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Abstract

The gravitational waves recently observed by the LIGO baliation is an ex-
perimental evidence that the weak field approximation ofegalnrelativity is a vi-
able, calculable scenario. As a non-renormalizable thepayity can be successfully
considered as an effective quantum field theory with rediabut limited predictions.
Though the influence of gravity on gauge and other interastid elementary particles
is still an open question. In this chapter we calculate tiweki order quantum gravity
contributions to the QED beta function in an effective fididdry picture with a mo-
mentum cutoff. We use a recently proposed 4 dimensionalauwgal momentum cutoff
that preserves gauge and Lorentz symmetries. We find thia i@ non-vanishing
quadratic contribution to the photon 2-point function bitearenormalization that
does not lead to the running of the original coupling. We cantion corrections to
the other gauge interactions and Yukawa couplings of heanryibns. We argue that
gravity cannot turn gauge interactions asymptoticallg fre

1. Introduction

Recently, in the latest four-five years there were two outstanding digesva the area of
physics of fundamental interactions. The upgraded = experiment observed [1] gravita-
tional waves in 2015 and published in 2016 and tli2 has announced the discovery of
the Higgs boson in Run I'in 2012. The observation of the gravitational svaseeling with
the speed of light is a direct evidence that the weak field approximationnefrglerelativ-
ity can be used reliably in high precision calculation. Furthermore the sofitbe event
GW150914 is found to be consistent with merging of two black hole with mas®xipp
mately 39 and 32 solar masses and the LIGO collaboration found no eviftevi@ations
of general relativity in this strong field regime of gravity. Despite this sucpesturbatively
quantized general relativity is still considered to be a non-renormalizabbetidue to its
dimensionful coupling constaatwith negative mass dimensiorl = 327Gn = 1/M3).
This way the naively quantized Eintein theory cannot be consideredwaslarhental the-
ory at the quantum level [2] as newer and newer counter terms haveitrbduced at
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each order of the perturbative calculation and the cutoff cannot ba takefinity. How-
ever Donoghue argued that assuming there is some yet unknown, \fietdi¢heory of
quantum gravity that yields the observed general relativity as a low eiierd, then the
Einstein-Hilbert action can be used to calculate gravitational correction ifralhrework
of effective field theories (well) below the Planck mdgs ~ 1.2 x 10'® GeV[3, 4]. The
subject was reviewed in details by Burgess in [5].

The other important recent achievement was the discovery of the SMiggthiodel)
Higgs boson with a mass approximately 125 GeV by the ATLAS and CMS co#éibas
[6, 7]. So far the properties of the 125 GeV scalar are in complete agreesié the
SM predictions, few sigma anomalies in the photon-photon and the lepton number
violating mu-tau final states (at CMS) have disappeared. This value of itigs khass
falls in a special region where not only several different decay oélaare experimentally
tested, but it implies that the SM is perturbatively renormalizable uldto The complete
Standard Model might be valid up to the Planck scale [8, 9]. In this casevgveltise to the
stability region in the(my,,, M) plane in a metastable world [10], where the tunneling
to the lower, real minimum is longer than the lifetime of our Universe. Consigeha
SM or its extensions valid up to the Planck scale gravity can influence the Séhables
and running parameters at the loop-level. The gravitational correctanbe estimated in
an effective field theory framework and may be important as they may modifyutiming
of the various coupling, possibly alter the gauge coupling unification andahelusions
concerning the stability of the Standard Model. In the seventies the first dgarsing
dimensional regularization showed that only higher order operatorsegetmalized at
one-loop order [11].

