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ABSTRACT

Based on the example of a paradigmatic low-dimensional Hamiltonian system subjected to different scenarios of parameter drifts of non-
negligible rates, we show that the dynamics of such systems can best be understood by following ensembles of initial conditions corresponding
to tori of the initial system. When such ensembles are followed, toruslike objects called snapshot tori are obtained, which change their location
and shape. In their center, one finds a time-dependent, snapshot elliptic orbit. After some time, many of the tori break up and spread over
large regions of the phase space; however, one may find some smaller tori, which remain as closed curves throughout the whole scenario. We
also show that the cause of torus breakup is the collision with a snapshot hyperbolic orbit and the surrounding chaotic sea, which forces the
ensemble to adopt chaotic properties. Within this chaotic sea, we demonstrate the existence of a snapshot horseshoe structure and a snapshot
saddle. An easily visualizable condition for torus breakup is found in relation to a specific snapshot stable manifold. The average distance
of nearby pairs of points initiated on an original torus at first hardly changes in time but crosses over into an exponential growth when the
snapshot torus breaks up. This new phase can be characterized by a novel type of a finite-time Lyapunov exponent, which depends both on
the torus and on the scenario followed. Tori not broken up are shown to be the analogs of coherent vortices in fluid flows of arbitrary time
dependence, and the condition for breakup can also be demonstrated by the so-called polar rotation angle method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139717

Recently, there has been increasing interest in complex systems
that are subjected to arbitrary time-dependent forcing or param-
eter changes. Within this class, cases with parameter drift are
mainly motivated by climate change, as atmospheric carbon diox-
ide concentration, the driving force of the greenhouse effect, has
been observed to increase monotonously for decades. Because
dissipative processes are important in the Earth’s system dynam-
ics, climate related studies focus on dissipative, non-Hamiltonian
cases. The subject of this paper, however, is the problem of
low-dimensional Hamiltonian systems with arbitrary time depen-
dence, which has attracted much less attention.

I. INTRODUCTION

A few examples where such systems are of interest should
be mentioned here. The question of adiabatic invariants is a
central problem of classical mechanics but, with the exception

of quasistatically slow cases,1–4 very little is known about what
happens in the case of general time dependence. The emerging
field of Lagrangian coherent structures aims at the understanding
of advection patterns in flows of arbitrary time dependence.5 In
incompressible cases, the dynamics of passive advection is volume
preserving and is thus, in some sense, analogous to Hamiltonian
dynamics; a direct application to mechanical problems is, however,
still sparse (see, e.g., Refs. 6 and 7). Another field to mention is
plasma physics, where, in lowest approximation, charged particles
follow the magnetic field lines. A chaotic layer at the border of
the plasma is long known to enhance the confinement of particles
to the core.8,9 The efforts to control plasma wall interactions con-
centrate on manipulating the time-dependent magnetic structure at
the plasma edge, the boundary between Kolmogorov-Arnold-Moser
(KAM) tori and extended chaos.10,11 An additional recent direction,
where time dependence is important in a Hamiltonian system, is that
related to ultracold atoms. Here, a control parameter is swept (and
sometimes changed back to its initial value), and one is interested
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in qualitative changes found by the end of the scenario.12,13 These
changes are expected to become visible in experiments, too.

The literature on dissipative cases (see, e.g., Ref. 14) concen-
trates on attractors, phase space objects, to which all trajectories
converge. For cases with arbitrary time-dependence, the concept
of a snapshot attractor, an attracting object that itself moves in
time, was introduced.15–20 Here, long-term investigation of single
trajectories is inappropriate because the system itself changes signif-
icantly over a long period of time. A consistent picture of general
time-dependent dynamics and its snapshot attractor can only be
obtained by launching trajectories from a large number of different
initial conditions, i.e., following an initially extended ensemble in
the phase space. This way, one obtains (after some transient time,
over which the initial conditions become forgotten) the snapshot
attractor as the image of the ensemble in a given but changing time
instant.21 This approach has successfully been applied to large-scale
climate models (for recent applications, see Refs. 22 and 23) and to
turbulence-related experiments.24

Although attractors do not exist in Hamiltonian systems (the
system does not forget its initial conditions), a lesson of dissipa-
tive cases is worth taking according to which single trajectories are
not representative; that is, we need to follow trajectory ensembles
to statistically characterize the dynamics. It is also worth adopting
the view that long-time observations are impossible; therefore, one
should concentrate on finite-time behavior.

