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Abstract
We study Rényi entropies for geometries with Lifshitz scaling and hyperscaling
violation. We calculate them for specific values of the Lifshitz parameter, and
analyze the dual spectrum of the ground state. In the large d − θ limit they show
that the ground state is unique in specific parameter ranges. We also calculate the
Rényi entropies perturbatively around n = 1, and derive constraints using the
Rényi entropy inequalities, which correspond to the thermodynamic stability of
the black holes.

Keywords: gauge–gravity correspondence, black holes, holography and
condensed matter physics

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past decades calculating entanglement entropy was extremely useful in quantum infor-
mation theory, condensed matter physics and quantum chemistry, while it also turned out to be
one of the most celebrated aspects of gauge/gravity dualities, which broadened its application
to numerous strongly coupled field theories.

While entanglement entropy (i.e. von Neumann entropy) is completely capable to mea-
sure entanglement between two subsystems of a pure state, its one parameter deformation, the
Rényi entropy [1, 2], carries much more information other than its entanglement character-
istics: knowing the Rényi entropy for all parameters determines the spectrum of the reduced
system. Furthermore, it is much easier to measure experimentally in condensed matter systems
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[3], and it can be used to distinguish between different thermodynamical states, which have the
same von Neumann entropy [4, 5].

Gravitational dual of Rényi entropy in strongly coupled field theories corresponds to intro-
duce conical singularity [6, 7] and it was well studied for simple intervals and different ther-
modynamical ensembles in AdS/CFT [8–19]. The Rényi entropy should obey four inequalities
by definition [20, 21], which correspond to positivity of thermal entropy and specific heat
of a black hole on the dual gravity side [9, 22]. These inequalities can give information on
less understood dualities, giving constraints on the parameter space of theories that could be
connected by holographic duality [23].

While the quantum structure of black holes is still not well understood, Rényi entropy could
be useful to extract information about the black hole microstates at least in the regime where
the holographic principle relates them to those of the field theory. Our particular interest is the
so called Lifshitz and hyperscaling violating black holes, which are dual to certain condensed
matter systems, and our study encompasses their gravitational Rényi entropy.

Certain non-relativistic critical systems in condensed matter theory show anisotropic scaling
properties between space and time (t,�x) → (λzt,λ�x), which is called the Lifshitz scaling, which
can be parametrized by the dynamical critical exponent z. The corresponding gravity theories
realizing this scaling property are given by Lifshitz spacetimes [24–26], which can be thought
of as a non-relativistic generalization of the AdS spacetime. One of the importance of this
anisotropy is that its specific heat scales at low temperature as cV ∼ Td/z, where d is the space
dimension of the boundary. Since Fermi liquids show linear dependence such that cV ∼ T ,
Lifshitz scaling theories are good candidate to describe Fermi liquids for z = d.

Theories violating the hyperscaling relations between critical exponents are a one-parameter
deformations of the Lifshitz scaling theories and they exhibit a specific heat cV ∼ T (d−θ)/z,
where the appearance of the additional hyperscaling violating parameter θ allows to describe
the characteristics of Fermi-liquids for relativistic theories and arbitrary dimensions by using
the specific choice θ = d − 1 [27–30]. Dual spacetimes, which has the corresponding asymp-
totic scaling property, could be solutions in both Einstein–Proca (see e.g. [31–33]) and
Einstein–Maxwell–dilaton theories [25, 27, 34–40], but the latter has the advantage that it
supports analytic black hole solutions for non-zero temperature. Various properties of these
solutions and ways to obtain them within supergravity and string theory embeddings were
studied in [37, 38, 41–53]. These black hole solutions were constructed for planar, spheri-
cal and hyperbolic horizon topologies with non-zero charges, and their thermodynamics was
extensively surveyed and studied in [54]. Phase transition only occur for spherical topolo-
gies with parameter 1 � z � 2. In grand canonical ensemble, when the electric potential is
kept fixed, the phase transition is completely analogous to the Hawking–Page phase transition
[55, 56], while in the fixed charge canonical ensemble, it mimics the characteristics of the van
der Waals liquid–gas phase transition [57, 58].

In Einstein–Maxwell–dilaton realization of hyperscaling violating spacetimes dilaton runs
logarithmically, which reflects the fact that these geometries modifies in the deep IR. For flat
electrically charged solutions the dilatonic scalar drives the system toward extreme weak cou-
pling in the deep IR, and α′ corrections become important. In the presence of magnetic charge
the dilaton runs toward strong coupling, and quantum corrections to the gauge kinetic coupling
and dilaton potential should be taken into account, which support the emergence of AdS2 in the
deep IR [59–62]. Stability constraint of spatially modulated fluctuations around the IR geom-
etry restricts the form of these quantum corrections [63]. Then toward the UV the geometry
flows through an intermediate region having hyperscaling violation and Lifshitz scaling, then
arrives at AdSd+2.
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Black brane geometries with finite temperature have a non-zero horizon, and it is expected
that only extremal solutions flow to AdS2 in the deep IR [38]. In this paper we study the geome-
tries in the region, where the quantum corrections or other contributions to the gauge kinetic
coupling or dilaton potential become relevant. Deeper understanding of their Rényi entropy
can give further insight on the dual spectrum.

After briefing the necessary background in section 2, we calculate Rényi entropies in
section 3 for hyperscaling violating black holes in grand canonical ensemble for some inte-
ger Lifshitz parameter z, and we analyze what insights it can provide on the spectrum of the
dual theory. By studying the inequalities we find its stability condition for spherical topology
agrees with the one in the case of Hawking–Page phase transition. We show that the inequal-
ities are not satisfied by geometries with spherical horizon and Lifshitz exponent 1 � z < 2
beyond a certain Rényi parameter value if the fixed electric potential is smaller than a critical
value. We also study Rényi entropy in large d − θ parameter, and discuss the characteristics of
the dual ground state in this limit. In section 4 we also calculate Rényi entropy perturbatively
around n = 1 (i.e. Bekenstein–Hawking entropy), and derive constraints on quantum correc-
tions using the Rényi entropy inequalities, which actually correspond to the thermodynamic
stability of the black holes.

2. Hyperscaling violating black holes

In this section we briefly survey the basics on hyperscaling violating and Lifshitz scaling black
hole solutions in Einstein–Maxwell–dilaton theory with three Maxwell gauge field. The elec-
tric solution and computations of its thermodynamicquantities are borrowed from [54]. We also
present its natural generalization to magnetic solution in four dimension, and give a remark on
the electric/magnetic duality between the two.

2.1. Electric solution

The action contains kinetic terms for the dilaton field φ and the three Maxwell fields AF, AH

and AK with field strengths F = dAF, H = dAH and K = dAK . They support the solution with
Lifshitz scaling (F), non-trivial topology (H) and non-zero charge (K) respectively. The gauge
kinetic couplings are given by functions X(φ), Y(φ) and Z(φ) and together with the dilaton
potential V(φ) they determine the action

SEMD = − 1
16πG

∫
dd+2x

√
−g

(
R − 1

2
(∂φ)2 + V(φ) − 1

4
X(φ)FμνFμν

− 1
4

Y(φ)HμνHμν − 1
4

Z(φ)KμνKμν

)
.

(2.1)

The equation of motions are

Rμν −
1
2

Rgμν =
1
2
∂μφ∂νφ+

1
2

gμν

(
V(φ) − 1

2
∂ρφ∂

ρφ

)

− 1
2

X(φ)

(
FμρF

ρ
ν +

1
4

gμνFρσFρσ

)

− 1
2

Y(φ)

(
HμρH

ρ
ν +

1
4

gμνHρσHρσ

)

− 1
2

Z(φ)

(
KμρKρ

ν +
1
4

gμνKρσKρσ

)
,

(2.2)
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Dμ∂
μφ+ ∂φV(φ) − 1

4
∂φX(φ)FμνFμν − 1

4
∂φY(φ)HμνHμν

− 1
4
∂φZ(φ)KμνKμν = 0, (2.3)

Dμ (X(φ)Fμν) = 0, Dμ (Y(φ)Hμν) = 0 and Dμ (Z(φ)Kμν) = 0. (2.4)

Here we focus on electric solutions, we come back to the magnetic case in d = 2 later. The
hyperscaling violating and Lifshitz scaling solution is given by the black hole metric

ds2 =

(
r
rF

)− 2θ
d
(
−
(r
�

)2z
f (r)dt2 +

�2

f (r)r2
dr2 + r2 dΩ2

k,d

)
, (2.5)

with blackening factor

f (r) = 1 − m
rd−θ+z

+
q2

r2(d−θ+z−1)
+ k

(d − 1)2

(d − θ + z − 2)2

�2

r2
. (2.6)

The black hole parameters introduced here are the mass parameter m and charge parameter q,
and � is the overall scale of the geometry. rF is the upper cut-off, but it does not play any further
role in this paper. The horizon part of the metric dΩ2

k,d is defined differently for planar (k = 0),
spherical (k = 1) and hyperbolical (k = −1) topologies, such that

dΩ2
0,d =

dx2
0

�2
+ · · ·+ dx2

d−1

�2
,

dΩ2
1,d = dx2

0 + sin2x0 dx2
1 + · · ·+ sin2x0 · · · sin2xd−2 dx2

d−1 ,

dΩ2
−1,d = dx2

0 + sinh2x0 dΩ2
1,d−1.