The treatment of gravity was recently used to study quantum cor-
rections to gauge and other theories. In the pioneering work, startingthena, Robinson
and Wilczek argued that the gravity contribution to the Yang-Mills beta fundsiguiadrat-
ically divergent and negative, further the corrections point towaychasotic freedom [12].
There were several controversial results about this claim in the literaietrykowski
showed in [13] that in the Maxwell-Einstein theory the result is gauge dkpdnand
doubted the validity of the Robinson Wilczek result. Toms repeated the calculatio
the gauge choice independent background field method using dimensigurization
and has found no quantum gravity contribution to the beta function [14]grBimamatic
calculation employing dimensional regularization and naive momentum cutgff¢uind
vanishing quadratic contribution. The authors showed that the logarithwécgeinces
renormalize the dimension-6 operators in agreement with the early resulissef Bt al.
[11]. Toms later applied proper time cutoff regularization and claimed thatubdrgtic
dependence on the energy remains in the QED one-loop effective atthn Analysis
using the background field method employing the gauge invariant VilkouDsiytt for-
malism [17, 18, 19] and special loop regularization that respects Wantitids both found
non-vanishing quadratic contributions to the beta function, but [17] with sfgposite to
[12, 16]. Nielsen showed that the quadratic divergences are digrstilhgauge dependent
in the Vilkovisky-DeWitt formalism [20]. In the asymptotic safety scenario, [22] Reuter
et al. has found going beyond naive perturbation theory that gravityribation points
towards asymptotic freedom of the Yang-Mills theory [23], later Litim et aloveéd that
gravity does not contribute to the running of the gauge coupling [24] hiiglzer derivative
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renormalizable theory of gravity the authors [25] showed that the grawityection van-
ishes in any gauge theory. There are many various results (for mordetertipt see the
references in e.g. [18]), sometimes contradicting to each other and tsealneality of
guadratic corrections to the gauge coupling was questioned [26, 2Z9R8The situation
could be clarified using a straightforward cutoff calculation respectingyhamnetries of
the models and correctly interpreting the divergences appearing in theateios.

Earlier the present authors developed a new improved momentum cutafiriggtion
which by construction respects the gauge and Lorentz symmetrizs of at one
loop level [30]. In this chapter we discuss the application to the effectiarvixll-Einstein
and Einstein-Yang-Mills systems to estimate the regularized gravitationattorreto the
photon/gluon two and three point functions in the simplest possible model tendliscuss
more involved theories.

The paper is organized as follows. In section 2. the effective gravityriboition to
guantum electrodynamics is calculated, in section 3. the renormalization isskstuln
chapter 4 corrections to a Yang-Mills theory is presented. The papersiscigith conclu-
sions and an appendix summarizing the improved momentum cutoff method.

2. Effective Maxwell-Einstein Theory

In this section we present the calculation of the gravitationz! to the
photon self energy in the simpie , given by the Lagrangian [29]
2 1
5= [dav=a|Gn - soe R @

where R is the Ricci scalark? = 327Gy and F,,, denotes thé/(1) field strength ten-
sor. Quantum effects are calculated in the weak field expansion aroefidtiviinkowski
metric ()., = (1, -1, -1, -1))

g,uz/ = 77/11/ + th/,u/(w)- (2)
This is considered an exact relation, but the inverse of the metric contghrexlorder terms
g’“’ = 17“” — k™" + RZhgh”a + ..., (3)

in an effective treatment it can be truncated at the second order. Therpbropagator is
defined in the Landau gauge

Kk
Guv — “p3
k2 —ie
and the graviton propagator in de Donder, .1 , Where the gauge condition is
(with h = R%)
0" hyy — %(‘%h =0. (4)

Expanding the Lagrangian up to second order in the graviton field we gdbliowing
graviton propagator id dimensions

3 May85 + 3706T8y — T3M0pT0

G
Gaﬁ'y5(k> =1 ]{12 e (5)
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(a) (b)

Figure 1. Feynman graphs with graviton (double) lines contributing to theophwo point
function.

There are two relevant vertices with two photons. The two photon-gravéddex is

KR
_Z§ [77046 (klqu,u - nuu(k1k2)) +

+Q;w,aﬁ(k71 k2) + lekg,aﬁ"?uu - Qukg,aﬁklzx - leu,aﬁ]@uqa)

V’y’yG(k‘lllLL’ lela «, ﬁ) =

and the two photon-two graviton vertex is even more complicated

2
KR
Viyaa(kip, kav, o, 3,7,0) = —ir [Poagys (kiwkoy — nuw(k1k2)) + Upw,ap s (k1 ka) +

+Uk1k2,aﬁ,7677,ul/ - U,ukg,a,@,'y6k1V - Uk1u,a5,'y§k2,u +

+qu,aﬁQ75,k1kz + Qul/ﬁﬁ@aﬁ,k’lkz
_leu,aﬁQukg,’y(S - Qukg,aﬁ@klu,vé ] . (7)

