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Abstract

The gravitational waves recently observed by the LIGO collaboration is an ex-
perimental evidence that the weak field approximation of general relativity is a vi-
able, calculable scenario. As a non-renormalizable theory, gravity can be successfully
considered as an effective quantum field theory with reliable, but limited predictions.
Though the influence of gravity on gauge and other interactions of elementary particles
is still an open question. In this chapter we calculate the lowest order quantum gravity
contributions to the QED beta function in an effective field theory picture with a mo-
mentum cutoff. We use a recently proposed 4 dimensional improved momentum cutoff
that preserves gauge and Lorentz symmetries. We find that there is a non-vanishing
quadratic contribution to the photon 2-point function but after renormalization that
does not lead to the running of the original coupling. We comment on corrections to
the other gauge interactions and Yukawa couplings of heavy fermions. We argue that
gravity cannot turn gauge interactions asymptotically free.

1. Introduction

Recently, in the latest four-five years there were two outstanding discoveries in the area of
physics of fundamental interactions. The upgradedLIGO experiment observed [1] gravita-
tional waves in 2015 and published in 2016 and theLHC has announced the discovery of
the Higgs boson in Run I in 2012. The observation of the gravitational waves traveling with
the speed of light is a direct evidence that the weak field approximation of general relativ-
ity can be used reliably in high precision calculation. Furthermore the sourceof the event
GW150914 is found to be consistent with merging of two black hole with mass approxi-
mately 39 and 32 solar masses and the LIGO collaboration found no evidencefor violations
of general relativity in this strong field regime of gravity. Despite this success perturbatively
quantized general relativity is still considered to be a non-renormalizable theory due to its
dimensionful coupling constantκ with negative mass dimension (κ2 = 32πGN = 1/M2

P ).
This way the naively quantized Eintein theory cannot be considered as a fundamental the-
ory at the quantum level [2] as newer and newer counter terms have to beintroduced at
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each order of the perturbative calculation and the cutoff cannot be taken to infinity. How-
ever Donoghue argued that assuming there is some yet unknown, well defined theory of
quantum gravity that yields the observed general relativity as a low energy limit, then the
Einstein-Hilbert action can be used to calculate gravitational correction in theframework
of effective field theories (well) below the Planck massMP ≃ 1.2 × 1018 GeV[3, 4]. The
subject was reviewed in details by Burgess in [5].

The other important recent achievement was the discovery of the SM (Standard Model)
Higgs boson with a mass approximately 125 GeV by the ATLAS and CMS collaborations
[6, 7]. So far the properties of the 125 GeV scalar are in complete agreement with the
SM Higgs predictions, few sigma anomalies in the photon-photon and the lepton number
violating mu-tau final states (at CMS) have disappeared. This value of the Higgs mass
falls in a special region where not only several different decay channel are experimentally
tested, but it implies that the SM is perturbatively renormalizable up toMP . The complete
Standard Model might be valid up to the Planck scale [8, 9]. In this case we live close to the
stability region in the(mtop, MH) plane in a metastable world [10], where the tunneling
to the lower, real minimum is longer than the lifetime of our Universe. Considering the
SM or its extensions valid up to the Planck scale gravity can influence the SM observables
and running parameters at the loop-level. The gravitational corrections can be estimated in
an effective field theory framework and may be important as they may modify the running
of the various coupling, possibly alter the gauge coupling unification and theconclusions
concerning the stability of the Standard Model. In the seventies the first attempts using
dimensional regularization showed that only higher order operators getrenormalized at
one-loop order [11].