(2.7)

Although the same notion of horizon coordinates was used here for different topologies, they
do not range the same. For planar topology they are usual compact variables, while for spher-
ical and hyperbolical horizons they are the respective standard angles, and they both have a
regularized finite volume denoted by ωk,d :=

∫
dΩ2

k,d . The geometry is considered to be valid
only in an intermediate region between the IR (close to the horizon) and the UV (close to the
asymptotic boundary at r →∞, the cut-off scale is given by rF). We require that the black-
ening factor f(r) → 1 as r approaches the boundary, which is satisfied by using the constraint
d − θ + z > 0 for neutral solution, and d − θ + z − 1 > 0, if the charge parameter is finite.
The metric (2.5) in this limit has a scaling symmetry

t → λz t, Ω→ λΩ, r → λ−1r and ds → λθ/d ds. (2.8)

The electric field strengths are given in terms of functions EF(r), EH(r) and EK(r) with

F = EF(r)dt ∧ dr, H = EH(r)dt ∧ dr and K = EK(r)dt ∧ dr, (2.9)

and their dependence on the radial coordinate can be derived from the equation of motions,
such as

EF(r) = EF,0rd−θ+z−1, EH(r) = EH,0rd−θ+z−3 and

EK(r) = EK,0r−(d−θ+z−1). (2.10)
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The solution of the dilaton has the logarithmic form

φ = φ0 + γ log r with γ =
√

2(d − θ)(z − 1 − θ/d). (2.11)

The gauge kinetic functions and dilaton potential, which support the metric above, is a first
order exponential such that

X(φ) = X0 e2αXφ, Y(φ) = Y0 e2αYφ, Z(φ) = Z0 e2αZφ and

V(φ) = V0 eηφ. (2.12)

and the coefficients are given by

X0 =
2(z − 1)(d − θ + z)

�2zE2
F,0

r2θ/d
F e−2αXφ0 , αX = − (d − θ + θ/d)

γ
,

Y0 =
2k(d − 1)(d(z − 1) − θ)

(d − θ + z − 2)�2(z−1)E2
H,0

r2θ/d
F e −2αYφ0 , αY = − (d − 1)(d − θ)

dγ
,

Z0 =
2q2(d − θ)(d − θ + z − 2)

�2zE2
K,0

r2θ/d
F e−2αZφ0 , αZ =

z − 1 − θ/d
γ

,

V0 =
(d − θ + z − 1)(d − θ + z)

�2r2θ/d
F

e−ηφ0 , η =
2θ
dγ

.

(2.13)

2.2. Magnetic solution in d = 2 and electric/magnetic duality

The magnetic solution is only known in four dimensions. We take the magnetic field strengths
to be constants with respect to the radial coordinate, and we define them by

F = QFϕk(x0)dx0 ∧ dx1, H = QHϕk(x0)dx0 ∧ dx1 and

K = QKϕk(x0)dx0 ∧ dx1, (2.14)

where the function ϕk(x0) distinguishes the different topologies such that

ϕ(x0) =

⎧⎪⎪⎨
⎪⎪⎩

1, if k = 0,

�2 sin x0, if k = 1,

�2 sinh x0, if k = −1.

(2.15)

The magnetic solution is slightly differs from the electric. The metric, dilaton and dilaton poten-
tial are the same as those were given for the electric solution in d = 2 by (2.5), (2.6), (2.11),
(2.12) and (2.13), while the gauge kinetic functions describe an inverse coupling to the field
strengths as

X(φ) = X0 e−2αXφ, Y(φ) = Y0 e−2αYφ and Z(φ) = Z0 e−2αZφ. (2.16)

The coupling is inverse in the sense that a gauge field that was weekly coupled in the electric
case is now strongly coupled and vica versa. The coefficients are slightly different than the

5
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electric ones, and they are given by

X0 =
2(z − 1)(2 − θ + z)

�6Q2
F

rθF e2αXφ0 ,

Y0 =
2k(2(z − 1) − θ)

(z − θ)�4Q2
H

rθF e 2αYφ0 ,

Z0 =
2q2(2 − θ)(z − θ)

�6Q2
K

rθF e2αZφ0 ,

(2.17)

and the exponential constantsαX ,αY andαZ are the same as those previously defined by (2.13).
Electric/magnetic duality in d = 2. One can see that both the electric and magnetic field
strengths support the same geometry, but they are not dual to each other in general. Following
[64] the electric/magnetic duality F ↔ e2αφ �F with φ ↔ −φ is only true if the dilaton potential
V(φ) is a constant. If we denote the electric field strength and coupling by F(e) = EF(r)dt ∧ dr
and X(e)(φ), the magnetic ones by F(m) = QFdx ∧ dy and X(m)(φ), the duality can be formulated
precisely as

F(m) = e 2αXφ∗F(e), F(e) = − e −2αXφ∗F(m) and

X(m)(φ) = X(e)(−φ), (2.18)

and analogously for the other two gauge fields. The duality changes the corresponding gauge
term in the action by a sign such that

X(e)(φ) F(e)
μν F(e)μν = −X(m)(φ) F(m)

μν F(m)μν. (2.19)

The expressions for the field strengths (2.13) and (2.17) yield the correspondence

QF = −�z−3 e 2αXφ0 EF,0, QH = −�z−3 e 2αYφ0 EH,0 and

QF = −�z−3 e 2αZφ0EK,0 (2.20)

between magnetic and electric constants. If the dilaton potential is not constant, the change
between the electric and magnetic solutions defined in (2.18) can not be derived by using a
field redefinition φ ↔ −φ. The constant dilaton potential yields the vanishing of the hyper-
scaling violating coefficient θ, hence pure Lifshitz scaling geometries in four dimensions have
electric/magnetic duality.

Another possibility is that if V(φ) ≡ 0, which is satisfied for θ = z + 1 or θ = z + 2.
This would spoil the asymptotic scaling of the geometry, but can be consistent with a UV
completion, if the quantum corrections for V(φ) support AdS4 in the UV.

2.3. Null energy condition

The null energy condition is required by the duality in order to have a reasonable field theory
on the boundary. It is a constraint on the energy–momentum tensor, which says Tμνnμnν � 0
for arbitrary null-vector nμ. The energy–momentum tensor is given by the Einstein tensor
with Tμν = Rμν − 1

2 gμνR. By choosing two orthogonal null-vectors the condition gives two
inequalities

0 � (d − θ)(d(z − 1) − θ),

0 � r2

�2
(z − 1)(d − θ + z) + k

(d − 1)(d(z − 1) − θ)
(d − θ + z − 2)

+ q2 (d − θ)(d(z − 1) − θ)
�2r2(d−θ+z−2)

,
(2.21)
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which should hold for arbitrary radius.
Since we expect that the energy scale of the dual field theory ranges between the horizon,

which is located at the radius rh, and the UV cut-off, which we take to be at infinite radius here,
we require the null energy condition to be satisfied on this domain. We discuss two further
limits.
Finite horizon radius in the deep IR. By requiring that f(r) asymptotes to 1 gave the constraint
d − θ + z > 0. At large radius the second inequality yields z � 1, while it gives a more involved
expression for finite rh. In this case the null-energy conditions are summarized as

1 � z,

0 � (d − θ)(d(z − 1) − θ),

0 � r2
h

�2
(z − 1)(d − θ + z) + k

(d − 1)(d(z − 1) − θ)
(d − θ + z − 2)

+ q2 (d − θ)(d(z − 1) − θ)

�2r2(d−θ+z−2)
h

for k �= 0,

(2.22)

Horizon radius goes to zero in the deep IR. The limit when the second inequality is considered
to be hold between r → 0 and r →∞ was discussed in [54]. They assumed d − θ + z − 2 > 0
and d − θ > 0, then arrived at the null-energy conditions

z � 1, d(z − 1) − θ � 0 and k(d(z − 1) − θ) � 0. (2.23)

The third inequality gives the hyperscaling violating exponent a fix value θ = d(z − 1) for
hyperbolic horizons, while it is not relevant for the other two cases. This means the factor γ
goes to zero for hyperbolic topologies, and thus the fields need to be rescaled in order to have
a reasonable solution. On the level of the action the limit γ → 0 yields a zero kinetic term, a
constant gauge kinetic function Z(φ) and the vanishing of the gauge field H.