For the sake of simplicity we have defined

Upv,ops = Mooy + MusPovas + Muy Poapws + Mus Pop v, (8)
Paﬁ,,ul/ = Nuatlvg + NusMva — NuvTags (9)

and finally
Qaﬁ,uu = Nuatlva + NupMNva- (10)

There are two graphs contributing to the photon self energy with two ve(8&¢giving
11() (Fig. 1. left) and one 4-leg vertex (7) provididf® (Fig. 1. right). We calculated the
finite and divergent parts of the 2-point function with , haive 4-dimensional
momentum cutoff and . The improved momentum cutoff is de-
fined to respect gauge and Lorentz symmetries and allows for shifting theMomentum
under divergent loop-integrals. Compared to naive cutoff it chattgesoefficient of the
guadratic divergence and gives a finite shift in the presence of &nsaiviogarithmic di-
vergence. The details of the new regularization scheme with some exampdetioak on
the broad literature can be found in the Appendix. For comparison, usenigthnique of
dimensional regularization with different assumptions about treating the etunfiblimen-
sionsd in the propagator and vertices various quadratically divergent cugsffiis can be
identified using the connection between cutoff and dimenisonal regularnz&sults, see
(39) in the Appendix. Each of these calculation defines a differentaggation scheme.
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The calculation of the diagrams is straightforward, we used the symbolic niatigou
programFORM [31] to deal with the large number of terms. The quadratically divergent
contributions of the two graphs witmproved cutoff (1) do not cancel each other

(@) _ b 9o A2 L] A? 2 11
w0 = ot (P = pupe) (207 = (I )45 ) ) (A

o p) = i k2 (P — D) ( 3A2> (12)
1224 167’(’2 g nrv 2 .

In thenaive cutoff (N) calculation using (36) there is a cancellation of Neterms, the
finite term do not match the previous one, and it is remarkable that the resalhéverse
without any subtractions

‘ 3 1 A? 7
@ L ) =) [ —2A2 — Zp21 b9 1
' (P) 62" (P —pupi) { =5 P2 ) a6 ) (13)
N(b _ b 99 3,2
Hulg )(p) = 1671'2& (p Um _pupu) < iA ) . (14)

In dimensional regularization (DR) the space-time dimension is continued in all terms
originating from the gauge and gravitational part, too (&)= d = 4 — 2¢). The result
(just as using the naive cutoff above) agrees with [15] (without the fieites which are
first given here)

moR@(p) = L (P* My — Pupw) 2 (2 +m P (15)
p 1672 K a 6 € p? 6))’

DRI1(b
bR ) = o, (16)

where we have omitted the constantsg + In 47 beside2/e.

In what follows we present various “cutoff” results we arrived anhgshe technique
of dimensional regularization based on different assumptions aboubtti@eation of the
dimension. Each result defines a different regularization scheme, agdath denoted
by the superscripD R1, DR2, DR3 and the corresponding cutoff results by, A2, A3
based on the extension of dimensional regularization.

Now with the help of the equations in the appendix (39), (40) and (41) weleéine
three cutoff results based on the dimensional regularization one. Inghedse the dimen-
sion is modified in each terms whedeappears, also in the graviton propagator (5), though
gravity is not a dynamical theory ith = 2. Each graph is quadratically divergent, even
1/(e — 1) type of singularities appear in single graphs, but they cancel in the stine of
graphs, like thee% terms in usual gauge theories (e.g. in QCD) at two loops.

Al _ i 2 2 1 2 1 2 A2 5
I, (p) = 62" (0?1 — Pupv) (—41\ — 5P (1n (p2 ~ % 17)

also quadratically divergent, but only the coefficient of the logarithmic tegmees with
other results.
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To find connection with existing, partially controversial literature, we haségomed
the calculation with weaker assumptions. First the term in the graviton pripagaset
-5 = 1 asis usually done in earlier results e.g. [27, 28]. The divergent [iatteo
dimensional regularization result agrees with [15]. The contribution ofatipole in Fig.