We show that monitoring an extended ensemble covering ini-
tially a large part of the phase space would lead to an unstructured
view of the dynamics. A clear characterization is obtained, however,
when monitoring special subensembles, corresponding to KAM tori
of the initial phase space. As time goes on, these ensembles evolve,
their shapes become deformed, and they translate in the phase space.
As long as they can be considered to be closed curves not subjected
to strong stretching, we call them snapshot tori at any instant of
time. In their centers, one finds snapshot elliptic points (SEPs), mov-
ing points with locally elliptic nearby dynamics all the time. Being
exposed to parameter drift, at some point, most of the tori start to
break up; i.e., they cease to appear as closed curves by experiencing
intense stretching.

This transition is due to the fact that the snapshot torus col-
lides with a surrounding chaotic sea. This chaotic sea is also time-
dependent, and its extension might increase in time. Within the
chaotic sea, one typically finds an orbit with locally hyperbolic
nearby dynamics. We call such a point as a snapshot hyperbolic point
(SHP). When constructing its stable and unstable manifolds, they
are found to intersect at a large number of points at any time: a
snapshot horseshoe or a snapshot chaotic saddle25 is created.

We shall see that torus breakup occurs when a torus collides
with a stable manifold of an SHP belonging to a later time instant.
Examining the average distance of point pairs on the ensemble of an
initial torus, we find that it is changing very slowly until the snapshot
torus breaks up, but then its growth becomes exponential and the
subensemble starts exhibiting chaotic characteristics.

II. THE MODEL

We consider a paradigmatic low-dimensional Hamiltonian
example, the periodically forced Duffing oscillator,

ẍ = x − x3 + ε cos ωt, (1)

investigated, e.g., in Ref. 6. The time unit is set here by the linear
term, and ω represents a dimensionless frequency. We perform a
stroboscopic mapping by considering the instants t = TN, where
T = 2π/ω is the driving period and N is a positive integer. The
system possesses a typical divided phase space consisting of a mix-
ture of quasiperiodic tori (with elliptic fixed points at their centers)
and chaotic seas (containing hyperbolic fixed points). The overall
outlook of the phase portraits largely depends on the driving ampli-
tude ε; as its value rises, the chaotic area grows in size, as Fig. 1
illustrates.

We introduce a parameter drift by adding, for simplicity, a
linearly time-dependent term to the initial driving amplitude ε by
making the ramp ε → ε + αt, where α is the rate of the parameter
change. We thus obtain the differential equation,

ẍ = x − x3 + (ε + αt) cos ωt, t ≥ 0. (2)

FIG. 1. Phase portraits of the stroboscopically mapped Duffing oscillator (1) for different fixed driving amplitudes ε = 0.01, 0.02, 0.04, and 0.08 in panels (a), (b), (c), and (d),
respectively. Trajectories were launched from 41 initial conditions spreading symmetrically between −2 and +2 in x, with v = ẋ = 0, and were followed in (1) for N = 1000
iterations with ω = 1.
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This corresponds to the Hamiltonian H(p, x, t) = p2/2 − x2/2 +
x4/4 − x(ε + αt) cos ωt. The total energy is not constant due to the
forcing; instead, in the presence of this ramped scenario, it is mono-
tonically changing on average (increases for α > 0). We keep on
using the stroboscopic mapping taken at the instances t = Tn, where
n shall be called the iteration number. We define a scenario, starting
at time t = 0, as the evolution of the driving amplitude set by param-
eters ε and α, and the number of periods up to which dynamics (2)
is followed.

