteorological data at
NCAR Climate Data Gateway (https://www.earthsystemgrid.org/)
produced for the years 1920-2021, where all the 40 members gener-
ated by the Community Earth System Model Large Ensemble Project
(CESM1-LE) are freely available. CESM1-LE follows a mostly obser-
vational based forcing protocol, including greenhouse gas forcing
(Kay et al., 2015), as detailed in Sec. S1 of the supplementary mate-
rial. There is, thus, an opportunity for us to process and visualize
these data to check potential analogies with chaos research. As an
illustrative variable for this study, we have chosen to investigate the
global mean surface temperature.

First, we consider the very beginning of the simulation (the
first 30 days) to gain a picture about the reliability of individual
trajectory simulations. The initial perturbation in the global surface
temperature field (denoted here by TS) between neighboring ensem-
ble members is rather small: on the order of 107'* K, as stated in
Kay et al. (2015). [We note that this value is three orders of magni-
tudes smaller than the temperature by means of which the absolute
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zero K can be approached in experiments (Deppner ef al., 2021).]
As Fig. 1(a) illustrates, despite these invisible initial differences in
TS, the band of all simulations broadens.

This “plume diagram” shows that up to about the 15th day, all
curves run practically together and the spread remains below about
0.2K (after which, a strong broadening occurs). The prediction of
the time evolution in the given model and with the chosen initial
conditions can, thus, be considered reliable in this period, in the
sense that the tiny initial differences do not lead yet to strong devia-
tions. For any longer period, the time evolution of the system can
be considered unpredictable from the point of view of individual
trajectories. The initial spread of the ensemble members, i.e., the
unpredictability of the dynamics (Lorenz, 1963; and Ott, 1993), is
the origin of internal variability, a feature characterizing the attrac-
tor not yet approached here (see Sec. I1T). This observation illustrates
the term “sensitivity to initial conditions,” or the “butterfly effect,”
in the language of the popular culture (see, e.g., Gleick, 1987).

From the point of view of climate projections, the moral of
Fig. 1(a) is that none of the 40 members is better than any other.
This questions the relevance of any statement concerning the future
of the climate if this statement is based on a single realization of any
model.

Based on the plume diagram, an important characteristic num-
ber of unpredictability can be estimated. A small initial uncertainty
Ar, is expected to increase exponentially in time and become

Ar =" Ar, (1)

after time ¢. Exponent A can be called the growth rate of uncertainty.
It measures the rate of separation of initially nearby trajectories and
is similar to the Lyapunov exponent, but the latter is defined only on
an attractor (Ott, 1993) or on a chaotic saddle (Lai and T¢él, 2011).
This is not yet the case here since time is too short to judge even if
transient chaos has reached a chaotic set. This A is, thus, at most an
initial finite-time Lyapunov exponent.

Prescribing a threshold uncertainty Ary up to which the
ensemble is considered to remain together, i.e., up to which the
dynamics is predictable, defines the prediction time t,. Note that
this term (Ott, 1993; and T¢l and Gruiz, 2006) does not imply that
anything is correctly predicted for t < t,. From (1), we get

t, = 1ln Arth.
A Ar()

The choice of the threshold value and the prediction time is
somewhat subjective. It can be based on the appearance of a visi-
ble but yet small deviation of the ensemble. It is in this sense that
based on Fig. 1(a), we choose ATSy, =0.2K, belonging to t, =15
days, from which with ATS, =107 K, we get A ~2 1/day for the
estimated growth rate of uncertainty. This means that the e-folding
time, within which the differences between ensemble members grow
e times greater, is 1/ A & 1/2 day.

Before proceeding, it might be illuminating to consider a typ-
ical chaotic low-dimensional model, the pendulum with a period-
ically moving suspension point, also described in Sec. S1 of the
supplementary material. Figure 1(b) exhibits a plot analogous to that
of panel 1(a): 40 trajectories of angular velocity w with a slight differ-
ence in their initial value, of an arbitrarily chosen magnitude of 107!
1/s between neighboring members, are numerically followed in time.
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FIG. 1. The spreading of parallel simulations after initialization (a) for the daily global mean surface temperature in climate model CESM1-LE (initial uncertainty between
members: ATS = 10~ K) and (b) in the angular velocity of a chaotic pendulum (initial uncertainty: Aw = 10~" 1/s). The strong sensitivity to initial conditions is evident in
both cases. We note that a similar figure to Fig. 1(a) is available at the official portal of NCAR: https://www.cesm.ucar.edu/community-projects/lens/known-issues.