1b I1PR2(P) vanishes, the sum is

M2R2(p) = —* 2 (52 — pups) (— =2 (2 +1n CAWEARY (18)
224 1671'2 H H 6 p2 6

€

We can identify a cutoff result, Fig. 1b giveﬁﬁf(b) (p) ~ %A2, the only quadratically
divergent term and

A2 L 99 .o 14 A? )
HW(P) = 16772K (P Umz *Pupu) <2A - ép (lﬂ (]?2 5 . (19)

Notice that this result differs from (17) only in the value and the sign of tedficient of
the first term, the change originates from the different treatment of tivé@ngropagator.
The result of the improved momentum cutoff can be reproduced applyinghdiorel
regularization with care. The improved cutoff method works in four physicaensions
and special rules have to be applied only at the evaluation of the last tetsprals. It
is equivalent to setting = 4 in the Einstein-Maxwell theory, e.g. both in the graviton
propagator and in the trace of the metric tensor. Dimensional regularizativenispplied
at the last step evaluating the tensor and scalar momentum integrals. Wehauetiat

H,?fg(b) =0 and

PR3 (p) = &2 (D* 1w — Puv) (i AN (20)
p 1672 K K 6 € p? 3

The corresponding cutoff result diverges quadratically and agviéeshe improved cutoff
calculation (11,12)

A3(a _ i 2 2 2 1 2 A2 2
3@ (p) = 62" (0* N — Pupv) <—2A — P <ln <p2> +3) ). @1

3
Hﬁg(b) (p) "32 (p277,u1/ —pupu) ( 2A2) . (22)

i
1672

The quadratic divergenc¢d?) here are identified with thé = 2 poles in the extension
[48] of dimensional regularizations [51, 52]. There may appear aitiaddl polel/(d—2)
in the graviton propagator (5). It is coming from a non-physical pointhef Einstein-
Hilbert theory as this theory is not a dynamical onedin= 2, the Lagrangian reduces
to a trivial surface integral. In the first case, in (17) we apply contisubboth in the
propagator (5) and in the vertices during tracing. The second treateisat s 4 in the
propagator (as usually done in the literature) while using contindadigring tracing the
indices. This hybrid treatment looks not fully consistent as even in the lonpgart of
the theory feels the modified dimensions the other part not, e.g. feels fixed number of
dimensions! = 4 and gives (18). We prefer the third, conceptionally simple case, when
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the gravity algebra is performed in fixed= 4 and the rest of the calculation is done using
the standard dimensional regularization technique. Moreover, the tisutt (21) and (22)
agrees completely with the improved cutoff calculation case.

In principle a theory is completely defined via specifying the Lagrangiarrachethod
of calculation e.qg. fixing the regularization and the treatment of the divetgans, though
the physical quantities must be independent of the details of the regulanizatieme. It
is remarkable that the transverse structure of the photon propagatdnimlabed in any
of the previous schemes and the logarithmic term is universal in the threg @ad agrees
with earlier results [15, 11]. The question is whetherAlgerms contribute to the running
of the gauge coupling, or have any other effects on measurable physa#ities.

3. and

In the previous section we have calculated the 1-loop radiative corretctitdme photon
self energy from the effective theory of gravity in the simplest MaxwellsEm theory.
We have found under various assumptions various quadratically diveapntributions
(vanishing particularly using a naive momentum cutoff). The 1-loop ctioes to the 2-
point function generally modify the bare Lagrangian, the divergenaes to be removed
by the properly chosen counterterms via renormalization conditions.

Consider the QED action with the convention [32]

1 - .
Lo = —4—6(2)FWF’“’ + ViD, A"V, D, =0,+iA,. (23)
The divergences calculated from the interaction (1) gives the 1-ldeptek action, here
we focus only on the gravitational, divergent contributions

1+ ar?A? A2

L= 7 FwF" +axln = (D, F"™)? + (WiD,A"V) (24)
0

wherep? is the Euclidean momentum at which the 2-point function was calculated. The
question is whether should we interpret the coefficient of the usual kileeticas a varying,
i.e. running electric chargfe?(A) ~ ¢f (1 — ax*A?))? The answer is no, because of the
necessary wavefunction and charge renormalization.