Theeffective field theorytreatment of gravity was recently used to study quantum cor-
rections to gauge and other theories. In the pioneering work, starting the new era, Robinson
and Wilczek argued that the gravity contribution to the Yang-Mills beta functionis quadrat-
ically divergent and negative, further the corrections point toward asymptotic freedom [12].
There were several controversial results about this claim in the literature. Pietrykowski
showed in [13] that in the Maxwell-Einstein theory the result is gauge dependent and
doubted the validity of the Robinson Wilczek result. Toms repeated the calculation in
the gauge choice independent background field method using dimensional regularization
and has found no quantum gravity contribution to the beta function [14]. Diagrammatic
calculation employing dimensional regularization and naive momentum cutoff [15] found
vanishing quadratic contribution. The authors showed that the logarithmic divergences
renormalize the dimension-6 operators in agreement with the early results of Deser et al.
[11]. Toms later applied proper time cutoff regularization and claimed that the quadratic
dependence on the energy remains in the QED one-loop effective action [16]. Analysis
using the background field method employing the gauge invariant Vilkovisky-DeWitt for-
malism [17, 18, 19] and special loop regularization that respects Ward identities both found
non-vanishing quadratic contributions to the beta function, but [17] with sign opposite to
[12, 16]. Nielsen showed that the quadratic divergences are generally still gauge dependent
in the Vilkovisky-DeWitt formalism [20]. In the asymptotic safety scenario [21, 22] Reuter
et al. has found going beyond naive perturbation theory that gravity contribution points
towards asymptotic freedom of the Yang-Mills theory [23], later Litim et al. showed that
gravity does not contribute to the running of the gauge coupling [24]. In ahigher derivative
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renormalizable theory of gravity the authors [25] showed that the gravity correction van-
ishes in any gauge theory. There are many various results (for more complete list see the
references in e.g. [18]), sometimes contradicting to each other and the physical reality of
quadratic corrections to the gauge coupling was questioned [26, 27, 28,29]. The situation
could be clarified using a straightforward cutoff calculation respecting thesymmetries of
the models and correctly interpreting the divergences appearing in the calculations.

Earlier the present authors developed a new improved momentum cutoff regularization
which by construction respects the gauge and Lorentz symmetries ofgauge theoriesat one
loop level [30]. In this chapter we discuss the application to the effective Maxwell-Einstein
and Einstein-Yang-Mills systems to estimate the regularized gravitational corrections to the
photon/gluon two and three point functions in the simplest possible model and later discuss
more involved theories.

The paper is organized as follows. In section 2. the effective gravity contribution to
quantum electrodynamics is calculated, in section 3. the renormalization is discussed. In
chapter 4 corrections to a Yang-Mills theory is presented. The paper is closed with conclu-
sions and an appendix summarizing the improved momentum cutoff method.

2. Effective Maxwell-Einstein Theory

In this section we present the calculation of the gravitationalquantum correctionsto the
photon self energy in the simpleEinstein-Maxwell theory, given by the Lagrangian [29]

S =

∫

d4x
√−g

[

2

κ2
R − 1

2
gµνgαβFµνFαβ

]

, (1)

whereR is the Ricci scalar,κ2 = 32πGN andFµν denotes theU(1) field strength ten-
sor. Quantum effects are calculated in the weak field expansion around the flat Minkowski
metric (ηµν = (1,−1,−1,−1))

gµν = ηµν + κhµν(x). (2)

This is considered an exact relation, but the inverse of the metric contains higher order terms

gµν = ηµν − κhµν + κ2hµ
αhνα + . . . , (3)

in an effective treatment it can be truncated at the second order. The photon propagator is
defined in the Landau gauge

gµν − kµkν

k2

k2 − iǫ
,

and the graviton propagator in de Donder, orharmonic gauge, where the gauge condition is
(with h = hα

α)

∂νhµν − 1

2
∂µh = 0. (4)

Expanding the Lagrangian up to second order in the graviton field we get the following
graviton propagator ind dimensions

GG
αβγδ(k) = i

1
2ηαγηβδ + 1

2ηαδηβγ − 1
d−2ηαβηγδ

k2 − iǫ
. (5)
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(a) (b)

Figure 1. Feynman graphs with graviton (double) lines contributing to the photon two point
function.

There are two relevant vertices with two photons. The two photon-gravitonvertex is

VγγG(k1µ, k2ν , α, β) = −i
κ

2
[ηαβ (k1νk2µ − ηµν(k1k2)) +

+Qµν,αβ(k1k2) + Qk1k2,αβηµν − Qµk2,αβk1ν − Qk1ν,αβk2µ] ,(6)

and the two photon-two graviton vertex is even more complicated

VγγGG(k1µ, k2ν , α, β, γ, δ) = −i
κ2

4

[

Pαβγδ (k1νk2µ − ηµν(k1k2)) + Uµν,αβ,γδ(k1k2) +

+Uk1k2,αβ,γδηµν − Uµk2,αβ,γδk1ν − Uk1ν,αβ,γδk2µ +

+Qµν,αβQγδ,k1k2
+ Qµν,γδQαβ,k1k2

−Qk1ν,αβQµk2,γδ − Qµk2,αβQk1ν,γδ

]