(Since the climate data are dimensional, we decided to simulate the
dimensional version of the pendulum equations.) During the first
second, or so, the trajectories all remain together, but after this time,
a considerable deviation occurs, and all the graphs become distinct.
Based on the visual impression provided by Fig. 1(b), the prediction
time of the pendulum can be chosen to be about 1.2s. A thresh-
old uncertainty, Awy, =6 s~ belongs to this instant. From (2), we
find the estimate A ~ 3.4 s™! for the growth rate of uncertainty of the
pendulum simulation, with an e-folding time of 1/A ~ 0.3 s.

This argumentation implies that individual trajectory simula-
tions are unreliable in both cases: if ensemble data are available,
for t > t,, individual trajectories provide a much more restricted
characterization than the full ensemble.

It should be emphasized that the physics is drastically differ-
ent: the climate model has millions of degrees of freedom, while the
pendulum is a two degree of freedom problem.

In more qualitative terms, the driven pendulum exhibits irreg-
ularity only in time, while spatiotemporal patterns are characteristic
features of climate, in harmony with its turbulent character (Janosi
and Vattay, 1992; and Vallis, 2017). Qualitatively speaking, the cli-
mate system is as complicated as the union of millions of coupled
unpredictable dissipative pendulums and also encodes spatial pat-
terns and irregularities. There is, thus, a huge difference between
a single driven pendulum and the full climate system; however,
they share a particular property of their dynamics, unpredictabil-
ity, which manifests itself in the sudden spreading of the plume
diagrams. This illustrates that not only low-dimensional chaos is
sensitive to initial conditions, but also much more complicated cases
such as turbulence or spatio-temporal systems, which cannot be
called chaotic in the traditional sense (see, e.g., Ott, 1993). This
is why we are using the term chaotic-like in relation to climate
dynamics.

A faithful comparison of the prediction times can only be
obtained if these times are given in relation to a characteristic time of
the systems. The result will, of course, depend on the forcing period.
From the many relevant climatic time scales, a natural choice in the
context of centennial climate projections can be 1 year, the period
of the annual cycle, while the suspension point of the pendulum
example is moving with a period of 0.665s. Instead of comparing
the prediction times (15 days~ 1/24 year and 1.2s) and the peri-
ods, a more physical comparison is obtained based on the growth
rate of uncertainties since these are expected to be independent of
the initial and threshold values. The reciprocal of A compared with
the forcing period leads to a ratio of 1/2 day/1 year = 1/730 ~ 0.0014
for the climate and 0.3 5/0.66 s = 0.45 for the pendulum. In this com-
parison, climate turns out to be a factor of 300 less predictable than
the pendulum.

11l. SPREAD GENERATED BY PARALLEL REALIZATIONS

Turning back to the climate and the different realizations of
Fig. 1(a), they obviously can inherit, in the full period investigated,
properties of the initial states, e.g., the value of the average global
temperature on the first day. It is obvious that one can see paral-
lel realizations from the very beginning of the simulation. These,
however, cannot be identified as parallel climate realizations since
climate is an objective entity, independent of how the simulation
is initiated. What we see in Fig. 1(a) is, thus, similar to ensemble
weather forecasts, although in terms of a global quantity.

The climate system is dissipative and is, thus, expected to pos-
sess an attractor. This is an object that all trajectories converge
to. Due to the dissipative nature of the dynamics, initial condi-
tions become only forgotten after a time f. needed to reach this
chaotic-like climate attractor as discussed in the literature [see, e.g.,
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FIG. 2. (a) The annual mean global surface temperature TS of all the 40 members of CESM1-LE. In the period 1920-1960, the individual simulations are colored, while
from 1960 on, when the ensemble is converged and simulations represent parallel climate realizations, a single uniform gray shading represents the spread up to 2021. The
instantaneous ensemble average is plotted as a black curve, while the range set by the standard deviation of the ensemble corresponds to the distance between the dotted
lines. The Met Office Hadley Centre’s observation dataset HadCRUTS is superimposed in blue in the full time window. (b) We also generated the probability distribution,
shown here, for the TS values provided by the converged ensemble of CESM1-LE. For more details see Sec. S3 of the supplementary material.