III. THE CHOICE OF ENSEMBLES

When starting with an extended ensemble, as typically done in
dissipative cases,15 one obtains an unstructured pattern, as demon-
strated in Fig. 2. Searching for the possible reasons of this lack of
structures, one might think that the basic components of the phase
space, tori and chaotic seas, can both be imagined to become time-
dependent, and the extended ensemble is too crude to distinguish
between these components.

Let us, therefore, select a more specific ensemble, concentrated
on one of the basic components of the phase space. Being one-
dimensional objects and simpler than chaotic seas, let us take the tori
of system (1), which can be called the tori of the initial phase space.
The process is as follows. We take a couple of points outside of the
chaotic seas of system (1) as initial conditions. Then, we determine
the tori belonging to these points using a large number, N, of iterates.
Next, we take these tori as initial ensembles and evolve them under
(2). As a first trial, let us follow 3 tori, lying in different regions of the
original phase space, for a short period of time. As Fig. 3 illustrates,
they all remain closed curves by the end of the scenario! We thus see
that tori might survive the parameter drift, and it is indeed useful to
work with subensembles representing them. These ensembles trace
out closed curves, which become stretched and twisted compared to
the initial one. Because they change in time, we call them snapshot
tori (closed curves of the instantaneous phase space) at any instant.

For how long a subensemble represents a slightly deformed
curve will depend on both the initial torus and the whole scenario.
To illustrate this, we take a set of small initial tori and follow the
corresponding ensembles for a longer period of time. Figure 4 illus-
trates that the outer torus becomes more deformed than the inner

FIG. 3. Three snapshot tori (colored curves) after 2 iterations. First, three initial
conditions x = −1.7,−0.4, and 1.55 while v = 0 were iterated N = 1000 times
under (1) with ε = 0.1, ω = 1 forming the light green curves. Then, the points
consisting of these tori were taken as initial conditions for (2) and iterated with
scenario ε = 0.1, α = 0.005 over n = 2 periods, which led to the snapshot tori
shown here. It is remarkable to see that the tori remained closed (but deformed)
curves.

ones, and after 7 periods, it develops sharp tongues [panel (c)] and
the extension of the set doubles. Up to this instant, all tori appear not
to have been subjected to strong stretching. One period later, how-
ever, the extension of the outer torus becomes about seven times
larger, and the splitting of the curve into a set of points indicates
strong stretching. (The splitting is of course the consequence of a
finite number of points, N, representing the subensemble, while with
a much larger number, a sudden increase in the distance between
neighboring points would indicate strong stretching.)

We thus see that after some time, tori start experiencing mas-
sive stretching. This process is called the breaking up of tori; in
Fig. 4(d), the outer torus breaks up at a critical iteration number
nc = 8 (a blow-up would show that the inner four ones are still intact
at this instant). The starting point of the breaking up depends clearly
on the full scenario (ε, α) and the initial torus.

FIG. 2. Evolution of an ensemble of 800 points under (2) followed for 100 iterations of the stroboscopic map in the scenario ε = 0.01,α = 0.001, with ω = 1. The iteration
numbers in panels (a)–(e) are n = 0, 25, 50, 75, and 100. The ensemble was initially forming the rectangle (a) −2 to +2 in x and −1 to +1 in v. We clearly see that no
structured pattern emerges in this extended ensemble. By the end of the scenario, we have scanned through the stationary cases of all the panels of Fig. 1.
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FIG. 4. Evolution of a set of tori captured in the instants n = 0, 4, 7, and 8. Five initial conditions, spread evenly between x = 0.25 and 0.3 while v = 0, were iterated
N = 5000 times under (1) with ε = 0.01, ω = 1 forming the tori found in picture (a). Then, the points consisting of these tori were taken as initial conditions and iterated
under (2) with the rate α = 0.001, which led to the sequence of snapshot tori shown here. One can observe the twisting and stretching of the tori in (b) and (c), where the
latter can be considered as the last instant before the outermost torus breaks up in (d) (note the different scales of the panels).