2.4. Thermodynamics

In the following we briefly describe the thermodynamics of the above introduced black hole
solutions. Here we only focus on the case when the electric potential is fixed on the bound-
ary, which is also called the grand canonical ensemble. The reader can find more detailed
information together with the description of the fixed charge ensemble (canonical ensemble)
in [54]. Since the magnetic potential does not appear in the thermodynamic first law, there
is no difference between the two ensembles in that case. We also mention for clarity that the
thermodynamic potentials for electric and magnetic solutions agree in the canonical ensemble.

We express the black hole temperature in d dimensions by using the horizon radius, which
is defined as the largest root of f(rh) = 0, giving

m = rd−θ+z
h

(
1 +

q2

r2(d−θ+z−1)
h

+ k
(d − 1)2

(d − θ + z − 2)2

�2

r2
h

)
. (2.24)

The temperature can be calculated by using the standard Euclidean trick, which gives

T =
| f ′(rh)|

4π

( rh

�

)z+1

=
rz

h

4π�z+1

(
(d − θ + z) − q2 (d − θ + z + 2)

r2(d−θ+z−1)
h

+ k
(d − 1)2

(d − θ + z − 2)
�2

r2
h

)
,

(2.25)
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where we assumed f ′(rh) � 0, otherwise a minus sign should appear in the expression above.
The thermal entropy is given by the Bekenstein–Hawking formula

S =
ωk,drθF

4G
rd−θ

h . (2.26)

The mass of the black hole, which appears in the first law, is computed by the ADM mass
formula [65, 66] on the asymptotic boundary after proper renormalization. The ADM mass on
a fixed r radial slice of a constant time surface is given by

MADM = − 1
8πG

∫
Sk,d

ddx
√−gtt√

grr
∂r
√
σ. (2.27)

where σ is the determinant of the induced metric on Sk,d that is a radial slice at r = R of a
constant time surface. The actual mass is calculated after the renormalization, which depends
on the ground state of the ensemble.

The field strengths F and H support the asymptotic scaling and topology of the internal
space, hence the corresponding charges need to be kept fixed, otherwise the boundary theory
would be ill-defined. Thus only the charge corresponding to K can be varied on the boundary
in grand canonical ensemble, which is

Q =
1

16πG

∫
Z(φ) �K =

ωk,d

16πG
eαZφ0

√
2Z0(d − θ)(d − θ + z − 2)q�−1rθ−θ/d

F . (2.28)

The electric gauge one-form AK is chosen that way it vanishes on the horizon, which is
satisfied by

AK =
EK,0

d − θ + z − 2

(
1

rd−θ+z−2
h

− 1
rd−θ+z−2

)
dt. (2.29)

Then the electric potential Φ is computed as the asymptotic value of the gauge field AK ,
which is

Φ =
EK,0

d − θ + z − 2
1

rd−θ+z−2
h

. (2.30)

Here we used the condition d − θ + z − 2 > 0 in order to have a well-defined electric potential
on the boundary.
Electric solution in grand canonical ensemble. The ground state is the extremal black hole
(i.e. vanishing temperature) with zero charge. For planar and spherical topologies (k = 0, 1)
this corresponds to vanishing horizon (rh = 0), but in the case of hyperbolic solution k = −1
the horizon is not zero, and it induces a negative mass parameter. We use the following notation
for both cases

rh,ground =

⎧⎪⎪⎨
⎪⎪⎩

0 for k = 0, 1,√
�2(d − 1)

(2 − z)(z + d(2 − z))
for k = −1,

mground =

⎧⎪⎨
⎪⎩

0 for k = 0, 1,

−
2�2r(d−1)(2−z)

h,ground

(2 − z)2(z + d(2 − z))
for k = −1

(2.31)
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The ADM mass is computed by using the background subtraction method as a renormalization
scheme. The background is the ground state heated up to a temperature T (0), which is subtracted
from the excited state (black hole with parameters m, q, rh and T), while both of them are
calculated with a given radial cutoff R. The temperatures T and T (0) are matched to each other in
order to have the same reach at R regarding the Euclidean time direction, giving the expression
for large R

1
T (0)

=
1
T

(
1 − m − mground

2Rd−θ+z

)
. (2.32)

Then the ADM mass (2.27) gives

M =
ωk,d

16πG
rθF(d − θ)

�z+1
(m − mground). (2.33)

Since the potential is kept fixed, the temperature as well as other thermodynamic quantities that
depend on the charge parameter q should be expressed in terms of electric potential Φ given in
(2.30). Then the temperature (2.25) reads as

T =
rz

h

4π�z+1

(
(d − θ + z) + (d − θ + z − 2)

(
Φ2

c − Φ2
) c2

r2
h

)
, (2.34)

where the constant c = (d − θ + z − 2)q/EK,0, and we used the notation

Φ2
c = k

(d − 1)2

(d − θ + z − 2)2

�2

c2
, (2.35)

which also denotes a critical value of the electric potential and it have a role in phase transition
for k = 1, which will become clear later. The charge (2.28) in terms of the electric potential is
the following

Q =
ωk,d

16πG
rθF
�z+1

2(d − θ)(d − θ + z − 2)c2Φrd−θ+z−2
h . (2.36)

The thermodynamical potential in this ensemble is the Gibbs potential

G = M − TS − ΦQ, (2.37)

where M is computed by the ADM mass (2.33), T and S are the black hole temperature and
entropy given in (2.25) and (2.26), while the potential Φ and charge Q are derived in (2.30)
and (2.28). Finally the Gibbs potential yields

G =
ωk,d

16πG
rθF
�z+1

[
rd−θ+z

h

(
−z + (2 − z)

(
Φ2

c − Φ2
) c2

r2
h

)
− (d − θ)mground

]
. (2.38)

The thermodynamic potential defined in this way agrees with the renormalized Euclidean on-
shell action of (2.1) with the corresponding boundary terms (see [54]) and divided by the
temperature.
Magnetic solution in canonical ensemble. The ground state corresponds to the extremal black
hole with mass parameter

mext = 2r2−θ+z
ext

(
1 + z − θ

z − θ
+

k
(z − θ)2

�2

r2
ext

)
, (2.39)

9
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where the extremal horizon satisfies f(rext) = f ′(rext) = 0. In order to calculate the thermody-
namic mass, the extremal background with temperature determined by

1
T (0)

=
1
T

(
1 − m − mext

2Rd−θ+z

)
(2.40)

at large R is subtracted from the ADM mass (2.27), and it gives

M =
ωk,d

16πG
rθF(2 − θ)

�z+1
(m − mext). (2.41)

The thermodynamic potential in canonical ensemble is the Helmholtz free energy defined by

F = M − TS. (2.42)

The temperature follows from (2.25) in d = 2, and S is given by the Bekenstein–Hawking
entropy in (2.26). Thus the free energy reduces to

F = − ωk,2

16πG
rθF
�z+1

1
T

(
z
(
r2−θ+z

h − r2−θ+z
ext

)
− k�2 (2 − z)

(z − θ)2

(
rz−θ

h − rz−θ
ext

)

− q2(2(1 − θ) + z)
(

r−(z−θ)
h − r−(z−θ)

ext

))

= − ωk,2

16πG
rθF
�z+1

1
T

(
zr2−θ+z

h − q2(2(1 − θ) + z)r−(z−θ)
h

− k�2 (z − 2)
(z − θ)2

rz−θ
h + (2 − θ)mext

)
.

(2.43)

We note here that the free energy in canonical ensemble agrees for electric and magnetic fluxes,
since both the thermodynamic variables and ground state are considered to be the same.

3. Calculation of Rényi entropy

In this sections we review the holographic calculation and inequalities of Rényi entropy mostly
based on [9], and calculate it for special values of the Lifshitz exponent. We also check the
inequalities for general Lifshitz and hyperscaling violating parameters and relate them to the
thermodynamic stability and phase transitions known in the literature (see e.g. [54]).