Branstator and Teng, 2010; Herein et al., 2016; Drétos et al., 2017;
Haszpra et al., 2020; and Drotos and Bodai, 2022 for a review]. Sim-
ulations do indicate that only one attractor exists. Here, we add that
the convergence time f. is by definition different from the predic-
tion time ¢, discussed above. Both are, of course, model-dependent.
After time t., the ensemble traces out the attractor that changes with
time, representing climate change. In the literature, special terms
are introduced for such time-dependent attracting objects: snapshot
(Romeiras ef al., 1990) or pullback (Ghil ef al., 2008) attractors. We
shall call an ensemble converged, if it has already approached the
attractor, i.e., if it has forgotten the initial conditions. We show that
a method easily applicable in practice is that one initializes a sec-
ond ensemble earlier than the ensemble in question (or the second
one with considerable different data, initiated at the same time) and
looks for the time instant after which the two ensembles provide
practically the same statistics. This time instant is ¢ for the ensem-
ble in question. Since we have no access to the runs of CESM1-LE
with different initial conditions, this algorithm and further features
of the convergence are studied in a different model, in Planet Simu-
lator (Fraedrich ef al., 2005), in Secs. S1 and S2 of the supplementary
material. In the particular case of CESM1-LE, the convergence time
was estimated to be f. =40 years in Bodai et al. (2020).

Before proceeding, we mention that the convergence time to
the attractor of the pendulum is about . =10s: the width of the
band of trajectories becomes convincingly constant by this time,
as visible in Fig. 3 later. In terms of the forcing period of 0.66s
and 1 year, the convergence time of the pendulum and the cli-
mate proves to be on the order of 15 and 40 times this period,
respectively.

In Fig. 2(a), we plot the TS data of CESM1-LE in this spirit.
In the first 40 years, colored curves are used [these are the con-
tinuations of those in Fig. 1(a)], although on an annual basis. To
express that the regime of reliable climate data (where the ensem-
ble is converged, in other words, the regime where the simulation
can be believed to represent parallel climate realizations) starts at
about 1960 and after this time, a uniform shading is used. In order
to indicate that convergence takes place gradually, we also mark an
overlap period of about a decade, where individual realizations are
yet visible, but a gray shading is also applied. Gray is not only a new
coloring but also an expression that none of the colored curves is
better than the other. It is only the ensemble of parallel climate real-
izations what bears a meaning. The TS axis is divided into small bins
of an approximate size of 0.05 K. If a realization happens to yield a
value in such a bin, a small rectangle of this height and of a width
corresponding to approximately one year is shaded gray, irrespec-
tive of the number of realizations falling into this bin. The centers of
rectangles are associated with the beginning of each year. In a given
year after 1960, the spread of the gray region is the range of the TS
values provided by the ensemble of parallel climate realizations. The
visualization indicates a trend of a monotonous increase, a climate
change, after about 1970.

The ensemble mean is plotted as a black line. Since this is a
climate characteristic, we plot it only in the regime of parallel cli-
mate realizations. It corresponds to the typical TS value within the
ensemble.

In principle, the size of the gray region can depend on time. It is
worth emphasizing that here, this width remains practically constant
all the time, approximately 0.75 K. Similarly, the distance between
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the dotted lines, i.e., the twice of the standard deviation value, is
also practically the same, approximately 0.3 K. These values char-
acterize the amount of internal variability or the size of the climate
attractor (in variable TS). Additional figures illustrating the behavior
of the converged ensemble, including the time-dependent distribu-
tion of the parallel climates [Fig. 2(b)], are given in Sec. S3 of the
supplementary material.