IV. SNAPSHOT ELLIPTIC POINTS

At the center of a set of tori of the stationary cases, there is an
elliptic fixed point. In our case, however, this point moves together
with the set of snapshot tori and is, therefore, called a snapshot ellip-
tic point (SEP). In certain regions, we can obtain analytic expressions
for the position of such points. When expanding the equation of
motion (2) about the stable locations x = ±1 of the undriven sys-
tem, for the deviation δ, one obtains a linear equation subjected to
external driving (ε + αt) cos ωt. This is an inhomogeneous linear
problem, which can be solved by standard methods (for details, see
Sec. S1 in the supplementary material).

The homogeneous part of the equation is exactly the same as
in the undriven problem and describes a harmonic oscillation with
eigenvalues λ± = ±i

√
2. The time-dependent particular solution

can, however, be considered as the locus δ∗(t) of the central oscil-
latory dynamics. Note that such an elliptic point is not just a point
with imaginary local eigenvalues, but a point that keeps this property
while moving for a long time. For simplicity, we give here the result
only for the case ω = 1, which is taken in all examples of the main
text. For the x, v coordinates of the SEPs, we obtain for t ≥ 0,

x∗
E(t) = ±1 + δ∗(t) = ±1 + (ε + αt) cos t + 2α sin t, (3)

and v∗
E = ẋ∗

E(t). Taken at integer multiples n of the period, we find

x∗
E,n = ±1 + ε + α2πn, v∗

E,n = 3α. (4)

On the stroboscopic map, these fixed points move uniformly in
the positive x direction, by keeping their velocity coordinates
unchanged. In continuous time, the fixed points move along a spiral-
like curve. A trajectory and its stroboscopic positions are shown
in Fig. S1 of the supplementary material, along with numerically
obtained snapshot tori about them.

V. SNAPSHOT HYPERBOLIC POINTS AND THEIR

MANIFOLDS

There should also be snapshot hyperbolic points (SHPs) in the
system. [Note that analogous objects have been considered in the
literature (see, e.g., Refs. 26–29), termed as distinguished hyperbolic
trajectories, hyperbolic cores, or moving hyperbolic points, but we
intend to keep the term snapshot here to emphasize that there is a
full set of snapshot objects in systems like ours.] One of the SHPs is
inherited from the unstable fixed point x = 0 of the undriven case.
Its behavior can be understood by considering the linear equation
obtained from (2) by neglecting the cubic term in it. This is again
an inhomogeneous linear equation (for details, see Sec. S2 in the
supplementary material). The homogeneous part is exactly the same
as in the undriven problem and describes a hyperbolic structure with
eigenvalues λ± = ±1 and eigenvectors pointing along the diagonals
at any time. The particular solution can be here, too, considered as
the locus x∗(t) of the hyperbolic dynamics. We note again that such
a hyperbolic point is more than just a point with positive and neg-
ative local eigenvalues, rather a point that keeps this property along
its trajectory over a long time. Its coordinates in the phase space are
given (for ω = 1 again) as

x∗
H(t) = −

1

2
(ε + αt) cos t +

α

2
sin t, v∗

H = ẋ∗
H(t). (5)

On the stroboscopic map, we find

x∗
H,n = −

ε

2
− απn, v∗

H,n = 0, (6)

a point that moves uniformly in the negative x direction, with a zero
velocity coordinate. In continuous time, the snapshot hyperbolic
point also moves along a spiral-like curve as Fig. 5(a) shows in gray.
Some stroboscopic locations are marked with crosses, indicating the
stable and unstable directions by small arrows.

Pieces of the unstable and stable manifolds can be obtained by
iterating small intervals taken along the diagonals of the phase space
crossing through x∗

H,0 forward and backward, respectively, up to n
periods. The results obtained from intervals of length dl = 10−3 after
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FIG. 5. (a) Time dependence of the analytically obtained SHP of (5) is shown in gray and the stroboscopic values of (6) as green dots for n = 0, . . . , 6 (ε = 0.01,α = 0.001).
(b) The pink (green) line represents the stable (unstable) manifold obtained by evolving short intervals about x∗

H,0 according to (2), plotted at n = −4(4) (ε = 0.01,

α = 0.001). (c) Stable manifold (pink) initiated at the hyperbolic point x∗
H,8, and shown at n = 4, and unstable manifold (green) initiated at x∗