3.1. Holographic Rényi entropy

An arbitrary quantum state can be written as a thermal state

ρ =
e −Hmod/T

Tr e −Hmod/T
(3.1)

by introducing a modular Hamiltonian Hmod. Here we study states dual to black hole solutions
we described in the previous section. The different thermodynamical ensembles correspond to
different modular Hamiltonians such that

Hmod = H for canonical ensemble,

Hmod = H − ΦQ for grand canonical ensemble,
(3.2)

10
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where H and Q here are understood as the physical Hamiltonian and conserved charge oper-
ators in the dual theory, and Φ is the electric potential. The temperature of the thermal state
agrees with the Hawking temperature. The partition functions Tr e −Hmod/T give the correspond-
ing thermodynamic potentials by reducing to e−F/T or e−G/T respectively. The von Neumann
entropy of a state ρ is given by

S = −Tr ρ log ρ, (3.3)

and the Rényi entropy is its deformation by an extra parameter n, and it is defined as

Sn =
1

1 − n
log Tr ρn. (3.4)

Some specific values of n captures relevant information about the dual theory. In the n → 1
limit it reduces to the von Neumann entropy, which in the context of black holes should agree
with the Bekenstein–Hawking entropy. The n → 0 limit it gives the logarithm of the number
of non-vanishing eigenvalues or the rank of density operator in the case of a discrete spectrum,
which is expected to be divergent. The third limit, which could be relevant, is n →∞. Then
the Rényi entropy gives −logλ1, where λ1 is the largest eigenvalue of the density operator. It
also calculates the ground state energy E1 of the modular Hamiltonian by S∞ = (E1 − F)/T
or (E1 − G)/T depending on the thermodynamic ensemble. In general it can have multiple
degeneracies, which is specified by an integer number if the spectrum is discrete or by a spectral
density in the case of continuous spectrum. It is possible and also expected that the spectrum
has both discrete and continuous parts (see e.g. [9] or appendix A). After expanding the Rényi
entropy for discrete spectrum around n →∞, one arrives at

Sn = − log λ1 −
1
n

log(d(λ1)λ1) +O
(

1
n2

,
1
n

(
λ2

λ1

)n)
, (3.5)

where the degeneracy of λ1 is denoted by d(λ1). So one can see that the 1/n term in the
expansion is related to the degeneracy in a way that

log d(λ1) =
(
Sn + n2∂nSn

)∣∣
n=∞, (3.6)

if the expression we have for Sn is analytic. Another way to calculate the degeneracy of λ1

follows from the entropy of the ground state such that Sgr = log d(λ1). The expansion described
above works correspondingly for continuous spectrum.

The Rényi entropy of a reasonable quantum theory should be positive and satisfy the
following four inequalities

∂Sn

∂n
� 0,

∂

∂n

(
n − 1

n
Sn

)
� 0,

∂

∂n
((n − 1)Sn) � 0,

∂2

∂n2
((n − 1)Sn) � 0.

(3.7)

The second and third inequalities are coming from the positivity of entropy, while the first and
fourth hold as long as the system has a positive specific heat.

11
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One can calculate the Rényi entropy of field theories by introducing an n-sheeted branched
cover of the geometry, which circles around the original space n times and branches over the
entanglement surface. On the dual side this branched cover is computed by a regular bulk
geometry, which asymptotes to the branched cover on the boundary. To analytically continue
away from integer values of n, one introduces an orbifold geometry by factorizing the regu-
lar bulk manifold with the replica symmetry Zn, which cyclically permutes the bulk sheets.
This construction introduces a conical singularity with deficit angle 2π(1 − 1/n), which can
be continue away from integer numbers (see [7]). Then the Rényi entropy can be expressed as

Sn =
1

n − 1
(I(n) − nI(1)) , (3.8)

where I(n) in the classical limit is given by the renormalized on-shell Euclidean bulk action
of the regular covering geometry. Practically I(n) is computed by the redefinition of Euclidean
time period as τ ∼ τ + n/T and the corresponding horizon rh(n) resulting in a regular geom-
etry. This means in the present study that rh(n) := rh(T/n), if the horizon rh(T ) is understood
as a function of the temperature on a connected domain including both T and T/n.

By calculating the on-shell Euclidean bulk action results in the thermodynamic potential
of the corresponding ensemble divided by the temperature (see e.g. [54]). Hence the Rényi
entropy for canonical and grand canonical ensembles are given by

Sn =
n

n − 1
1
T

(
F(T/n) − F(T)

)
canonical ensemble,

Sn =
n

n − 1
1
T

(
G(T/n) − G(T)

)
grand canonical ensemble.

(3.9)

Following [9] one can rewrite these expressions using the thermodynamical formulas of
thermal entropy

S = −
(
∂F
∂T

)
Q

canonical ensemble,

S = −
(
∂G
∂T

)
Φ

grand canonical ensemble.

(3.10)

One arrives at

Sn =
n

n − 1
1
T

∫ T

T/n
S(T ′)dT ′, (3.11)

where the integration is understood as that the respective thermodynamical variable is kept
fixed. One can see that the Rényi entropy contains information about all of the thermal entropies
with temperature ranging between T and T/n. While the positivity of S(T/n) for all Rényi
parameter values between n and 1 ensures that Sn is positive as expected, conversely this is
not true in general. The condition Sn � 0 for a fixed value of T can be satisfied by a system
with its thermal entropy having negative values while its integrand is positive. This feature can
be resolved by the Rényi entropy inequalities (3.7). The second inequality precisely gives the
constraint S(T/n) � 0. The situation with the first and fourth inequality is somewhat similar.
The fourth one gives the constraint that the specific heat

CQ/Φ(T) = T

(
∂S
∂T

)
Q/Φ

(3.12)

12
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at T/n is positive for all n under consideration. It also results in the first inequality, but the
equivalent condition to the first one is the positivity of the integrand

∫ T
T/n (S(T ′) − S(T/n))dT ′,

which could enable negative specific heat for some n. The third inequality is satisfied by using
the first and the second ones. So if the Rényi entropy has the form (3.11), the inequalities and
its positivity at a given temperature can be rewritten as two conditions

S
(
T/n

)
� 0 and CQ/Φ

(
T/n

)
� 0, (3.13)

which should be satisfied for all n under consideration.
In practice we calculate (3.11) as

Sn =
n

n − 1
1
T

∫ rh(1)

rh(n)
S(rh)

∂T
∂rh

drh, (3.14)

which translates the conditions (3.13) into

S (rh(n)) � 0 and

[(
∂S
∂rh

)
Q/Φ

(
∂T
∂rh

)−1
]∣∣∣∣∣

rh(n)

� 0. (3.15)

3.2. Rényi entropy of electric solution in grand canonical ensemble

In the following we present our calculations on the Rényi entropy for hyperscaling violating
and Lifshitz scaling black hole geometries discussed in the previous section. We show that
Rényi entropy inequalities are not satisfied by geometries with spherical horizon and Lifshitz
exponent 1 � z < 2 beyond a certain Rényi parameter value if the fixed electric potential is
smaller than a critical value.

The Rényi entropy corresponding to the geometry discussed previously in section 2.1 can
be calculated by using the formulas either (3.9) or (3.14). To use the first formula one needs
the Gibbs potential computed in (2.38), while the second one can be derived from the black
hole temperature (2.34) and entropy (2.26). They both give the result

Sn =
n

n − 1
ωk,d

16πG
rθF

�θ−d+1

1
T

[
z
(
xd−θ+z − xd−θ+z

n

)

+
c2

�2
(2 − z)

(
Φ2

c − Φ2
) (

xd−θ+z−2
n − xd−θ+z−2

)]
, (3.16)

where we introduced the notation xn := rh(n)/� and x := x1 for simplicity. So the quantity xn

is the horizon solution to the n-sheeted bulk geometry with temperature T/n and normalized
by the length scale �. In general it is difficult to compute xn analytically, therefore we will
only study it qualitatively for arbitrary parameters, and quantitatively for specific parameter
choices.