As a consequence of the existence of a multitude of permitted
states in chaos, the size of chaotic attractors is nonzero in any vari-
able. Therefore, we can say that the width of the gray region (or that
in between the dotted lines), cannot be reduced to zero by increasing
the size of the ensemble (see Sec. S2 of the supplementary mate-
rial). This width is an internal property of the dynamics and, for
large enough ensembles, does not depend on how many members
represent the ensemble. A study by Milinski et al. (2020) inves-
tigated how large a climate ensemble needs to be in order for a
proper characterization of internal variability. They found that a few
dozen members are sufficient in the case of global quantities at least,
which is also valid for CESM1-LE. The same conclusion is reached
in Pierini (2020) in an ensemble description of a low-dimensional
ocean model.

IV. COMPARISON WITH DATA, CONSISTENCY WITH
REALITY

It is essential to judge models’ performance via comparison
with actual, observed data. We shall call a model, along with the
forcings used, a credible model if the ensemble results for a given
variable are compatible with the single observed dataset of the same
quantity for a long period of time. For the use of a similar termi-
nology, see Deser (2020). As a sufficient condition for credibility,
we take global variables. These are the analogues of the few vari-
ables present in low-dimensional chaotic systems. An extension for
regional behaviors can and should be, of course, a step for the future
(see, e.g., Oldenborgh et al., 2013; Deser, 2020; and McKinnon and
Deser, 2021).

For judging the credibility of the CESM1-LE model with global
variable TS investigated up to now, we use a widely accepted his-
torical dataset, HadCRUTS5, for the global annual mean surface
temperature. The observed data are also plotted in Fig. 2(a) as a
blue continuous line, superimposed on the CESM1-LE realizations.
[We note that a similar figure (Fig. 1) can be found in Deser ef al.
(2020b), where another temperature record (Berkeley Earth) and
CESM1-LE are compared, not showing, however, the importance of
convergence and the instantaneous ensemble-based standard devi-
ation.] It is satisfying to see that in the range where CESM1-LE is
converged and can be considered to represent parallel climate real-
izations (from 1960 onward), the blue curve happens to lie entirely
inside the gray range spanned by the ensemble.

The condition of credibility is studied in the recent climate lit-
erature (Marotzke and Forster, 2015; Suarez-Gutierrez et al., 2017;
Tokarska et al., 2020; Deser, 2020; and Suarez-Gutierrez et al., 2021).
The authors agree on that a necessary consistency condition for a
given climate model to be credible is that the observed, measured
time series lies within the range spanned by its large ensemble real-
izations over all times, so that it reaches the maxima or minima of
the model simulations occasionally (Suarez-Gutierrez ef al., 2021).

ARTICLE scitation.org/journalicha

We emphasize that we totally support the idea that a necessary
consistency condition is that the observed values should lie within
the ensemble in the sense mentioned above. At the same time, we
add the consistency condition holds only for a converged ensemble
since the lack of the convergence may lead to misleading results (see
below and Sec. S2 of the supplementary material).

Note that the blue line of measured data differs from the
ensemble mean (black). This is natural, as the former results from
the observation of our single reality, and a closer investigation
reveals that the blue line differs from any of the individual realiza-
tions. At the same time, we can say that the observed time series
should be similar to an individual realization in a credible model,
although it is impossible to say what this individual realization is.
One can imagine as if the observed time series appeared to cor-
respond to a random walk between shorter pieces of simulated
realizations.

These observations offer a possible answer to the question of
what and how one can learn about climates potentially coexisting
with the single observed one. As we see, these other “climates” are
only accessible via credible simulations, but none of the individ-
ual realizations should be taken seriously, rather the spread and
other statistical measures of the distribution given by the ensem-
ble. At the end of each year, one can learn what TS values and with
what probabilities occurred in the parallel realities forming the basis
of a probabilistic climate prediction. Figure 2(b) and S4(b) in the
supplementary material show the first determination of the time
evolution of instantaneous probability distributions for variable TS
gained from the CESMI-LE dataset.

Another determination of these parallel realities is offered by
the appearance of Observational Large Ensembles (McKinnon ef al.,
2017; McKinnon and Deser, 2018; and McKinnon and Deser, 2021),
using a climate model to define the typical behavior and apply sta-
tistical resampling to observed data in order to simulate internal
variability.