In quantum field theories the divergent terms have to be canceled byuhtederms.

New dimension-six term must be added to matchshie <2—22> term already shown in (24)

57
Lt = 4—21FWF’“’ + 67y (D, F*)? (25)
€0

In principle there are three possible dimension-six counterteﬁg}f“l’)z, (D,LF,,p)2 and
FﬁFﬁF/j. Only two of them are linearly independent up to total derivatives andristaut
that the first, thQDﬂFW)2 term can cancel all divergences [15]. The coefficient of the first

term in (24) cannot be understood as defining a running coupling butdnigpensated by
a counterterm through a renormalization condition. It can be fixed eithéreoZoulomb
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potential or Thomson scattering at low energy identifying the usual elettzige as

g e 1 (26)
A(1+ ak?A?) 4w 137

Thus the quadratically divergent correction defines the relation bettheen

eo(A) in a theory with the physical cutoff and the physical charge effective at low ener-

gies. After fixing the parameters of the theory (e.g. by a measurement anlexgy) and

usinge to calculate the predictions of the model the cutoff dependence completepy disa

pears from the physical charge [27, 32]. The role of the quadratiection is to define the

relation (26) this way renormalizing the bare coupling constgfit) ( and does not appear

in the running of the physical charge).

Quadratic divergences are the main cause of the hierarchy probletisandsed with
other regularization methods. In [33] the authors use Implicit Regularizatiageneral
parametrization of the basic divergent integrals, which separates #ngelces for a given
problem in a process-independent way without referring to a speeifiglarization (see
also the Appendix). They argue that their basic divergent integrals,ttteuquadratic di-
vergences can be absorbed in the renormalization constants withouitgxgdétermining
their value. Arbitrary parameters, such as the isolated quadraticallygdivecontribu-
tion to the Higgs mass can be fixed by additional (in the Higgs case: confosymaihetry.
Similar conclusion is reached in [34] using Wilsonian renormalization gro®) (Rhey ar-
gued that the additive (they call it subtractive) and multiplicative renorntaizarocedure
and the corresponding quadratic and logarithmic divergences caratedtindependently.
They show that quadratic divergences are the artifact of the regatianzprocedure and
in the Wilsonian RG they are naturally subtracted and simply define position ofittoal
surface in the theory space. It is in complete agreement with our claim inttjaéthe
guadratic divergence disappears from the physical quantities. Tefféhe logarithmic
divergence could have been different.

The logarithmically divergent contribution on the other hand defines thermealiza-
tion of the higher dimensional operat@E)NF“”)2 and again not the running of the gauge
coupling. After renormalization (at a poipt = 12) the logarithmic coefficient of the dim-6
term in (24) changes ta@; In 2—22 —ay lnA—z = —agln p—z defining a would be running pa-
rameter. Furthermore note that this term can be removed [15, 26] by lelchtddefinition
of A, up to higher dimensional operators

Ay — Ay — VY, FY, (27)

whereV , is the gravitational covariant derivative, as the new term is proportimntde
tree level equation of motion
VP = 0. (28)

The logarithmic corrections were found in the first papers discussing tvéaional con-
tributions by Deser et al. [11] using dimensional regularization and this rvegjecting
the quadratically divergent contribution spotted by [12]. Generally itlashown, that
all photon propagator corrections can be removed by appropriate éiéédimition which
are bilinear inA,, even if they contain arbitrary number of derivatives, on-shell scagerin
processes are not influenced by the presence of such effective [(&5].
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() (d) (e)

Figure 2. Feynman graphs with graviton (double) lines contributing to thexghree point
function.