H,0, and shown at n = 4 as

well (ε = 0.01,α = 0.0001). At this instant, a number of intersection points are observed signaling chaotic dynamics. A few surviving tori are also shown in blue on both
sides of the manifolds, with the analytically obtained SEPs of (4) for n = 4 (orange dots) in their middle.

n = 4 periods are shown in Fig. 5(b). On the scale of Fig. 5(a), these
manifold pieces would appear to be straight line segments, but on
the scale of the whole phase space, they develop folds and tendrils
and possess a number of intersection points. This is considered in
general to be a sign of chaos.14 We thus conclude that the snapshot
hyperbolic points sit in the middle of chaotic seas, and they are the
organizers of chaos in the system.

The intersection points found here do not belong to the same
time instant as the stable (unstable) manifolds are plotted at time
instants n = 4 (n = −4). Although the optical impression gained
from Fig. 5(b) is convincing, a real horseshoe structure should be
unfolded with more care. The intersection points should belong to
the same time instant, say, n. To this end, we should consider the
stable manifold initiated at n + n0 on a short interval along the sub-
diagonal about x∗

H,n+n0
with a possibly large n0 and subject it to the

backward iteration of length n0. Analogously, the unstable manifold
should be initiated at time n − n0 on a short interval along the diag-
onal about x∗

H,n−n0
and be subjected to the forward iteration of length

n0. By overlaying these manifolds, a snapshot horseshoe structure
shows up belonging to the time instant n. (The construction of snap-
shot horseshoes and manifolds of dissipative systems was described
in Refs. 25, 30, and 31.)

For illustrative purposes, in our Hamiltonian problem, we take
n = n0 = 4 and construct an approximant of the horseshoe for n =
4 as Fig. 5(c) illustrates. The character of the figure is not much dif-
ferent from that of Fig. 5(b), but the set of intersection points here
can be considered as an approximant of a chaotic saddle,25 known
to be the skeleton of chaos in any case. Thus, we can safely say that
there is a chaotic sea about the SHP investigated, i.e., close to the
origin of the phase space.

VI. A GEOMETRICAL CONDITION FOR TORUS

BREAKUP

In view of the observation that there is chaos, and hence strong
stretching about the snapshot hyperbolic point close to the origin

(x, v = 0), we can say that the breakup of a torus starts if a point of
it comes close to this point. To check if this occurs on the strobo-
scopic map at time nc, two curves should be compared. One is the
stable manifold of the SHP belonging to time instant nc obtained by
iterating a short segment backward exactly nc times. The other one
is a torus in the stationary system of (1) (corresponding to n = 0).
We might think that these two sets must not intersect, but this is
only true in autonomous systems. If an intersection occurs, then
one point of the torus is simultaneously on the stable manifold that
will transport points to the hyperbolic point by time nc. The condi-
tion for a torus to break up at time nc is thus that the initial torus
intersects the stable manifold of the SHP belonging to time instant
nc, obtained by iterating a short interval about it backward nc times.
Since one obtains finite-time manifolds this way, the shape of the
manifold depends somewhat on the length dl of the short segment
which the iteration starts with. We choose here dl to be comparable
with the size of the chaotic sea about the SHP, well approximated
by the width of the region foliated by the stable manifold about the
origin.

To illustrate this, Fig. 6(a) shows a set of initial tori (t = n = 0)
among which the red one almost crosses the pink manifold, while
in Fig. 6(b), the intersection does occur. Here, the pink curve is the
stable manifold of x∗

H,5 obtained by iterating a short segment about it
n = 5 times backward. Figures 6(c) and 6(d) show the shape of the
red torus after n = 4 and n = 5 iterations, respectively, of (2). The
breakup thus occurs at nc = 5 since points of the torus have reached
the vicinity of the origin where a chaotic sea is situated, illustrating
that the geometric condition predicts the breakup very well.

The properties found here are rather general. This is illustrated
in Sec. S3 of the supplementary material with another case, that of
the outermost torus of the set of tori considered in Fig. 6, which is of
course found to break up earlier than the red torus here.