Let us finally concentrate on the first 20 years of the period
considered in Fig. 2. In this range, the measured blue curve lies
somewhat off the band traced out by the simulations. This difference
might be attributed to the simulations being as yet away from the
climate attractor, the ensemble being not yet converged: the numer-
ical ensemble appears to approach the measured TS time series from
above to finally cover it.

V. COMPARISON WITH EXPERIMENTS IN
LOW-DIMENSIONAL CHAOTIC SYSTEMS

Here, we discuss briefly the degree and type of agreement
between measurements and simulations in chaotic systems. In tra-
ditional chaos without parameter drift, attractors are generated with
a single long trajectory (Ott, 1993). This is known then to coincide
with the result following from an ensemble (Eckmann and Ruelle,
1985). Observed chaotic signals of simple systems never coincide
with their single-trajectory numerical simulations, as a consequence
of unpredictability (Baker and Gollub, 2012). This is in analogy with
what we see in Fig. 2(a). In traditional chaos, however, one typi-
cally checks if the measured time series is consistent with the shape
of the numerically generated chaotic attractor. The attractor is, of
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course, generated after initial transients die out, that is after conver-
gence to the attractor took place. Correspondingly, the initial part
of the measured signal is discarded. There are a number of cases
that demonstrate [cf., e.g., Fig. 6.3 in Baker and Gollub (2012) for
a chaotic pendulum, Figs. 9(a) and 9(f) in Madan and Wu (1993)
for Chua’s circuit, and Fig. 9 in Ottino ef al. (1995) for an advec-
tion problem] that the measured signal, sampled properly, traces out
practically the same pattern as the numerically generated one. It is
worth knowing, however, that despite efforts to carry out measure-
ments as precisely as possible, the agreement between simulations
(which are unable to describe all fine details) and experiments turns
out in some other cases to be only quantitative as, e.g., in Yagasaki
(1995), Masoller et al. (1998), and Jahanshai et al. (2021).

The investigation of non-traditional chaos in problems with
parameter drift is, unfortunately, not yet in focus, and consequently,
experiments are not yet well spread in this context. Most available
examples consider the limit of very slow drift (Chancellor et al.,
1996; Chatterjee et al., 2002; and Amon and Lefrance, 2004). An
analogy with climate change would require that the change is not
adiabatically slow. The only example we are aware of with a fast
rate is a paper by Vincze ef al. (2017), which reports a hydrody-
namical problem in rotating tank experiments, mimicking climate
change, in a scenario of decreasing horizontal temperature contrast.
Unfortunately, no simulation was performed. (In a drift-free version
of the rotating tank experiment, however, five different advanced
simulations were compared with the measurements (Vincze et al.,
2015). The deviations among these and from the measured data were
found to be not negligible, not even in relatively simple quantities
like the speed of the Rossby wave modes.) We emphasize that to the
best of our knowledge, no experiments are known to be conducted
with low-dimensional drifting problems of non-negligible drift, the
credibility check of which would require an ensemble simulation.

In the lack of measurements, we illustrate what the ensemble
approach would look like with our pendulum example. Remember,
this is a system without any trend. Here, a single long trajec-
tory approach is equivalent with the ensemble approach. In order
to remain compatible with Fig. 2, we should, however, follow an
ensemble, not a standard tool in traditional chaos. We take here the
ensemble of Fig. 1(b) of the pendulum system and check how the
ensemble simulation and a measurement would be related. To this
end, one of the simulated trajectories is chosen to correspond to a
measured time series in the converged state: ¢ > t.. In Fig. 3, it is
clearly visible that the spread is constant in the period t > t. =105,
illustrating that a convergence to the attractor has occurred. There
is no drift in the system; hence, the band is horizontal and not tilted
as in Fig. 2. Nevertheless, the selected trajectory, plotted in blue,
stretches across the full ensemble band as time goes on.