. (7)

For the sake of simplicity we have defined

Uµν,αβ,γδ = ηµαPνβ,γδ + ηµβPαν,γδ + ηµγPαβ,νδ + ηµδPαβ,γν , (8)

Pαβ,µν = ηµαηνβ + ηµβηνα − ηµνηαβ , (9)

and finally
Qαβ,µν = ηµαηνβ + ηµβηνα. (10)

There are two graphs contributing to the photon self energy with two vertices(31) giving
Π(a) (Fig. 1. left) and one 4-leg vertex (7) providingΠ(b) (Fig. 1. right). We calculated the
finite and divergent parts of the 2-point function withimproved cutoff, naive 4-dimensional
momentum cutoff anddimensional regularization. The improved momentum cutoff is de-
fined to respect gauge and Lorentz symmetries and allows for shifting the loop momentum
under divergent loop-integrals. Compared to naive cutoff it changesthe coefficient of the
quadratic divergence and gives a finite shift in the presence of a universal logarithmic di-
vergence. The details of the new regularization scheme with some example andoutlook on
the broad literature can be found in the Appendix. For comparison, using the technique of
dimensional regularization with different assumptions about treating the number of dimen-
sionsd in the propagator and vertices various quadratically divergent cutoff results can be
identified using the connection between cutoff and dimenisonal regularization results, see
(39) in the Appendix. Each of these calculation defines a different regularization scheme.
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The calculation of the diagrams is straightforward, we used the symbolic manipulation
programFORM [31] to deal with the large number of terms. The quadratically divergent
contributions of the two graphs withimproved cutoff (I) do not cancel each other

ΠI(a)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−2Λ2 − 1

6
p2

(

ln

(

Λ2

p2

)

+
2

3

))

, (11)

ΠI(b)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

3

2
Λ2

)

. (12)

In thenaive cutoff (N) calculation using (36) there is a cancellation of theΛ2 terms, the
finite term do not match the previous one, and it is remarkable that the result istransverse
without any subtractions

ΠN(a)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−3

2
Λ2 − 1

6
p2 ln

(

Λ2

p2

)

− 7

36
p2

)

, (13)

ΠN(b)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

3

2
Λ2

)

. (14)

In dimensional regularization (DR) the space-time dimension is continued in all terms
originating from the gauge and gravitational part, too (e.g.ηµ

µ = d = 4 − 2ǫ). The result
(just as using the naive cutoff above) agrees with [15] (without the finiteterms which are
first given here)

ΠDR1(a)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−1

6
p2

(

2

ǫ
+ ln

(

µ2

p2

)

+
1

6

))

, (15)

ΠDR1(b)
µν (p) = 0, (16)

where we have omitted the constants−γE + ln 4π beside2/ǫ.
In what follows we present various “cutoff” results we arrived at using the technique

of dimensional regularization based on different assumptions about the continuation of the
dimension. Each result defines a different regularization scheme, and they are denoted
by the superscriptDR1, DR2, DR3 and the corresponding cutoff results byΛ1, Λ2, Λ3
based on the extension of dimensional regularization.

Now with the help of the equations in the appendix (39), (40) and (41) we can define
three cutoff results based on the dimensional regularization one. In the first case the dimen-
sion is modified in each terms whered appears, also in the graviton propagator (5), though
gravity is not a dynamical theory ind = 2. Each graph is quadratically divergent, even
1/(ǫ − 1)2 type of singularities appear in single graphs, but they cancel in the sum ofthe
graphs, like the1

ǫ2
terms in usual gauge theories (e.g. in QCD) at two loops.

ΠΛ1
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−1

4
Λ2 − 1

6
p2

(

ln

(

Λ2

p2

)

− 5

6

))

(17)

also quadratically divergent, but only the coefficient of the logarithmic termagrees with
other results.
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To find connection with existing, partially controversial literature, we have performed
the calculation with weaker assumptions. First the term in the graviton propagator is set

1
d−2 = 1

2 as is usually done in earlier results e.g. [27, 28]. The divergent part of the
dimensional regularization result agrees with [15]. The contribution of thetadpole in Fig.
1bΠDR2(b) vanishes, the sum is

ΠDR2
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−1

6
p2

(

2

ǫ
+ ln

(

µ2

p2

)

+
1

6

))

. (18)

We can identify a cutoff result, Fig. 1b givesΠΛ2(b)
µν (p) ∼ 1

2Λ2, the only quadratically
divergent term and

ΠΛ2
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

1

2
Λ2 − 1

6
p2

(

ln

(

Λ2

p2

)

− 5

6

))

. (19)

Notice that this result differs from (17) only in the value and the sign of the coefficient of
the first term, the change originates from the different treatment of the graviton propagator.