It is worth mentioning that there is an extended literature
on coherent vortices or elliptic Lagrangian coherent structures in
flows of arbitrary time dependence; see, e.g., Refs. 5 and 32–36.
In two-dimensional incompressible flows, the passive advection
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FIG. 6. (a) The stable manifold (pink curve) obtained with dl = 0.1 of the SHP x∗
H,4 plotted at time zero along with the stationary tori generated from initial conditions x = 0.5

(red) and 0.6, . . . , 1 (blue), v = 0. (b) The same set of tori plotted with the stable manifold of x∗
H,5 viewed at n = 0. The insets show the (lack of) intersection between the

pink and the red curve in (a) and (b). The points where the two ensembles meet should end up near the SHP x
∗
H,5 when iterated forward 5 times. (c) The red snapshot torus

at n = 4 and (d) at n = 5. As we can see, the breakup of this torus occurs at nc = 5, which is exactly what the geometric condition predicts.

dynamics can be described by means of a time-dependent Hamil-
tonian (the stream function). Long-lived vortices of such cases cor-
respond to tori, which do not break up. The outermost torus out
of a set of concentric tori corresponds to the edge of a vortex liv-
ing up to n periods at least. Several criteria have been developed
to identify coherent fluid vortices (see, e.g., Ref. 5), out of which
the so-called polar rotation angle (PRA) method is particularly
well suited for an application to any low-dimensional Hamiltonian
system.

VII. A MATERIAL ROTATION BASED CONDITION FOR

TORUS BREAKUP: THE PRA METHOD

The polar rotation angle (PRA) method, developed by Faraz-
mand and Haller in Ref. 7, aims to characterize systems driven by
forcing of arbitrary time dependence in which polar rotation can
be described with one angle, the PRA, which is calculated using the
singular values and vectors of the flow gradient. With this method,
one is able to investigate the phase space structure at the end of a
time interval of interest [0, t]. The authors show that elliptic coher-
ent structures are characterized by closed smooth level curves of the
PRA field on the plane of initial conditions. Extrema of the PRA
field correspond to centers of coherent regions, SEPs in our termi-
nology. Because of this, we can identify a condition for the breakup
of tori in the PRA framework as well, with the following process. By
using the freely accessible LCStool MATLAB package37,38 to gener-
ate the PRA field, we iterate system (2) from 0 to t, and additionally,
we determine the level curves of this angle. Next, we display our ini-
tial torus together with the level curves. If our initial torus lies in
a region encircled by smooth level curves means that it would not
have been broken up until that instant. This means that if we simu-
late until t = 2πnc, we should see that for times n < nc, our initial
torus is among the coherent structures identified by the PRA, while
for n ≥ nc, the initial torus is partly or entirely surrounded by non-
smooth level lines. The result of this comparison can be seen in Sec.
S4 of the supplementary material and shows good agreement with
the results based on the geometric condition.

VIII. DYNAMICAL INSTABILITY

The dynamical instability of chaotic systems is typically char-
acterized by the average growth rate of distances between pairs of
points.14 One calculates the slope of the quantity ρ = ln r(t), where
r(t) is the distance between a pair of points after time t lying initially
very close to each other. The slope of this quantity averaged over
several pairs is the Lyapunov exponent of the system.14

When generalizing this quantity for a subensemble of a torus,
one evaluates the quantity,

ρ = 〈ln r(t)〉, (7)

where r(t) is the distance of a pair of points at t, which were close
to each other on the torus at t = 0 and the bracket denotes the aver-
age taken over this subensemble. We expect that there is hardly any
change in time before the snapshot torus breaks up. There is no sen-
sitive dependence on initial conditions (supporting the use of the
term torus for this object), which can thus be considered as a gen-
eralization of quasiperiodic motion in the sense of ensembles. After
the breakup, however, an exponential growth is expected to occur
expressing the fact that the ensemble is subjected to strong stretch-
ing by entering into a chaotic regime. The first curve of Fig. 7(a)
illustrates this for a torus for which the exponential growth starts
at n = 31. Panel (b) confirms that the time instant n = 30 is just
before breakup, while on panel (c), we can see that n = nc = 31 is
indeed a breakup instant. The slope of the exponential growth can
be considered as a new type of the finite-time Lyapunov exponent
(λ) characterizing the fate of the torus after breakup. The second
curve of Fig. 7(a) shows ρ(t) for another, smaller torus, which breaks
up much later, at nc = 60, with the Lyapunov exponent being also
different.