One can see that the Rényi entropy is positive by rewriting the expression as an integral over
n and using the property

x′n
∂T
∂x

∣∣∣∣
xn

= −T/n2 � 0, (3.17)

where x′n = dxn/dn.
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The non-trivial constraint, which comes from the inequalities is the positivity of specific
heat. Since ∂S/∂rh � 0, it follows from (3.15) and (3.17) that

∂T
∂x

∣∣∣∣
xn

� 0 ⇔ x′n � 0, (3.18)

which means the temperature of the black hole increases with the horizon radius, and xn

decreases with the Rényi parameter.
By analyzing the possible horizon solutions of the equation

T
n
= T (xn), (3.19)

where the function T (x) is defined by the temperature as a function of horizon radius given in
(2.34), one can see that it has different number of roots xn with respect to the value of potential
Φ, horizon topology k and Lifshitz exponent z. We discuss them in four separate cases. In the
following we use the null-energy conditions given in (2.23), which assume that the horizon is
sufficiently small in the IR.
The case 1 � z < 2, and Φ2

c < Φ2. It includes solutions with flat and hyperbolic horizon
topologies (k = 0,−1) and spherical topology (k = 1) with electric potential Φ > Φc. The
derivative dT /dxn is always positive, which means all solutions are stable and T (xn) is strictly
increasing function. Its minimal value for finite T is given by

x∞ =
|c|
�

√
d − θ + z − 2

d − θ + z
(Φ2 − Φ2

c). (3.20)

Thus there is one and only one solution for all n > 0, so the Rényi entropy satisfies all the
inequalities within this parameter range. The horizon of the n-sheeted bulk geometry goes to
a finite value, so the Rényi entropy approaches a finite value as n increases.
The case 2 < z and Φ2

c < Φ2. The horizon topologies that satisfy the condition are the same
(k = 0,−1 and k = 1 with Φ > Φc). The temperature function T (xn) vanishes at the x∞ given
in (3.20). The derivative dT /dxn changes sign where T (xn) takes negative value, so all solu-
tions larger than x∞ are stable, thus there are exactly one allowed horizon xn for all n > 0. So
the Rény entropy in this parameter range is qualitatively identical to the previous one, it exists
and not restricted by the inequalities for all value of Rényi parameter, while goes to a finite
value for large n.
The case 1 � z < 2 and Φ2 < Φ2

c. The only possible horizon topology is the spherical k = 1,
while the electric potentialΦ is smaller than the critical value Φc. The function T (xn) is always
positive, and it has a minimal value at the point

xnmax =
|c|
�

√
(2 − z)

z
d − θ + z − 2

d − θ + z
(Φ2

c − Φ2), (3.21)

where its derivative changes sign. Roots xn < xnmax are not stable, as they give dT /dxn < 0,
hence they are not allowed by the Rényi entropy inequalities. The maximal value of Rényi
parameter corresponding to xnmax is

nmax = 2π�z+1T
2 − z

d − θ + z

(
(2 − z)

z
d − θ + z − 2

d − θ + z
c2(Φ2

c − Φ2)

)−z/2

, (3.22)

so the allowed value of the parameter ranges from 0 to nmax. For higher parameters the
inequalities are no longer satisfied.
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Figure 1. Rényi entropies are presented with parameter choices z = 1, T = 1/4π,
ωk,d = 4G and rF , �, c,Φ2

c = 1. The first column shows its dependence on the Rényi
parameter with fix values of dθ = d − θ and Φ. The upper left panel illustrates the case,
when there is a maximal value of the parameter n, which is represented as a gray dot.
In the second column the plots show the n → 1 and n →∞ limits vs dθ = d − θ. The
black dots on the upper right panel indicate maximal values for dθ. Higher values would
lead to non-real horizons. One can see if Φ2 > Φ2

c then both S1 and S∞ goes to zero.
The latter suggests that the largest eigenvalue λ1 of the density matrix goes toward one
at large dθ.

The case 2 < z and Φ2 < Φ2
c . Again the geometry has to be supported by spherical hori-

zon topology. The derivative dT /dxn is always positive, and T (xn) vanishes at zero horizon
x∞ = 0, so all values of Rényi parameter are allowed by the inequalities. The Rényi
entropy behaves qualitatively the same as the first two parameter cases, it goes to a finite
value, although this time the horizon of the n-sheeted bulk geometry approaches zero for
large n.

We have seen that geometries with spherical horizon topology and Lifshitz exponent
1 � z < 2 support qualitatively different holographic Rényi entropies than the ones on other
parameter ranges, if the fixed electric potential is smaller than a critical value. The inequal-
ities limit the Rényi parameter in the holographic calculation, which leads to a maximal
allowed value nmax. This is directly related to a thermodynamic instability of the geometry,
which occurs below a finite horizon and leads to a minimal value of the temperature (see
e.g. [54]). In our discussion the Rényi parameter have a similar role as the inverse temper-
ature in the context of thermodynamic stability. So the appearance of an upper bound of
Rényi parameter indicates an instability of the n-sheeted bulk geometry used in holographic
calculation.
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3.3. Calculation of Rényi entropy for specific values of the Lifshitz parameter

In this subsection we present our analytic computations of Rényi entropy for the first few inte-
ger values of the Lifshitz parameter. The results could be applied for example to study the back-
ground geometries of holographic superconducting fluctuations [67, 68] or other holographic
condensed matter systems.

In order to calculate the Rényi entropy, we need the roots of the algebraic equation (3.19),
which can be computed analytically for a few specific values of Lifshitz parameter z. It reduces
to second order equation for z = 1, 2, 4, third order for z = 3, 6 and forth order for z = 3/2, 8.
In the following we focus on the first four integer values z = 1, 2, 3, 4.
The case z = 1. Close to the asymptotic boundary this geometry has a relativistic scaling, and
it simplifies to the AdS geometry if the hyperscaling violating parameter θ is zero. This case is
the same as was studied in [15]. The root xn of the algebraic equation of the temperature (3.19)
for all values of Φ is given by

xn =
4π�T

n +

√(
4π�T

n

)2 − 4(d − θ + 1)(d − θ − 1)c2�−2(Φ2
c − Φ2)

2(d − θ + 1)
. (3.23)

If the expression under the square root is negative, the solution does not exist, which is only
possible if the horizon has spherical topology and Φ < Φc. It gives the maximal value for the
Rényi parameter

nmax =
2π�2T√

(d − θ + 1)(d − θ − 1)c2(Φ2
c − Φ2)

, (3.24)

which agrees with (3.22). This is just the third case we discussed in the previous subsection:
the n-sheeted bulk geometry is thermodynamically instable for n > nmax.

In figure 1 we illustrate how the Rényi entropy decreases with n at some specific val-
ues of electric potential and the shifted dimension dθ = d − θ by the hyperscaling violating
parameter. The plot shows that the large n limit S∞ decreases with Φ until it reaches the value
corresponding to the critical potentialΦc (for spherical topology). We also show the qualitative
behavior of S1 and S∞ with respect to dθ. The Bekenstein–Hawking entropy S1 is important as
it must be positive, and S∞ gives −logλ1, where λ1 is the largest eigenvalue of dual density
matrix ρ. In other words S∞T is the smallest eigenvalue or ground state of the dual modu-
lar Hamiltonian. The plot illustrates how the ground state energy of the modular Hamiltonian
approaches zero.
The case z = 2. Lifshitz scaling with z = 2 appears in specific condensed matter structures
such that magnetic materials and liquid crystals [24], and it was used to study superconducting
fluctuations in various context (see e.g. [69–73]).

The algebraic equation (3.19) is second order and the n-sheeted horizon xn has the solution

xn =

√
4π�T

n − (d − θ)c2�−2(Φ2
c − Φ2)

d − θ + 2
. (3.25)

It exists for all n if k = 0,−1 or k = 1 with Φ2 > Φ2
c , but yields the maximal value

nmax =
4π�3T

(d − θ)c2(Φ2
c − Φ2)

(3.26)
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Figure 2. Plot of Rényi entropies with Lifshitz parameter z = 2. The normalization of
the parameters are the same as the previous plots have. The upper left panel shows that
Rényi entropy can be negative if Φ2 < Φ2

c , but this is already excluded if one takes into
account the constraint SBH(T/n) � 0. On the upper right panel a minimal value of S1
appears for the plot with potential Φ = 0.75. The reason behind this is that there is no
positive temperature corresponding to the parameter choice. The lower right panel again
indicates that the largest eigenvalue λ1 goes to one.

for spherical topology if Φ2
c > Φ2. Then the qualitative behavior of Rényi entropy with this

solution agrees with the first and third parameter cases discussed in the previous subsection
depending on the value of the electric potential. The maximal Rényi parameter we calculated
can be also derived from (3.22) for z = 2. We illustrate the calculation with plots in figure 2. It
shows in some explicit cases how the Rényi entropy goes to a finite value for large n or fails to
be positive below the former upper bound nmax. The latter case is an interesting feature, which
we only found for z = 2, because the positivity of Rényi entropy is a more fundamental con-
straint than the one related to the thermodynamic stability. It originates from the second Rényi
inequality (3.7), which ensures the positivity of S(T/n) (see (3.13)) and thus the positivity of
Sn. In [7] they showed that the quantity n2∂n( n−1

n Sn) computes the area of a dual cosmic brane
with a conical deficit angle 2π n−1

n , so the second inequality expresses that a dual bulk cos-
mic brane geometry has a positive area. Hence our computation of Rényi entropy shows that
there are cases with z = 2 and spherical topologies when the dual cosmic brane picture can be
problematic.
The case z = 3. Lifshitz scaling with z = 3 was studied as geometric background of holo-
graphic superconductors [72] and also appeared in the context of null normalizable deformation
of AdS5 [43]. The equation (3.19) is a third order polynomial equation, and there is only one
real and positive solution xn for every n regardless of the electric potential. Thus the possible
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Figure 3. Plots of Rényi entropies with Lifshitz parameter z = 3. Different Φ and dθ

parameters were used to illustrate its behavior qualitatively. We used the same normal-
ization of other parameters as before. One can see that Rényi entropy exists for all Rényi
parameter.