The result of the improved momentum cutoff can be reproduced applying dimensional
regularization with care. The improved cutoff method works in four physical dimensions
and special rules have to be applied only at the evaluation of the last tensorintegrals. It
is equivalent to settingd = 4 in the Einstein-Maxwell theory, e.g. both in the graviton
propagator and in the trace of the metric tensor. Dimensional regularization isthen applied
at the last step evaluating the tensor and scalar momentum integrals. We have found that
Π

DR3(b)
µν = 0 and

ΠDR3
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−1

6
p2

(

2

ǫ
+ ln

(

µ2

p2

)

+
5

3

))

. (20)

The corresponding cutoff result diverges quadratically and agreeswith the improved cutoff
calculation (11,12)

ΠΛ3(a)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

−2Λ2 − 1

6
p2

(

ln

(

Λ2

p2

)

+
2

3

))

, (21)

ΠΛ3(b)
µν (p) =

i

16π2
κ2

(

p2ηµν − pµpν

)

(

3

2
Λ2

)

. (22)

The quadratic divergences
(

Λ2
)

here are identified with thed = 2 poles in the extension
[48] of dimensional regularizations [51, 52]. There may appear an additional pole1/(d−2)
in the graviton propagator (5). It is coming from a non-physical point ofthe Einstein-
Hilbert theory as this theory is not a dynamical one ind = 2, the Lagrangian reduces
to a trivial surface integral. In the first case, in (17) we apply continuous d both in the
propagator (5) and in the vertices during tracing. The second treatment setsd = 4 in the
propagator (as usually done in the literature) while using continuousd during tracing the
indices. This hybrid treatment looks not fully consistent as even in the loopsone part of
the theory feels the modifiedd dimensions the other part not, e.g. feels fixed number of
dimensionsd = 4 and gives (18). We prefer the third, conceptionally simple case, when
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the gravity algebra is performed in fixedd = 4 and the rest of the calculation is done using
the standard dimensional regularization technique. Moreover, the third result (21) and (22)
agrees completely with the improved cutoff calculation case.

In principle a theory is completely defined via specifying the Lagrangian andthe method
of calculation e.g. fixing the regularization and the treatment of the divergent terms, though
the physical quantities must be independent of the details of the regularization scheme. It
is remarkable that the transverse structure of the photon propagator is not violated in any
of the previous schemes and the logarithmic term is universal in the three cases and agrees
with earlier results [15, 11]. The question is whether theΛ2 terms contribute to the running
of the gauge coupling, or have any other effects on measurable physical quantities.

3. Quadratic Divergences and Renormalization

In the previous section we have calculated the 1-loop radiative correctionto the photon
self energy from the effective theory of gravity in the simplest Maxwell-Einstein theory.
We have found under various assumptions various quadratically divergent contributions
(vanishing particularly using a naive momentum cutoff). The 1-loop corrections to the 2-
point function generally modify the bare Lagrangian, the divergences have to be removed
by the properly chosen counterterms via renormalization conditions.

Consider the QED action with the convention [32]

L0 = − 1

4e2
0

FµνF
µν + Ψ̄iDµγµΨ, Dµ = ∂µ + iAµ. (23)

The divergences calculated from the interaction (1) gives the 1-loop effective action, here
we focus only on the gravitational, divergent contributions

L = −1 + aκ2Λ2

4e2
0

FµνF
µν + a2 ln

Λ2

p2
(DµFµν)2 +

(

Ψ̄iDµγµΨ
)

, (24)

wherep2 is the Euclidean momentum at which the 2-point function was calculated. The
question is whether should we interpret the coefficient of the usual kineticterm as a varying,
i.e. running electric charge

(

e2(Λ) ≃ e2
0

(

1 − aκ2Λ2
))

? The answer is no, because of the
necessary wavefunction and charge renormalization.

In quantum field theories the divergent terms have to be canceled by the counterterms.