Having shown in Sec. VI that the breakup of the tori depends
on the whole investigated scenario, and together with the fact that
the broken-up torus exhibits chaotic characteristics (since it can be
described with a new type of the Lyapunov exponents), for each
broken-up torus, the whole process can thus be called a scenario-
induced transition to chaos.
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FIG. 7. (a) Quantity ρ(t) of (7) corresponding to two tori, followed for 100 iterations (ε = 0.01,α = 0.0001). Initially, the value does not change much, but at one point, the
growth becomes exponential, becoming linear on the logarithmic scale used here. The crossover point is where the breakup happens; for the first curve, it is at nc = 31, as
illustrated by panels (b) and (c). For the other curve, nc = 60. The slopes of the fitted linear curves give us the Lyapunov value λ = 0.52 ± 0.004 and λ = 0.58 ± 0.006.
The flat part at the end of the scenario indicates that by that time, pairs of points have reached their maximal distance and extend over the whole phase space.

IX. DISCUSSION AND SUMMARY

The plethora of phenomena related to Hamiltonian systems
subjected to parameter drift is rather broad. First, one can also follow
the fate of snapshot chaotic seas or, if they are plotted together with
sets of snapshot tori, a snapshot phase portrait. We mention here
briefly a few such examples. The phase space of the stationary prob-
lem (seen in Fig. 1) suggests that the importance of chaos decreases
with decreasing driving amplitudes, while the region filled with tori
expands. It is, therefore, surprising that in scenarios taken with neg-
ative rates, torus breakup also takes place, and the size of the chaotic
region in the end state is larger than in the stationary case belonging
to this driving amplitude (see Sec. S5 in the supplementary material).
Another interesting class of cases is provided by scenarios contain-
ing an increasing and decreasing ramp leading to full return. Section
S6 in the supplementary material shows that a hysteresis takes place,
and the end state deviates from the initial state.

In summary, the investigation of our paradigmatic low-
dimensional model illustrates that a divided phase space structure
also characterizes Hamiltonian systems driven by forces of arbitrary
time-dependence. This structure, however, becomes best visible in
a well chosen ensemble view, when subensembles localized on tori
are followed in time. The resulting snapshot tori might keep their
smooth closed curve structure up to some time. However, when
penetrating into a chaotic sea, they break up by becoming suddenly
strongly stretched. Their centers are marked by snapshot elliptic
points, and the key features inside chaotic seas are snapshot hyper-
bolic points. An exact expression for their instantaneous position
is unlikely to be found in general, but it is important to know that
they exist and keep their local stability structure over long stretches
of time with not necessarily constant eigenvalues, as in our sim-
ple case. The temporal movement of such hyperbolic points shows
that they are not periodic, and no periodic orbit exists. Therefore,
it is impossible to carry out periodic orbit expansion, a central tool
of traditional chaos theory.14,39 The topological complexity of chaos
can nevertheless be demonstrated by constructing a snapshot horse-
shoe in which the generalization of homoclinic orbits appears as
intersection points of the stable and unstable manifolds of a moving

snapshot hyperbolic point belonging to a given time instant (or
practically equivalently, a snapshot chaotic saddle). More generally
speaking, we have shown that in the presence of parameter drift, one
can construct the snapshot counterpart of any important concept
and structure of Hamiltonian dynamical systems theory.

SUPPLEMENTARY MATERIAL

See the supplementary material for analytical calculations of
SEPs and SHPs, an additional example for the validity of the geomet-
rical condition, the visualization of the PRA results and their relation
to torus breakup, and for two additional types of scenarios: one with
decreasing driving amplitude and one resulting in a hysteresis.
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