values of the Rényi parameter ranges from zero to infinity, which coincides with that the dual
cosmic brane picture is expected to be valid for z > 2. Instead of giving an expression for the
root xn, we illustrate the Rényi entropy as a function of the parameters with some examples
in figure 3. Since z = 3 belongs to the second and fourth cases in the previous subsection, we
can conclude from the discussion there that x∞ goes to zero value for spherical topologies
with Φ < Φc and a finite value otherwise. Hence the Rényi entropy goes to a finite value if n
approaches infinity. The plots also illustrate how the Rényi entropies decreases with the electric
potential or the effective dimension dθ as well as for other values of z.
The case z = 4. One relevant root exists for all values of n, which is

xn =

√√√√√
(d − θ + 3)2c4�−4(Φ2

c − Φ2)2 + 16π�T
n (d − θ + 4) − (d − θ + 3)c2�−2(Φ2

c − Φ2)

2(d − θ + 4)
.

(3.27)

Similarly to the z = 3 case x∞ goes to zero value for spherical topologies and Φ < Φc, and
a finite value otherwise. Thus Rényi entropy exists for all values of the Rényi parameter n,
and there are no restrictions by the inequalities. We show some illustrative plots in figure 4.
One can see that similarly to lower value of z–s, the Rényi entropy decreases with the electric
potential and effective dimension.

3.4. Large dθ limit

We have seen that the spectrum of the cases studied above have an interesting feature in large
dθ = d − θ limit. If the Rényi entropy exists, it seems to approach to zero, which we study here
in more detail. We first choose the Newton constant such that GT

�dθ ωk,d
= O(1). There are two

possibilities for temperature: if we choose it to be finite with respect to dθ, then the solution of
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Figure 4. Rényi entropies with Lifshitz parameter z = 4 and different fixed values of
Φ and dθ. The normalization of other parameters are the same as before. The plots
shows that all Rényi entropy exists for parameters zero to infinity, hence all limits are
meaningful, and suggest that the largest eigenvalue is again goes to one.

the horizon radius for all Rényi parameter is the same in large dθ, which is3

x̄ =

√
c2(Φ2 − Φ2

c)
�2

(3.28)

for Φ2
c � Φ2, and zero if Φ2 < Φ2

c (k = 1). Then the Rényi entropy is zero, since the horizon
xn is independent of n. Also S∞ goes to zero, which is equals to (E1 − G)/T, where E1 is the
ground state energy of the modular Hamiltonian H − ΦQ. It follows that E1 = G in this limit.

We can also choose T to run with dθ linearly. In this case the Rényi entropy is not zero,
but goes to an n-dependent value. If n < 1, then G approaches − n

n−1
Gn
T at large dθ, while with

parameter n > 1, it goes to − n
n−1

G
T . Hence S∞ has the finite value −G/T, and it yields zero

ground state energy E1 = 0 for the modular Hamiltonian.
Another interesting quantity, which carries information about the spectrum is the Beken-

stein–Hawking entropy at zero temperature (see e.g. [9]). It gives the degeneracy of the largest
eigenvalue λ1 of the density matrix ρ by

lim
n→∞

S(T/n) = log d(λ1). (3.29)

3 The case, when the Rényi parameter is such small, that it is in the order of 1/dθ , is excluded in the present discussion.
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Figure 5. Plot of Bekenstein–Hawking entropies at zero temperature, with z = 1 on the
left and z = 2 on the right. They go toward zero if Φ <

√
2 with our parameter choice,

and blow up if
√

2 < Φ. This suggests that the ground state degeneracy of the modular
Hamiltonian approaches one below the bound (3.28), while blows up above it.

We show some examples for z = 1, 2 in figure 5 to illustrate this quantity. The entropy S(0) at
large dθ and potential Φ2

c � Φ2 goes to zero, if x̄ given in (3.28) is below one, and blows up if it
is above. For potential Φ2 < Φ2

c the ground state entropy S(0) always goes to zero, because the
horizon radius corresponding to T = 0 is zero. To summarize the two cases, the Rényi entropy
is zero, if Φ2 � Φ2

c + �2/c2. This argument suggests that the degeneracy of ground state of the
dual modular Hamiltonian goes to one or blows up depending on the electric potential. If it is
smaller than Φ2

c + �2/c2, the spectrum of the dual theory seems to be simplifying in the large
dθ limit, at least it suggests that the ground state is unique in the classical limit we studied.

The aspects of dθ limit we studied above can be interpreted by what happens to the back-
ground geometry. The gravitational potential terms in the blackening factor (2.6) smear out
at finite distance from the horizon, only the term corresponding to the non-trivial topologies
remains, that is

f (r) → 1 +
c2Φ2

c

r2
+O

((
rh/r

)dθ
)

, (3.30)

where we kept Φc as well as Φ at order one.
Now we separate our discussion between θ →−∞ and d →∞, which are both realiza-

tion of large dθ. When θ approaches negative infinity, we use the substitution of coordinates
ρ = (r/rF)−θ/d. Since rF has the role of an upper cutoff of the theory, we assume r < rF. Then
the metric (2.5) at finite distance from the horizon takes the form

ds2 = ρ2

(
−
(rF

�

)2z
K dt2 +

d2�2

θ2K
dρ2

ρ2
+ r2

F dΩ2
k,d

)
, K = 1 +

c2Φ2
c

r2
F

, (3.31)

which shows that the singularity is smeared out. In order to stay in the holographic regime we
need to keep the Newton constant G ∝ �dθωk,d/T small. Since we took c2Φ2

c to be finite, then
� = O(θ), which yields that we need to choose � < 1, if T = O(1), and � � 1, if T = O(dθ).
Then G goes to zero in the θ →−∞ limit.

If we realize large dθ with large dimension d, we encounter a similar problem to that
studied in [74–78] for mostly general relativity and AdS spacetime. The metric becomes
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asymptotically Lifshitz, that is

ds2 =
( r
�

)2z
f0(r)dt2 +

�2

r2 f0(r)
dr2 + r2 dΩ2

k,d , f0(r) = 1 +
c2Φ2

c

r2
. (3.32)

It loses its dependence on the hyperscaling violating parameter, and also the black hole mass
and charge parameters at distance in the order of (rh/r)dθ . Again we see how the metric sim-
plifies for large d. This time keeping c2Φ2 finite yields l = O(1). The volume of the horizon
ωk,d goes with d−d/2 for spherical and hyperbolical topologies, and Ld

Ω for planar topology,
where LΩ is defined as the typical length of the directions x0, · · · , xd−1. Then taking G small
in the large d limit gives no further constraints for spherical and hyperbolical topologies, while
it requires LΩ < 1 for planar topology.

We showed here how the gravitational effects of the black hole decrease outside the horizon.
This is due to the phenomenon known in the physics of large dimensional black holes, that is
the gravitational potential localizes close to the horizon and the dynamics of the black hole
resembles that of a membrane (see e.g. [76, 78]).

4. Rényi entropy and quantum corrections

In this section we study Rényi entropy of Lifshitz scaling spacetimes with quantum correc-
tions perturbatively around n = 1, and derive constraints based on the null-energy condition
and Rényi entropy inequalities, which can be used to constrain the characteristics of quantum
corrections.

Although Lifshitz scaling spacetimes in d = 2 exhibit the electric/magnetic duality
described in section 2.2, in the deep IR this duality is expected to break down due to the appear-
ance of corrections to the dilaton potential. Let us first consider the simple solution with zero
charge parameter q = 0 and flat horizon k = 0. The near horizon geometry of the electric solu-
tion is expected to receive α′-corrections, while in the case of magnetic solution, quantum
corrections become important. This can be seen if we model the quantum corrections as fur-
ther expansion of the gauge kinetic function and dilaton potential in powers of the coupling
g = eαXφ such that

X(φ) = X0 e −2αXφ + ξ1 + ξ2 e2αXφ + · · · (magnetic solution), (4.1)

and similarly for V(φ). Since φ approaches −∞ near the horizon and α � 0 provided by the
null-energy condition, one can see that these corrections become important for the magnetic
solution. Since the electric solution is dually coupled, it does not receive these quantum cor-
rections. The dilaton potential is constant in first non-zero order for both electric and magnetic
solution, but possible corrections are taken into account within V(φ).