New dimension-six term must be added to match thep2 ln
(

Λ2

p2

)

term already shown in (24)

Lct =
δZ1

4e2
0

FµνF
µν + δZ2 (DµFµν)2 . (25)

In principle there are three possible dimension-six counterterms(DµFµν)2, (DµFνρ)
2 and

F ν
µ F ρ

ν Fµ
ρ . Only two of them are linearly independent up to total derivatives and it turns out

that the first, the(DµFµν)2 term can cancel all divergences [15]. The coefficient of the first
term in (24) cannot be understood as defining a running coupling but it iscompensated by
a counterterm through a renormalization condition. It can be fixed either bythe Coulomb
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potential or Thomson scattering at low energy identifying the usual electric charge as

e2
0

4π(1 + aκ2Λ2)
=

e2

4π
≃ 1

137
. (26)

Thus the quadratically divergent correction defines the relation betweenthe bare charge
e0(Λ) in a theory with the physical cutoffΛ and the physical charge effective at low ener-
gies. After fixing the parameters of the theory (e.g. by a measurement at lowenergy) and
usinge to calculate the predictions of the model the cutoff dependence completely disap-
pears from the physical charge [27, 32]. The role of the quadratic correction is to define the
relation (26) this way renormalizing the bare coupling constante0(Λ) ( and does not appear
in the running of the physical charge).

Quadratic divergences are the main cause of the hierarchy problem anddiscussed with
other regularization methods. In [33] the authors use Implicit Regularization, a general
parametrization of the basic divergent integrals, which separates the divergences for a given
problem in a process-independent way without referring to a specific regularization (see
also the Appendix). They argue that their basic divergent integrals, thus the quadratic di-
vergences can be absorbed in the renormalization constants without explicitly determining
their value. Arbitrary parameters, such as the isolated quadratically divergent contribu-
tion to the Higgs mass can be fixed by additional (in the Higgs case: conformal)symmetry.
Similar conclusion is reached in [34] using Wilsonian renormalization group (RG). They ar-
gued that the additive (they call it subtractive) and multiplicative renormalization procedure
and the corresponding quadratic and logarithmic divergences can be treated independently.
They show that quadratic divergences are the artifact of the regularization procedure and
in the Wilsonian RG they are naturally subtracted and simply define position of thecritical
surface in the theory space. It is in complete agreement with our claim in (26)that the
quadratic divergence disappears from the physical quantities. The fate of the logarithmic
divergence could have been different.

The logarithmically divergent contribution on the other hand defines the renormaliza-
tion of the higher dimensional operator(DµFµν)2 and again not the running of the gauge
coupling. After renormalization (at a pointp2 = µ2) the logarithmic coefficient of the dim-6
term in (24) changes toa2 ln Λ2

p2 − a2 ln Λ2

µ2 = −a2 ln p2

µ2 defining a would be running pa-
rameter. Furthermore note that this term can be removed [15, 26] by local field redefinition
of Aµ up to higher dimensional operators

Aµ → Aµ − c∇νF
ν
µ , (27)

where∇µ is the gravitational covariant derivative, as the new term is proportionalto the
tree level equation of motion

∇µFµν = 0. (28)

The logarithmic corrections were found in the first papers discussing the gravitational con-
tributions by Deser et al. [11] using dimensional regularization and this wayneglecting
the quadratically divergent contribution spotted by [12]. Generally it canbe shown, that
all photon propagator corrections can be removed by appropriate field redefinition which
are bilinear inAµ even if they contain arbitrary number of derivatives, on-shell scattering
processes are not influenced by the presence of such effective terms [35].
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(c) (d) (e)

Figure 2. Feynman graphs with graviton (double) lines contributing to the gluon three point
function.

4. Corrections to the Gauge Coupling in Yang-Mills Theories

We have discussed the simplest example including gravitational corrections inChapter 2,
but already Deser, Tsao and Nieuenhuizen [11] later Robinson and Wilczek [12] and many
other authors performed their calculation in theEinstein-Yang-Mills system. Here we fol-
low the presentation of [15] to show that after renormalization no meaningfulrunning cou-
pling can be defined even identifying quadratic divergences using cutoff regularization.

Consider the Einstein-Yang-Mills Lagrangian

S =

∫

d4x
√−g

[

2

κ2
R − 1

2
gµνgαβTr [FµνFαβ ]

]

, (29)

where the field strength has a Yang-Mills indexFµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] andg
is the Yang-Mills coupling.