4. Correctionstothe Gauge Couplingin Yang-Mills Theories

We have discussed the simplest example including gravitational correcti@isajoter 2,

but already Deser, Tsao and Nieuenhuizen [11] later Robinson andeki]t2] and many

other authors performed their calculation in the . Here we fol-

low the presentation of [15] to show that after renormalization no meaningfning cou-

pling can be defined even identifying quadratic divergences usingf catpflarization.
Consider the Einstein-Yang-Mills Lagrangian

2 1
S = /d4l‘\/ —q |:/€2R - §gwgaﬁTl" [FMVFaﬁ] ) (29)

where the field strength has a Yang-Mills indey, = 0, A, — 0, A,, —ig[A,, A,] andg
is the Yang-Mills coupling.

In the Yang-Mills theory the bare gluon three-point functions get modifiedravity,
too. Beside the corrections to the gluon two point functions, which are efdend are the
same as presented in Chapter 2 see (13) and (14) and Figure 1, theanaibutions to
the gluon three-point functions at the? order.

There are new vertices with three selfinteracting = with extra one- and two-graviton
legs. The three gluon-one graviton vertex is

VtgggG(k/éZ); kél:,), kg;),aﬁ) _ —‘iglifabc [Paﬁ,uu (ky — k2)P + naﬂ <npa (ky — kg)ﬁ + P (kg — kg)ﬁ) +
—|—cycl.perm. {(/j’a k1)7 (Va kQ)a (pv k?))}] ’ (30)

where 2 is the Yang-Mills structure constant. The three gluon-two graviton vertex is
again rather complicated and lengthy

Vissao 4 K 08.98) = =i £ [ ko) (10 o oyt (o)
_ % (nO‘ﬁIW + n”lﬂwﬁ) — PP ’”‘5>

4 (217MVP’Y5,045 4 I/w,'yé) (ke — ko) + {(a)*»(ﬁ)}

{(75%—»(&5)} + cycl.perm. { (1, k1), (v, k2), (p, ks)}} : (31)

With these vertices there are three graphs contributing to the gluon thirgefytction at
one-loop, Fig.2. The external gluons are labeled as in the veftice$ ), (v, k2), (p, k3)}
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and the the 3-point function contributions must be symmetrized in these iradiex-g he
graph(c) is only logarithmically divergent

c 1 abc v 4
Gy ~ ngﬂf *log A2F"" (kY', k5, kS) (32)

where the lengthy,"” function scales with the third power of momenta. The graphs (d)
and (e) are similar to (a) and (b) only with the exception of an additional dkgaetarting
from the main vertex. Graph (d) has similar logarithmic correction as (32pandhdratic
divergence, while in (e) the divergence is purely quadratic.

1 3

ng) = 16 29’€2be€§ (" (k1 — ko)” + symmetrized) A + log terms, (33)
T
(6) - 1 2 CLbC§ yng o P . . 2
Gy 16:277 f 5 (" (k1 — k2)” 4 symmetrized) A= (34)

The sum of the quadratic contributions from graphs (d) and (e) exaatiget just as for
the two point functions in Fig. 1. The remaining surprisingly can
be canceled by only the second term in (25).

11
Lt D k2 log — (D, F*), (35)
T

wherey is the renormalization scale in agreement with the result of [11] and laterswork
We emphasize that the counterterm in (35) corrects a higher dimensi@ratop and the
contribution can be removed by a non-linear field redefinitions of the ghelgie(27) as
discussed in Chapter 3 and does not lead to a change in the runningsafadtparameters.

5. Conclusion

We have calculated and presented in this chapter the to gauge the-
ories in the framework of effective field theories. The study was motiviayeithe various,
sometime controversial results in the literature. Our method and the presesitits were
capable of identifying quadratically divergent contributions to the photwhgeneralized
gluon two and three point functions, thanks to the gauge invariant catistiuln the first,
QED part, to test our calculation we defined the cutoff dependence emgl3®), (40)
and dimensional regularization with various assumptions about treating thieenwf di-
mensionsd. We observed that the 1-loop gravity corrections to the two point function in
all but one cases contaik? divergence with the exception of the naive momentum cutoff
which violates gauge symmetries usually. Here all the corrections are éraeswv he log-
arithmic term universally agrees with the literature starting from Deser etldl. [Then

we presented the corrections in a more general Yang-Mills theory. Wl ftihat the log-
arithmically divergent terms contribute to the dimension-6 terms and can be ednbgv
local field redefinitions this way do not affecting the running of the gaumepling. A2
corrections to the QED or Yang-Mills effective actions are absent usitajve cutoff reg-
ularizations and are present with more sophisticated methods, but thogeeed to be
non-physical.