The additional gauge field, which supports the magnetic solution with non-trivial topology
(k �= 0) is coupled in the same way as the one above, while the gauge field supporting the
non-zero charge parameter (q �= 0) is coupled dually, since αZ � 0. Hence one can consider
a mixed solution in the sense the first two gauge fields are magnetically charge and the third
one is electrically, thus each of them could receive quantum corrections through their gauge
kinetic functions.

4.1. Perturbative solution with quantum corrections

In the following derivation we consider arbitrary number of electric and magnetic gauge fields
with fluxes F(e)

i and F(m)
j , and general gauge kinetic functions X(e)

i (φ) and X(m)
j (φ). We define
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the functions

W (e)(φ, r) :=
∑

i

X(e)
i (φ)Ei(r)2 and W (m)(φ) :=

∑
j

X(m)
j (φ)Q2

j (4.2)

for simplicity, where Ei(r) := (F(e)
i )tr is the electric and Q j := (F(m)

j )xy is the magnetic field
strengths.

We look for the solution in the form

ds2 = L2

(
−r2z e 2A(r) f(r)dt2 +

dr2

r2 f (r)
+ r2 dΩ2

k,2

)
. (4.3)

The functions of interest are A(r), f(r) and φ(r), while L is a scale parameter corresponding
to the AdS radius for z = 1. For Lifshitz spacetime we have A(r) = z log r. The overall spatial
scale parameter � is chosen to one. We derive the equation of motions by eliminating the second
derivative of f(r), and arrive at

1.
4(rA′(r) − 1)

r2
= φ′2(r),

2. − 4L2r2
(
r2 f (r)

(
2 + rA′(r)

)
+ r3 f ′(r) − k

)
= −2L4r4V(φ) + r6 e−2A(r)W (e)(φ, r) + W (m)(φ),

3. 2L2r5
(
r f (r)φ′′(r) + r f ′(r)φ′(r) + f (r)φ′(r)(3 + rA′(r))

)
= −2L4r4∂φV(φ) − r6 e−2A(r)∂φW (e)(φ, r)

+ ∂φW (m)(φ).

(4.4)

We solve these differential equations perturbatively near the horizon at r = rh, where we
impose the boundary conditions

A(r) = Ah +O(r − rh), f (r) = O(r − rh) and

φ(r) = φh +O(r − rh). (4.5)

Perturbing around a Lifshitz solution, which could be done by using the boundary condition
A(r) = z log r (1 +O(r − rh)), would not yield an essentially different solution, since they
behave similarly near the horizon. The equations of motion do not give any restriction on Ah

as they only depend on the derivatives of A(r). We use the notation ϕ(r) =
∑

i ϕi(r − rh)i for
the correction terms of an arbitrary function ϕ(r). The first coefficients of the series expansion
are

f1 =
4kL2r2

h + 2L4r4
hV(φh) − r6

h e−2AhW (e)(φh, rh) − W (m)(φh)
4L2r5

h

,

φ1 = − 2
rh

2L4r4
h∂φV(φh) + r6

h e−2Ah∂φW (e)(φh, rh) − ∂φW (m)(φh)
4kL2r2

h + 2L4r4
hV(φh) − r6

h e−2AhW (e)(φh, rh) − W (m)(φh)
,

A1 =
1
rh

+
1

4rh

(
2L4r4

h∂φV(φh) + r6
h e−2Ah∂φW (e)(φh, rh) − ∂φW (m)(φh)

4kL2r2
h + 2L4r4

hV(φh) − r6
h e−2AhW (e)(φh, rh) − W (m)(φh)

)2

.

(4.6)
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The coefficient A1 shows the scaling behavior perturbatively. Since Lifshitz spacetime has
A(r) = z log rh + z/rh(r − rh) +O(1 − u)2, the coefficient A1rh corresponds to the Lifshitz
scaling z up to first order, and the quantity defined by z = 1 +Δz shows how far the system is
from the relativistic scaling z = 1, which is

Δz =
1
4

(
2L4r4

h∂φV(φh) + r6
h e−2Ah∂φW (e)(φh, rh) − ∂φW (m)(φh)

4kL2r2
h + 2L4r4

hV(φh) − r6
h e−2AhW (e)(φh, rh) − W (m)(φh)

)2

. (4.7)

One can see that this is zero for AdS spacetime due to vanishing of ∂φW (e), ∂φW (m) and ∂φV .
The null-energy condition with null vector

nμ =

(
1√

f (r) e A(r)
, r
√

f (r) sin ψ,
1
r

cos ψ, 0

)
(4.8)

results in

Gμνnμnν =

[
rh

2
(1 + 3rhA1) f1 + r2

h f2 +
k
r2

h

]
cos2 ψ +O(r − rh)cos2 ψ

+ 2 f1(rhA1 − 1)(r − rh) +O(r − rh)2 � 0,

(4.9)

which gives two conditions up to first order

(rhA1 − 1) f1 � 0 and (1 + 3rhA1) f1 + 2rh f2 +
2k
r3

h

� 0. (4.10)

The first inequality can be simplified further. The first condition is equivalent to f1 � 0 or
rhA1 = 1, which is given in terms of the horizon values as

4kL2r2
h + 2L4r4

hV(φh) − r6
h e−2AhW (e)(φh, rh) − W (m)(φh) � 0 or z = 1.

(4.11)

The latter condition means the relativistic scaling. The second inequality gives further con-
straint on the derivatives ∂φW (e)(φh, rh), ∂φW (m)(φh) and ∂φV(φh).

4.2. Rényi entropy around n = 1

Since the holographic Rényi entropy as well as the Bekenstein–Hawking entropy is determined
by the horizon geometry, theoretically it is enough to know the solution close to the horizon,
however it could be not easy to solve the problem algebraically. In the following we use the
perturbative solution derived above to calculate the Rényi entropy at first order around n = 1,
and we calculate stability constraint on the quantum corrections of gauge kinetic functions and
dilaton potential.

The Hawking temperature of the ansatz (4.3) is expressed as

T =
1

4π
e Ahrh f1 =

1
16πL2r4

h

e Ah
(
4kL2r2

h + 2L4r4
hV(φh)

− r6
h e−2AhW (e)(φh, rh) − W (m)(φh)

)
, (4.12)
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and the Bekenstein–Hawking entropy is

SBH =
ωk

4G
r2

h. (4.13)

Following (3.11) we calculate the Rényi entropy by

Sn =
n

n − 1
ωk

4G
1
T

∫ T

T/n
r2

h(T ′)dT ′. (4.14)

The zero order term of the integral
∫ T

T/n r2
h(T)dT is non-zero only if the Bekenstein–Hawking

entropy is divergent at a given temperature, which would lead to a divergence in the Rényi
entropy at n = 1, so we assume that this term is zero. Thus the series expansion at n = 1 up to
first order gives

Sn =
ωk

4G

(
r2

h − rhT
drh

dT
(n − 1) +O(n − 1)2

)
, (4.15)

which is positive, unless rhdT/drh is in the order of 1/(n − 1).
As an example we calculate the Rényi entropy in canonical ensemble perturbatively for the

exact Lifshitz scaling solution (θ = 0, d = 2) given in section 2. The scaling L2 replaces rθF
and � is chosen to be one, then the Rényi entropy up to first order is the same for electric and
magnetic solutions

Sn =
ωkr2

h

4G

(
1 +

q2z2 − z(2 + z)r2+2z
h − kr2z

h

q2z2(2 + z) + z2(2 + z)r2z+2
h + k(z − 2)r2z

h

(n − 1) +O(n − 1)2

)
. (4.16)

Calculating the Rényi inequalities (3.7) for (4.15) gives

0 �∂Sn

∂n
= −ωkTrh

4G
drh

dT
+O(n − 1),

0 � ∂

∂n

(
n − 1

n
Sn

)
=

ωk

4G
r2

h(T/n)
n2

,

0 � ∂

∂n
((n − 1)Sn) =

ωk

4G
r2

h +O(n − 1)

0 � ∂2

∂n2
((n − 1)Sn) = −ωkTrh

4G
drh

dT
+O(n − 1).