In the Yang-Mills theory the bare gluon three-point functions get modified by gravity,
too. Beside the corrections to the gluon two point functions, which are order κ2 and are the
same as presented in Chapter 2 see (13) and (14) and Figure 1, there are contributions to
the gluon three-point functions at thegκ2 order.

There are new vertices with three selfinteractinggluonwith extra one- and two-graviton
legs. The three gluon-one graviton vertex is

VgggG(k
(a)
1µ , k

(b)
2ν , k

(c)
3ρ , αβ) = −igκfabc

[

Pαβ,µν (k1 − k2)
ρ

+ ηαβ
(

ηρα (k1 − k2)
β

+ ηρα (k1 − k2)
β
)

+

+cycl.perm. {(µ, k1), (ν, k2), (ρ, k3)}] , (30)

wherefabc is the Yang-Mills structure constant. The three gluon-two graviton vertex is
again rather complicated and lengthy

VgggGG(k
(a)
1µ , k

(b)
2ν , k

(c)
3ρ , αβ, γδ) = −igκ2fabc

[

(k1 − k2)
ρ
(

Iµν,αγηδβ + Iµν,αδηγβ +
{

(µν)←→(αβ)
}

− 1

2

(

ηαβIµν,γδ + ηγδIµu,αβ
)

− ηµνPαβ,γδ

)

+
(

2ηµνP γδ,αβ + Iµν,γδ
)

(k1 − k2)
ρ +

{

(α)←→(β)
}

{

(γδ)←→(αβ)
}

+ cycl.perm. {(µ, k1), (ν, k2), (ρ, k3)}
]

. (31)

With these vertices there are three graphs contributing to the gluon three-point function at
one-loop, Fig.2. The external gluons are labeled as in the vertices{(µ, k1), (ν, k2), (ρ, k3)}
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and the the 3-point function contributions must be symmetrized in these index-pairs. The
graph(c) is only logarithmically divergent

G
(c)
3 ∼ 1

16π2
gκ2fabc log Λ2Fµνρ

3 (kµ
1 , kν

2 , kρ
3) , (32)

where the lengthyFµνρ
3 function scales with the third power of momenta. The graphs (d)

and (e) are similar to (a) and (b) only with the exception of an additional gluonleg starting
from the main vertex. Graph (d) has similar logarithmic correction as (32) anda quadratic
divergence, while in (e) the divergence is purely quadratic.

G
(d)
3 ≃ 1

16π2
gκ2fabc 3

2
(ηµν (k1 − k2)

ρ + symmetrized)Λ2 + log terms, (33)

G
(e)
3 ≃ − 1

16π2
gκ2fabc 3

2
(ηµν (k1 − k2)

ρ + symmetrized)Λ2. (34)

The sum of the quadratic contributions from graphs (d) and (e) exactly cancel just as for
the two point functions in Fig. 1. The remaininglogarithmic divergencesurprisingly can
be canceled by only the second term in (25).

Lc.t. ⊃
1

16π2

1

6
κ2 log

Λ2

µ2
(DµFµν) , (35)

whereµ is the renormalization scale in agreement with the result of [11] and later works.
We emphasize that the counterterm in (35) corrects a higher dimensional operator, and the
contribution can be removed by a non-linear field redefinitions of the gaugefield (27) as
discussed in Chapter 3 and does not lead to a change in the running of physical parameters.

5. Conclusion

We have calculated and presented in this chapter thegravitational correctionsto gauge the-
ories in the framework of effective field theories. The study was motivatedby the various,
sometime controversial results in the literature. Our method and the presented results were
capable of identifying quadratically divergent contributions to the photon and generalized
gluon two and three point functions, thanks to the gauge invariant construction. In the first,
QED part, to test our calculation we defined the cutoff dependence employing (39), (40)
and dimensional regularization with various assumptions about treating the number of di-
mensionsd. We observed that the 1-loop gravity corrections to the two point function in
all but one cases containΛ2 divergence with the exception of the naive momentum cutoff
which violates gauge symmetries usually. Here all the corrections are transverse. The log-
arithmic term universally agrees with the literature starting from Deser et al. [11]. Then
we presented the corrections in a more general Yang-Mills theory. We found that the log-
arithmically divergent terms contribute to the dimension-6 terms and can be removed by
local field redefinitions this way do not affecting the running of the gauge coupling. Λ2