Quantum Gravity Corrections to Gauge Theories with a Cutoff Regularizatidi

The quadratically divergent corrections to the photon or gluon seliggrao not lead
to the modification of the running of the gauge coupling. Robinson and Wilclzéted
that the—ax?A? correction could turn the beta function negative and make the Einstein-
Maxwell and Einstein-Yang-Mills theory asymptotically free. This statemedttha cal-
culation was criticized in the literature. We showed in this chapter using explitiffc
calculation thatA? corrections may appear in the 2-point function, but those will define
the renormalization connection between the cutoff dependent bare apaplihthe phys-
ical coupling (26) and do not lead to a running coupling. This conclusiam c®@mplete
agreement with other results concerning quadratic divergences3234B Indeed the\?
correction can be absorbed into the physical charge and does redrapphysical pro-
cesses. Donoghue et al. argue in [27] that an universal, i.e. prowdspendent running
coupling constant cannot be defined in the effective theory of gravitggandently of the
applied regularization. They demonstrate that because of the crossimgetky in theories
(except thexd*) even the sign of the would be quadratic running is ambiguous and a run-
ning coupling would be process dependent, thus not useful. Generallggarithmically
divergent corrections could define the renormalization of higher dimeakaperators. It
turns out that even these logarithmic correction can be removed by ajagpedield redef-
initions and do not contribute to on-shell scattering processes. We natthéhauthors
in [28] showed using their 4-dimensional implicit regularization method that themtic
terms are coming from ambiguous surface terms, discussed in more detals #48]&nd
as such are non-physical. Interestingly those surface terms vanisteifaltgate them with
our improved cutoff [36].

Finally we point out that we have found gravity corrections to the two argktpoint
functions in gauge theories. Using a momentum cutoff the quadraticallyg@inecontri-
butions define the renormalization of the bare charge and thus using teeghsharge
the A? corrections do not appear in physical processes. On the other hgarithonic cor-
rections are universal but merely define the renormalization of a dimefsierm in the
Lagrangian, which term can be eliminated by local field redefinition. We cdecihat
gravity corrections do not lead to the maodification of the usual running efgaoupling
and cannot point towards asymptotic freedom in the case of gauge theorie

Appendix: Improved Momentum Cutoff

In this appendix we present a novel regularization of gauge theorigsoged in [30] and
discussed with broader outlook on the literature in [36]. It is based on 4ndiioweal
to evaluate 1-loop divergent integrals. The idea was to construct & cutof

which does not brake gauge symmetries and the necessary shift of fhe loo
momentum is allowed as no surface terms are generated. The loop calculatterwsth
Wick rotation, Feynman-parametrization and loop-momentum shift. Only the tretthe
free Lorentz indices under divergent integrals should be changegared to the naive
cutoff calculation.

We start with the observation that the contraction wjth (tracing) does not necessarily
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commute with loop-integration in divergent cases. Therefore the substitftion

Kk, — %nm,k? (36)
is not valid under divergent integrals, whérés the loop-momentufn The usual factot /4
is the result of tracing both sides under the loop integral, e.g. changingdbeaf tracing
and the integration. In the new approach the integrals with free Lorentzmdie defined
using physical consistency conditions, such as gauge invarianceestoim of momentum
routing. Based on the diagrammatic proof of gauge invariance it can benghat the two
conditions are related and both are in connection with the requirementishiamsurface
terms. It was proposed in [30] that instead of (36) the general idenitificaf the cutoff
regulated integrals in gauge theories

lpulEy 1 1
L ,,/ Ay n=1,2,.. (37)
/Areg (l% +m2)n+1 2n" Areg (ZJQE +m2)

will satisfy the Ward-Takahashi identities and gauge invariance at 1{lgojs the shifted

Euclidean loop-momentum). In case of divergent integrals it differs ft8&), for non-

divergent cases both substitutions give the same resulty BtA?) (the difference is a
vanishing surface term). It is shown in [30] that this definition is robustingg theories,
differently organized calculations of the 1-loop functions agree with edlvér using (37)
and disagree using (36). For four free indices the gauge invariaciedas ¢ = 2, 3, ...)