(4.17)

The second and third inequalities, which correspond to the positivity of SBH, are trivially sat-
isfied, while the other two corresponding to the thermodynamic stability are satisfied up to the
first non-zero order if and only if

drh

dT
� 0, (4.18)

which agrees with the stability condition (3.13) expanded around n = 1.
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If drh/dT is non-zero, the condition (4.18) can be obtained by differentiating (4.12), which
gives

(
drh

dT

)−1

=
e Ah

16πL2r5
h

[
−8kL2r2

h + 2L4r5
h

dV(φh)
drh

− 2r6
h e−2AhW (e)(φh, rh)

− r7
h e−2Ah

dW (e)(φh, rh)
drh

+ 4W (m)(φh) − rh
dW (m)(φh)

drh

+ rh
dAh

drh

(
4kL2r2

h + 2L4r4
hV(φh)

− r6
h e−2AhW (e)(φh, rh) − W (m)(φh)

) ]
.

(4.19)

Since the horizon values Ah and φh can both depend on rh, we use the expressions

dV(φh)
drh

= ∂φV(φh)φ1,
dW(φh)

drh
= ∂φW(φh)φ1,

dAh

dφh
= A1,

∂W(φh, rh)
∂rh

= 2

(
A1 −

3
rh

)
W(φh, rh) − 2φ1∂φW(φh, rh).

(4.20)

To derive the last one we used the expansion of the Maxwell equation

E′
i(rh) =

(
A1 −

3
rh

− ∂φXi(φh)
Xi(φh)

φ1

)
Ei(rh). (4.21)

Then the stability constraint (4.18) together with the first null-energy condition of (4.10) can
be rewritten in the final form

0 �
(
2L4r4

h∂φV(φh) + r6
h e−2Ah∂φW (e)(φh, rh) − ∂φW (m)(φh)

)2

4kL2r2
h + 2L4r4

hV(φh) − r6
h e−2AhW (e)(φh, rh) − W (m)(φh)

� −4kL2r2
h + 2L4r4

hV(φh) + 3r6
h e−2AhW (e)(φh, rh) + 3W (m)(φh).

(4.22)

The general formula above can give constraint on finite quantum corrections to the Lifshitz
and Hyperscaling violating solution studied in section 2. These corrections can considered as
extra terms in W (e)(φh, rh), W (m)(φh) and V(φh) as

W (e)(φh, rh) =
∑

i

X(e)
0,i e2α(e)

i φh Ei(rh)2 + W (e)
1 (φh, rh),

W (m)(φh) =
∑

j

X(m)
0, j e −2α(m)

i φhQ2
j + W (m)

1 (φh),

V(φh) = V0 eηφh + V1(φh).

(4.23)

The signs of α(e)
i and α(m)

j determine whether the IR dynamics is captured by quantum cor-

rection in the gauge kinetic function or not. Let us assume α(e)
i > 0, while α(m)

j < 0, so all of
them are expected to receive quantum corrections. If we take them into account as exponential
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expansions

W (e)
1 (φh, rh) =

∑
i

(
ξ(e)

1,i + ξ(e)
2,i e −2α(e)

i φh + · · ·
)

Ei(rh)2,

W (m)
1 (φh) =

∑
j

(
ξ(m)

1,i + ξ(m)
2, j e2α(m)

i φh + · · ·
)

Q2
j ,

V1(φh) = ρ1 + ρ2 e−ηφh + · · · ,

(4.24)

then the formula (4.22) constrains the finite correction coefficients ξ(e)
k,i , ξ(m)

k, j and ρk.

5. Conclusion and outlook

In this paper we studied holographic Rényi entropy of Lifshitz and hyperscaling violating
black hole solutions in Einstein–Maxwell–dilaton gravity. In section 3 we analyzed the Rényi
entropy inequalities for different values of Lifshitz parameter, horizon topology and electric
potential, which in some cases led to upper or lower bound for the parameters. We saw the
inequalities have a close connection to thermodynamic stability of the black hole, but they do
not tell us about the Hawking–Page phase transition for spherical horizon topologies. When the
Lifshitz parameter is 1 � z < 2 and the electric potential is smaller than Φc defined in (2.35),
the maximal value (3.22) of Rényi parameter is larger than the parameter corresponding to the
critical horizon value in Hawking–Page phase transition. Hence the effect of the phase transi-
tion can occur within the possible parameter values. Since this phenomena is not captured by
the holographic Rényi entropy we studied in this paper, it would be interesting to investigate
the dual Rényi entropy in this context.

We calculated Rényi entropy for specific values of the Lifshitz scaling parameter z, and
analyzed the dual ground state degeneracy and value by studying the n = 1 and n = ∞ limits
of Rényi entropy. A further study could compare our results with QFT calculations (see e.g.
[80, 81] for entanglement measures in Lifshitz scaling scalar field theories). An interesting
further direction would be a more detailed study of the dual spectrum by reconstructing it from
Rényi entropies. Although it may be a difficult problem to work out analytically, it could be
studied numerically (e.g. by Laplace transformation or the theory of symmetric polynomials
for discrete spectrum).

By analyzing the Rényi entropy we found that the dual spectrum simplifies in the limit
when dθ = d − θ approaches infinity. The degeneracy of the ground state goes to one if the
square of the electric potential Φ2 is smaller than Φ2

c + �2/c2. We also gave some remark on
the background geometry in the parameter limits, which can realize large dθ. We pointed out
an interesting phenomenon, which is known in the context of large dimensional black holes
in general relativity or AdS spacetime. They were studied in detail over the past few years
(see e.g. [74–78]), and it was found that in this limit the gravitational field of a black hole is
strongly localized near its horizon, and the black hole can be replaced by a membrane. As a
further direction, the large dθ limit could be studied more thoroughly in this context. Another
double scaling limit was suggested in [79], in which both θ and z approach infinity, with their
ratio held fixed. In this limit the entropy behaves nicely in the sense that it vanishes for ground
state. It would be interesting to combine these limits in further study.

In section 4 we solved the Einstein–Maxwell–dilaton equations of motions with general
gauge kinetic functions and dilaton potential perturbatively, which was motivated by the goal
of including quantum corrections. We calculated the Rényi entropy of Lifshitz scaling solutions
in canonical ensemble around n = 1, and derived constraints on the gauge kinetic functions and
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dilaton potentials using the Rényi entropy inequalities, which correspond to the thermodynamic
stability of the black hole. Our general result could be used to specify the range of quantum
corrections in more detail. Another possible direction would be to includeα′ corrections. In this
paper we studied the Rényi entropy perturbatively around n = 1 up to first order, and the two
non-zero terms corresponded to entropy and heat capacity respectively. It could be interesting
to study the higher order terms and their relation to thermodynamic quantities.
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Appendix A. An example for both discrete and continuous spectrum

We calculate the energy density of the dual modular Hamiltonian in the classical holographic
limit with parameters z = 1, θ = d − 1 and ωk,d = 4G, rF = � = 1 for simplicity. The Rényi
entropy does not depend on the electric potentials. Then the partition function with Rényi
parameter can be written as

Zn =

∫ ∞

0
dE ρ(E) e−nE/T , (A.1)

where ρ(E) is the energy density of eigenvalues E of the corresponding modular Hamiltonian,
and Z1 = e−G/T , where G is the thermodynamic potential. The energy density have non-zero
values from a minimal energy Emin. Then Zn can be expressed with the Rényi entropy as follows

Zn = e(1−n)Sn−nG/T = e−πT (n−1)(n+1)
n − nG

T . (A.2)

One can calculate the energy density ρ(E) as an inverse Laplace transformation, which gives

ρ(E) = Θ

(
E − G − πT2

T

)⎡⎣√π

2

I1

(√
π
(
E − G − πT2

))
√

E − G − πT2

+
1
T
δ

(
E − G − πT2

T

)⎤⎦ , (A.3)

where Θ(z) is the Heaviside function, I1(z) is the modified or hyperbolic Bessel function of
first kind and δ(z) is the Dirac delta. Then one can rewrite Zn as

Zn =

∫ ∞

0
dE ρ∗(E) e−n(E+G+πT2)/T with
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ρ∗(E) =

√
πI1

(
2
√
πE
)

√
E

+
1
T
δ

(
E
T

)
, (A.4)

which indicates a ground state with energy Egr = G + πT2, which could be expected by cal-
culating the limit S∞ = (Egr − G)/T. Its degeneracies are given by both discrete δ(E/T) and
continuous limE→0

√
πI1(2

√
πE)/

√
E = π spectral densities.
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Rényi entropies J. High Energy Phys. JHEP12(2013)059
[16] Chen B, Long J and Zhang J 2014 Holographic Rényi entropy for CFT with W symmetry J. High
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superconductors J. High Energy Phys. JHEP01(2015)059
[19] Pastras G and Manolopoulos D 2015 Holographic calculation of Rényi entropies and restrictions on
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