corrections to the QED or Yang-Mills effective actions are absent using anaive cutoff reg-
ularizations and are present with more sophisticated methods, but those areproved to be
non-physical.
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The quadratically divergent corrections to the photon or gluon self-energy do not lead
to the modification of the running of the gauge coupling. Robinson and Wilczekclaimed
that the−aκ2Λ2 correction could turn the beta function negative and make the Einstein-
Maxwell and Einstein-Yang-Mills theory asymptotically free. This statement and the cal-
culation was criticized in the literature. We showed in this chapter using explicit cutoff
calculation thatΛ2 corrections may appear in the 2-point function, but those will define
the renormalization connection between the cutoff dependent bare coupling and the phys-
ical coupling (26) and do not lead to a running coupling. This conclusion isin complete
agreement with other results concerning quadratic divergences [27, 33, 34]. Indeed theΛ2

correction can be absorbed into the physical charge and does not appear in physical pro-
cesses. Donoghue et al. argue in [27] that an universal, i.e. process independent running
coupling constant cannot be defined in the effective theory of gravity independently of the
applied regularization. They demonstrate that because of the crossing symmetry in theories
(except theλΦ4) even the sign of the would be quadratic running is ambiguous and a run-
ning coupling would be process dependent, thus not useful. Generally the logarithmically
divergent corrections could define the renormalization of higher dimensional operators. It
turns out that even these logarithmic correction can be removed by appropriate field redef-
initions and do not contribute to on-shell scattering processes. We note that the authors
in [28] showed using their 4-dimensional implicit regularization method that the quadratic
terms are coming from ambiguous surface terms, discussed in more details in [30, 43] and
as such are non-physical. Interestingly those surface terms vanish if weevaluate them with
our improved cutoff [36].

Finally we point out that we have found gravity corrections to the two and three-point
functions in gauge theories. Using a momentum cutoff the quadratically divergent contri-
butions define the renormalization of the bare charge and thus using the physical charge
theΛ2 corrections do not appear in physical processes. On the other hand logarithmic cor-
rections are universal but merely define the renormalization of a dimension-6 term in the
Lagrangian, which term can be eliminated by local field redefinition. We conclude that
gravity corrections do not lead to the modification of the usual running of gauge coupling
and cannot point towards asymptotic freedom in the case of gauge theories.

Appendix: Improved Momentum Cutoff

In this appendix we present a novel regularization of gauge theories, proposed in [30] and
discussed with broader outlook on the literature in [36]. It is based on 4 dimensionalmo-
mentum cutoffto evaluate 1-loop divergent integrals. The idea was to construct a cutoff
regularizationwhich does not brake gauge symmetries and the necessary shift of the loop-
momentum is allowed as no surface terms are generated. The loop calculation starts with
Wick rotation, Feynman-parametrization and loop-momentum shift. Only the treatment of
free Lorentz indices under divergent integrals should be changed compared to the naive
cutoff calculation.

We start with the observation that the contraction withηµν (tracing) does not necessarily
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commute with loop-integration in divergent cases. Therefore the substitutionof

kµkν → 1

4
ηµνk

2 (36)

is not valid under divergent integrals, wherek is the loop-momentum1. The usual factor1/4
is the result of tracing both sides under the loop integral, e.g. changing the order of tracing
and the integration. In the new approach the integrals with free Lorentz indices are defined
using physical consistency conditions, such as gauge invariance or freedom of momentum
routing. Based on the diagrammatic proof of gauge invariance it can be shown that the two
conditions are related and both are in connection with the requirement of vanishing surface
terms. It was proposed in [30] that instead of (36) the general identification of the cutoff
regulated integrals in gauge theories

∫

Λ reg

d4lE
lEµlEν

(

l2E + m2
)n+1 =

1

2n
ηµν

∫

Λ reg

d4lE
1

(

l2E + m2
)n , n = 1, 2, ... (37)

will satisfy the Ward-Takahashi identities and gauge invariance at 1-loop(lE is the shifted
Euclidean loop-momentum). In case of divergent integrals it differs from(36), for non-
divergent cases both substitutions give the same results atO(1/Λ2) (the difference is a
vanishing surface term). It is shown in [30] that this definition is robust in gauge theories,
differently organized calculations of the 1-loop functions agree with eachother using (37)
and disagree using (36). For four free indices the gauge invariance dictates (n = 2, 3, ...)

