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S1: Analytic results without mixing

We derive analytic results for the long-term concentration and temperature contrast behavior when mixing is negligible (v = 0).
Numbers in (brackets) refer to the equations of the main part paper, letter S and numbers refer to equations on this Supplaman-
tary Material.

Without seasonality

Let us consider equation (2) and (9) with v = 0 and A = 0 leading to
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This equation is found to possess an asymptotically linear behavior

c*(t) = St+9. (S2)
With this form, from (4) and (8), we find

F(t)—F.=—Dgt+BSt+B8(6 —1)=—-Dt+ (5 — 1), (83)
where
D =Dy— S (S4)

is the slope of the time evolution of the temperature contrast. This shows that the temperature contrast, and in particular, the
strength of the climate change, becomes influenced by the phytoplankton concentration.
In order to specify the unknown constants S and 9, let us rewrite (S1) as

S(aDt+1—aB(6—1))=r(St+06)[(aD — S)t+1—aB(S—1)—4]. (S5)

For long times, i.e. ¢ > 1/r, the quadratic term dominates on the right hand side which cannot be compensated by anything
on the left hand side. The coefficient of the quadratic term should vanish, i.e. «D = S from which, since D = Dy — 35,

- Doa
5= 1+ pa’ (S6)
- 14 Ba’ (S7)

as stated in (11,12).
Assuming that the linear form is valid not only for very large times, but for intermediate ones, too, the linear terms on both
sides should compensate each other. From (S5), this yields

SaD=rS[1-—af(6—1)—94]. (S8)
After dividing by S and using that oD = S, we find

S=r(1-6(1+aB)+ap) (S9)
from which

_1+ap—-S/r 1+af—aD/r
0= 1+a8 1+a8 (510)

This result provides the constant § in the long-term dynamics (S2) of phytoplankton.



With seasonality
Let us add now periodic forcing in the form of (4) with (8), yielding
F(t)=F, — Dot + B(c(t) — 1) + Asin(wt). (S11)

We expect the phytoplankton concentration to be driven to oscillate with the same frequency w but with some phase shift ¢.
For long times, t >> 1/r, we assume that the snapshot attractor is of the form

c*(t) = St+ 6 + Bsin(wt — ¢) (S12)

with an amplitude B. The corresponding long term behavior of the carrying capacity is

K(t)=1—-a(=Dt+ (6 — 1)+ Asin(wt) + SBsin(wt — ¢)). (513)
In order to fix the constants, we substitute these into (2) to find

(S + Bwcos(wt — @) [aDt +1 — a(B(6 — 1) + Asin(wt) + SBsin(wt — ¢))] =

r(St+ 0+ Bsin(wt — ¢)) [(aD —y)t+1—a(B(6d — 1) + Asin(wt)) — 6 — B(1+ fa) sin(wt — ¢)]. (S14)

The vanishing of the quadratic term in ¢ provides the same equation as without periodic forcing, therefore (S6) and (S7) turn
out to remain valid. Similarly, from the linear terms (S10) is recovered.
From the product of trigonometric and linear terms, the following equation follows:

BwDacos(wt — ¢) = BSwcos(wt — ¢)
=rS(—adsin(wt) — B(1+ af)sin(wt — ¢)).
After an application of trigonometric identities, from the vanishing of the coefficient of ¢ cos(wt) we find

w

tang =~ (S15)
From the vanishing of the coefficient of ¢ sin(wt)
Blwsing + (14 Ba)cos¢g] = —raA,
from which the concentration amplitude is found to be
B:_\/(1+ﬁz)é+w2/r2' (510

We have thus been able to determine analytically the snapshot attractor ¢*(t) in a strongly nonlinear model with a linear drift
and periodic forcing. The snapshot attractor in the concentration remains point-like (no internal variability in c), but changes
in an oscillatory fashion about a linear growth with an amplitude B determined by all the system parameters.



S2: Figures
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Figure S1. Average phytoplankton concentration (c) as a function of time for aw = 0.05, v = 0.1 for various values of 3. The straight blue
line shows the expected phytoplankton concentration in lack of mixing (y = 0) as predicted by Eqs. (S2), (S6), (S10).
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Figure S2. Average phytoplankton concentration (c) as a function of time for o = 0.05, 5 = 0.1 for various values of v (v = 0,0.01,0.1

and 0.2). The straight yellow line shows the expected phytoplankton concentration in the lack mixing (v = 0) as predicted by Egs. (S2), (S6),
(S10).
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Figure S3. Time-dependence of the ensemble average (over 50000 realization) of the total atmospheric kinetic energy i% + 3> + 22 for
6 =0.1,«=0.05 and v = 0,0.01,0.1,0.2. The curves for different values of y are quite similar.