VI. DISCUSSION

We have investigated initial-condition large ensemble climate
projections from a chaos theory point of view. In spite of the huge
number of degrees of freedom, surprising similarities are present
with low-order chaotic models. We illustrated that none of the indi-
vidual climate realizations can be considered more reliable than
any other; rather, the spread and the probability distribution of a
converged ensemble are meaningful only. CESM1-LE is checked

ARTICLE scitation.org/journalicha

60 4

40

o[1/s]

-40 4

ol —"FF+—F—FF——F
5 10 15 20 25 30 35 40

t[s]

FIG. 3. The spread of all the 40 members of the driven pendulum (gray shading)
from 10 to 40's for the angular velocity [preceded by an overlap period of about
ten driving periods, that is, 7 s, where all the individual trajectories are also shown
after the end of Fig. 1(b).]. The w axis is divided into small bins of an approximate
size of 0.25 1/s (and 0.07 s for the time axis). In the lack of physical measurement,
one ensemble member is considered to represent reality, plotted in blue. Note that
the blue curve stretches across the full band similar to Fig. 2.

to be consistent with the observed global annual mean surface
temperature data, but this only holds after a relevant convergence
time.

We mention here that a more complete sufficient condition
for a climate model being credible (globally at least) requires the
agreement between simulated and measured quantities in all rele-
vant global quantities (e.g., temperature at any given altitude, mean
sea level, ice cover), and the investigated large ensemble must be a
converged one again.

In addition we note, since there is a single real climate system
only, one cannot argue in favor of using different models for pre-
dicting different global quantities, as occurs in certain publications
(see, e.g., Suarez-Gutierrez ef al., 2021).

As pointed out in Tokarska et al. (2020), not all state-of-
the-art climate models fulfil the requirement of consistency with
reality, even in the single variable TS. Nevertheless, about 10 models
have been identified as credible (Papalexiou ef al., 2020), including
CESM1-LE (Suarez-Gutierrez et al., 2021).

While the evaluation of multi-model averages was widespread
over all existing, and therefore not necessarily credible, models ear-
lier (see, e.g., Stocker ef al., 2013), the use of a multi-model ensemble
restricted to credible models, as suggested in Suarez-Gutierrez ef al.
(2021), can be considered meaningful. Averaging over averages of
individual credible ensembles might shed light on uncertainties
arising from individually chosen parametrizations in the different
models.

Concerning nonlinear systems subjected to a parameter drift
of non-negligible rate, a credibility condition has also been formu-
lated here: the measured signal should stretch across the band of
a converged ensemble simulation. The credibility of a probabilistic
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prediction in such a model would imply the appearance of a figure
similar to Fig. 2 here, in the case of a monotonic parameter drift. The
problem of the large number of global quantities is, however, not
present in low-dimensional models with, of course, a low number of
variables (in our pendulum, ¢ and ).

As a summary, we can conclude that ensemble simulations
both in climate dynamics and in low-dimensional systems have
three phases when evolving from a localized initial distribution:
a first phase where the sensitivity to initial conditions manifests
itself in the form of plume diagrams, an intermediate phase where
the ensemble converges further toward the time-dependent attrac-
tor, and a last, converged phase where the ensemble has practically
reached the attractor. Statistically reliable statements can only be
obtained from such converged ensembles.

Finally, we emphasize that the lack of ensemble experiments on
low-dimensional systems subjected to parameter drift, together with
the existence of a number of climate ensemble simulations proven
to be credible with the observed mean surface temperature, can lead
to the conclusion: due to the nature of climate research, under the
condition that these models turn out to be credible in all relevant
global quantities, climate modeling can be considered to be moved
further than current dynamical system research. Within the latter,
the challenge is to conduct careful experiments in chaotic-like sys-
tems subjected to parameter drift, comparing the measured dataset
with the band produced by an ensemble simulation, and check their
consistency.

To answer the question, “Where are the coexisting parallel cli-
mates” in climate research, or, in the language of Janosi ef al. (2021),
“Where are the coexisting parallel dynamical histories” in nonlin-
ear science, we can say that they are present indeed in any credible
ensemble simulation, even if not in an individual sense, rather in the
form of the probabilities generated by the dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the models
used, the convergence and size dependence of the ensemble results,
and probabilistic aspects derived from CESM1-LE realizations.
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