A ealesleple, 1 4, M8 e T Nayi3p + Napllin gy
B 2)"tL dn(n —1) £ 2 271 '
Areg (lE+m ) Areg (lE+m)

For 6 and more free indices appropriate rules can be derived (océ8®e used recursively
for each allowed pair). Finally the scalar integrals are evaluated with a sinyeledg&an
momentum cutoff. The method was successfully applied to an effective rtdstimate
oblique corrections [37].

There are similar attempts to define a regularization that respects the origirgs gnd
Lorentz symmetries of the Lagrangian but work in four spacetime dimensguagiy with
a cutoff [38, 39]. Some methods can separate the divergences of treethend does not
rely on a physical cutoff [40, 41, 42] or even could be independ€iit[é4]. For further
literature see references in [30].

Under this modified cutoff regularization the terms with numerators propotttona
the loop momentum are all defined by the possible tensor structures. Odenafip’s
give zero as usual, but the integral of even numbetzs is defined by (37), (38) and
similarly for more indices, this guarantees that the symmetries are not violatedcal-
culation is performed in 4 dimensions, the finite terms are equivalent with téses
dimensional regularization. The method identifies quadratic divergenioiés gauge and
Lorentz symmetries are respected. We stress that the method treats tifferementa
with free (,,k,) and contracted Lorentz indices?], the order of tracing and performing
the regulated integral cannot be changed similarly to dimensional regtianizd he fa-
mous triangle anomaly can be unambiguously defined and presented ire@éalse [46],
[47].

1The metric tensor is denoted hy,, both in Minkowski and Euclidean space.
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However even using dimensional regularization one is able to define caguffts in
agreement with the present method. In dimensional regularization singuslatgadenti-
fied asl/e poles, power counting shows that these are the logarithmic divergehttes o
theory. Naively quadratic divergences are set to zero in the prdogissready Veltman no-
ticed [48] that these divergences can be identified by calculating theipales 2 (e = 1).
Careful calculation of the Veltman-Passarino 1-loop functions in dimenigiegalarization
and with 4-momentum cutoff leads to the following identifications [30, 49, 50]

1
dmp (6_1 + 1) = A% (39)
1
el +In (47T,u2) +1 = InAZ% (40)

The finite terms are unambiguously defined

1
e—1

fﬁnite = lg% |:f(6) - R(O) (1 —YE + Indm + 1) - R(l) ( + 1>:| ) (41)
whereR(0), R(1) are the residues of the polesecat 0, 1 respectively. Using (39), (40)
and (41) at 1-loop the results of the improved cutoff can be reprodusiad dimensional
regularization without any ambiguous subtraction.

The loop integrals are calculated as follows. First the loop momenkgnmiggral is
Wick rotated (tok ), with Feynman parameter(s) the denominators are combined, then the
order of Feynman parameter and the momentum integrals are changedthAftdre loop
momentum kg — [g) is shifted to have a spherically symmetric denominator.

Finally we present two divergent integrals calculated by the new regatemiz A can
be any loop momentum independent expression depending on the Feynpaaameter,
external momenta, masses, efy(z, ¢;, m). The integration is understood for Euclidean
momenta with absolute value below thecutoff (|Ig| < A).

The integral (42) is just given for comparison, it is calculated with a simple mame
cutoff. In (43) with the standard (36) substitution one would get a constén'nstead of
—1[30].

4 2 2 2
/ .d lg 1 _ 1 n A+ A n A ) (42)
o 1O (B p a2 G \M\TAT ) TR
4 2 2 2
/ -d r Lol = L7 In A+A + = —1]. (43
Areg 1(2m)% (12 + A2)3 (4m)2 4 A2 A2 + A2
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