∫

Λ reg

d4lE
lEαlEβlEµlEρ
(

l2E + m2
)n+1 =

1

4n(n − 1)

∫

Λ reg

d4lE
ηαβηµρ + ηαµηβρ + ηαρηβµ

(

l2E + m2
)n−1 . (38)

For 6 and more free indices appropriate rules can be derived (or (37)can be used recursively
for each allowed pair). Finally the scalar integrals are evaluated with a simple Euclidean
momentum cutoff. The method was successfully applied to an effective modelto estimate
oblique corrections [37].

There are similar attempts to define a regularization that respects the original gauge and
Lorentz symmetries of the Lagrangian but work in four spacetime dimensions usually with
a cutoff [38, 39]. Some methods can separate the divergences of the theories and does not
rely on a physical cutoff [40, 41, 42] or even could be independent of it [44]. For further
literature see references in [30].

Under this modified cutoff regularization the terms with numerators proportional to
the loop momentum are all defined by the possible tensor structures. Odd number of lE ’s
give zero as usual, but the integral of even number oflE ’s is defined by (37), (38) and
similarly for more indices, this guarantees that the symmetries are not violated. The cal-
culation is performed in 4 dimensions, the finite terms are equivalent with the results of
dimensional regularization. The method identifies quadratic divergences while gauge and
Lorentz symmetries are respected. We stress that the method treats differently momenta
with free (kµkν) and contracted Lorentz indices (k2), the order of tracing and performing
the regulated integral cannot be changed similarly to dimensional regularization. The fa-
mous triangle anomaly can be unambiguously defined and presented in [45] see also [46],
[47].

1The metric tensor is denoted byηµν both in Minkowski and Euclidean space.
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However even using dimensional regularization one is able to define cutoffresults in
agreement with the present method. In dimensional regularization singularities are identi-
fied as1/ǫ poles, power counting shows that these are the logarithmic divergences of the
theory. Naively quadratic divergences are set to zero in the process, but already Veltman no-
ticed [48] that these divergences can be identified by calculating the polesin d = 2 (ǫ = 1).
Careful calculation of the Veltman-Passarino 1-loop functions in dimensional regularization
and with 4-momentum cutoff leads to the following identifications [30, 49, 50]

4πµ2

(

1

ǫ − 1
+ 1

)

= Λ2, (39)

1

ǫ
− γE + ln

(

4πµ2
)

+ 1 = lnΛ2. (40)

The finite terms are unambiguously defined

ffinite = lim
ǫ→0

[

f(ǫ) − R(0)

(

1

ǫ
− γE + ln 4π + 1

)

− R(1)

(

1

ǫ − 1
+ 1

)]

, (41)

whereR(0), R(1) are the residues of the poles atǫ = 0, 1 respectively. Using (39), (40)
and (41) at 1-loop the results of the improved cutoff can be reproducedusing dimensional
regularization without any ambiguous subtraction.

The loop integrals are calculated as follows. First the loop momentum (k) integral is
Wick rotated (tokE), with Feynman parameter(s) the denominators are combined, then the
order of Feynman parameter and the momentum integrals are changed. Afterthat the loop
momentum (kE → lE) is shifted to have a spherically symmetric denominator.

Finally we present two divergent integrals calculated by the new regularization. ∆ can
be any loop momentum independent expression depending on the Feynmanx parameter,
external momenta, masses, e.g.∆(x, qi, m). The integration is understood for Euclidean
momenta with absolute value below theΛ cutoff (|lE | ≤ Λ).

The integral (42) is just given for comparison, it is calculated with a simple momentum
cutoff. In (43) with the standard (36) substitution one would get a constant −3

2 instead of
−1 [30].

∫

Λ reg

d4lE
i(2π)4

1
(

l2E + ∆2
)2 =

1

(4π)2

(

ln

(

Λ2 + ∆2

∆2

)

+
∆2

Λ2 + ∆2
− 1

)

. (42)

∫

Λ reg

d4k

i(2π)4
lEµlEν

(

l2E + ∆2
)3 =

1

(4π)2
gµν

4

(

ln

(

Λ2 + ∆2

∆2

)

+
∆2

Λ2 + ∆2
− 1

)

. (43)
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