S3: List of variables and main parameters

a €]-0.2,0.2] Enrichment parameter

B €10,0.5] Extraction parameter: Strength of CO; extraction by phytoplankton

~ €10,0.2] Mixing parameter

T, Y, 2 Variables of Lorenz’s atmospheric model, see Eq. (1)

a=1/4,b=4,G =1 Parameters of Lorenz’s atmospheric model

t € [-10y, 150y] Time (in years)

F(t) Time-dependent temperature contrast between the Pole and the Equator, see Eq. (4)
D Temporal slope of temperature contrast F'(t), see Eq. (10)

Fo(t) Time-dependent external forcing of temperature contrast, see Eq. (8)

Dy =2/7300 Temporal slope of temperature contrast in Fy(t) due to anthropogenic origins
c(t) Time-dependent phytoplankton concentration, see Eq. (2)

S Temporal slope of phytoplankton concentration ¢(t), see Eq. (10)

K(t) Time-dependent carrying capacity, see Eq. (9)

Index (),. refers to values in the reference state without anthropogenic effects. Bracket <> indicates ensemble average.



S4: Applied numerical code

We used various versions of the following C code during our numerical simulations.

#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

int deri

{
double

<stdio .h>
<stdlib .h>
<math .h>
<time .h>

NMAX 4

PONTOSSAG le—15

PI 3.14159265358979324
DT 0.01

ZR 0.01

STARTYEAR —-20.0
ITERYEAR 150.0
ITERMAX 73+ITERYEAR
FELTMAX 1000000.0
STARTYEAR —-20.0
STARTTIME 73%STARTYEAR

Qo
N =
S O

alpha 0.0

beta 0.05

D 0.00027397260274

FA 2.0

omega PI%0.027397260274
FF 9.5

epsilon 0.0

R 1.0

v (double x[NMAX],

ft;

it (t<0)

{

/%
VE:

/%
VE:
VE:
VE:
/%
/%
VE:
VE:

double t,

Number of unknowns
Small number

Timestep
Radius around Z=0
Starting year

Last year of simulation
Max number of timesteps
Number of initial
Starting year
Start year
I unit =
73 units =

5 days
1 year =/

Parameters

Parameters of the model

double xder [NMAX])

ft=alpha*(x[3] —1.0)+FAxsin (omegasxt);

}

else

{

ft=alpha#(x[3]—1.0) —D*t+FA%*sin (omega=t);

}

conditions

in time units ,

*/
x/

%/
%/
x/
x/
%/
%/
%/

of the Lorenz model %/



xder[0]=—pow (x[1],2) —pow(x[2],2) —a*x[0]+ax( ft+FF);

xder [1]=x[0]+x[1]=bxx[0]*x[2]—x[1]+G;

xder [2]=x[0]*x[2]+bxx[0]xx[1]—x[2];

xder [3]=R#x[3]*(1 —x[3]/(1 —betaxft+epsilon«(pow(xder[0],2)+ pow(xder[l],2)+pow(xder[2],2)))
return O;

1

int rk4 (double x[NMAX], double t, double dt)

{
double k1[NMAX],k2[NMAX], k3 [NMAX] , k4 [NMAX] , y [NMAX] ;
int i;

deriv(x,t,kl);

for (i=0; i<MNMAX; y[i]=x[i]+dtxk1[i]/2, i++);

deriv (y, t+dt/2,k2);

for (i=0; i_NMAX; y[i]=x[i]+dt=xk2[i]/2, i++);

deriv(y, t+dt/2,k3);

for (i=0; i<MNMAX; yl[i]=x[i]+dt=k3[i1], i++);

deriv (y, t+dt ,k4);

for (i=0; i<NMAX; x[i]=x[i]+dtx(kl[i]+2«k2[i]+2*xk3[i]+k4[i])/6, i++);
return O;

}

int main ()

{
double t, x[NMAX], E, xder [NMAX];
int i, j, k;
FILE «fp;

srand (time (NULL) ) ;
fp = fopen( "s00.dat","w" );

/% Writes parameters %/
fprintf (fp, "#FA=%.2f, FF=%.2f,_ alpha=%.2f,_beta=%.2f,_epsilon=%.2f, _D=%.6f,_omega=%.6f, r
fprintf (fp, "#Datasets: _time_ x,  dx/dt__y. . dy/dt__z_ dz/dt_ c__dc/dt\n");

[ENTEY T

/% Initial data =/
for (k=0; k<FELTMAX; k++) {
t=STARTTIME;
x[0]=((double)rand ()/( double ) (RAND MAX))*3.5 —0.5;
x[1]=((double)rand ()/( double ) (RAND_MAX))«5 —2.5;
x[2]=((double)rand ()/( double ) (RAND MAX))*5 —2.5;
x[3]=((double)rand ()/( double)(RAND MAX))*0.2 +0.9;
fprintf (fp, "#_IC: time_=_%f _x,y,z,c_=.", t);
for (j=0; j_MAX; j++) {
fprintf (fp, "%f_.", x[j]1);
}
fprintf (fp,"\n");
for (i=(int)(STARTTIME/DT); i<(int)(ITERMAX/DT); i++) {
t = (float)ixDT,;



rk4 (x,t ,DT);
t = t+DT;
deriv(x,t,xder);
if (fabs(t/73 — (float)(int)(t/73))<0.00000001 && x[2]>—7ZR && x[2]<ZR){
fprintf (fp, "%f_", t);
for (j=0; j<_MAX; j++) {
fprintf (fp, "%f %f_", x[j],xder[j]);
1

fprintf (fp, "\n");

}
}

fclose (fp);
return O;



