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Abstract.  We study the final state of a susceptible-infected-susceptible (SIS) 
process whose running time is an exponentially distributed random variable. 
The population in which the spreading evolves is assumed to be homogeneously 
mixed. We show that whenever the state dependent normalized infection rates 
are on average smaller than the corresponding curing rates, the final prevalence 
of the process vanishes in the large population size limit, irrespectively of the 
mean running time of the process. We show how this statement implies similar 
results concerning the time evolution of the SIS and the modified SIS processes 
as well as the steady state of the modified SIS process. In the case of the usual 
SIS model, for suitably low values of the mean running time, the absence of a 
non-vanishing prevalence is found in the large population size limit, even if the 
normalized infection rate exceeds the curing rate.
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1.  Introduction

Stochastic modelling is a common way to simulate real world spreading processes like 
biological epidemic outbreaks, information spreading in social media, virus spreading in 
computer networks, error propagation, etc (see [1–4] and references therein).

Consider a Markovian susceptible-infected-susceptible (SIS) process [1, 2, 5] with 
infection rate β and curing rate δ taking place in a population of individuals modelled 
by a simple, unweighted graph G. Fixing the curing rate δ, it is plausible that the long 
time limit of the prevalence, i.e. the ratio of the infected individuals in the whole popu-
lation is zero for small values of β. After increasing β one should achieve a threshold 
βc(δ,G) beyond which there can be a non-zero prevalence in the long time limit. Above 
the threshold, the prevalence is a monotonically increasing function of β.

Although the closed form of the time evolution of the expectation value of the 
prevalence is not accessible due to the complexity of the problem, several mean field 
methods, like the heterogeneous [1, 4, 6] or the N-intertwined [7, 8] mean-field approx
imation have been developed which support the above presented picture and give 
close approximants of βc(δ,G). It turned out that the epidemic threshold satisfies the 
inequality [4, 7–9]

δ

λ(G)
� βc(δ,G),� (1)

where λ(G) is the largest eigenvalue of the adjacency matrix of G [10, 11]. The inequal-
ity becomes sharp in the case of complete graphs resulting in βc(δ,Kn) = δ/(n− 1). For 
general graphs, there is a sequence of lower bounds improving (1) given by higher order 
mean field approximations, see [9] for details.
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Unfortunately when one aims to perform a similar analysis within the theoretical 
framework of Markov processes one immediately runs into a serious problem if the pop-
ulation is finite [12, 13]. To see this, observe that the SIS process has a single absorbing 
state. It is the state that contains only susceptible individuals. Such a unique absorb-
ing state has a profound consequence on the asymptotic probability distribution of the 
Markov process. Namely, the long time limit of the probability of finding the system in 
the absorbing state is equal to one [7] making it impossible to define βc(δ,G) through 
the calculation of the expectation value of the prevalence in the long time limit.

In order to define the threshold by the analysis of the time evolution of the Markovian 
model, numerous exact results have been obtained. In [14] it was shown that (1) is a 
sucient condition for the separation of two dierent dynamical regimes which corre-
spond to fast and slow extinction of the spreading process. Fast extinction is character-
ized by an extinction time proportional to log(n), where n is the size of the population. 
Slow extinction time scales with exp(nα) for some positive α. An approximation of the 
time dependence of the prevalence has been recently obtained in [15, 16] by a ‘tanh 
formula’ which shows that a non-zero initial prevalence exponentially dies out below a 
threshold but can persist for rather long time above it. The stationary distribution of 
processes like the modified SIS [13] or the ε-SIS [12, 13] process on Kn show a threshold 
like behaviour in the n → ∞ limit as well as the extinction time and the second largest 
eigenvalue of the infinitesimal generator of the SIS process [17, 18] on the same graph.

On the other hand, the lifetime of groups formed by individuals are usually not 
infinite. Several groups are created for impermanent occasions. These groups form, 
exist and decay in finite time. Consider for instance humans forming study classes 
or temporary gatherings in transportation networks; or animal groups like of shoal-
ing fish and flocking birds. Even artificial networks, like the network of computers of 
a LAN party can form and decay. The study of formation and decay of such groups 
[19, 20] is becoming more and more important as mesoscale interaction data among 
humans are becoming available to researchers (see [21] and references therein). If a 
connected population has finite lifetime, then the definition of the epidemic process 
needs a modification, namely, we have to introduce a stopping time which is usually 
not definite but also a random variable with a given probability distribution, indepen-
dent of the process itself. While groups form, decay and reappear again, newly formed 
groups inherit those infected individuals that have been produced previously in such 
processes.

In this paper, we study the eect of a stochastic finite running time on the SIS 
process taking place on the complete graph Kn. While the SIS process evolves, the 
infection can spread along all the edges of Kn, that is the connection structure of the 
population remains static and represents homogeneous mixing. The distribution of the 
running time is at first assumed to be exponential. We study the expectation value 
of the prevalence in the final state of the system if initially there is only one infected 
individual in the group. (The choice of the initial data is common in the study of the 
SIS process [22].) The exponential running time of the population can save the infec-
tion from extinction. The question that we are interested in is, whether this is enough 
to maintain a finite average prevalence in the n → ∞ limit?

As the results of [13] suggest, it is not trivial that the stationary value of the preva-
lence is surely non-zero in the large population size limit even if the system does not 
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contain any absorbing state. In order to study the question in detail, we keep the usual 
assumption of the population being homogeneously mixed, that is the infection rate 
between the individuals is supposed to be uniform in the population. Nevertheless, we 
weaken the assumption of the curing and infection rates to be independent of the num-
ber of infected individuals: The infection rates βk and curing rates δk that now depend 
on k, the number of infected individuals in the population, replace the uniform infection 
and curing rate. It turns out that the mean of the ratio of the normalized infection rates 
(defined through the relationship βk = τk/n) and the curing rates plays a distinguished 

role: When τ/δ , defined by

τ/δ = lim
k→∞

1

k

(
τ1
δ2

+ · · ·+ τk
δk+1

)
� (2)

is less than one, the prevalence is zero in the large n limit irrespectively of the average 
running time of the process. The choice of the exponential distribution is not restrictive 
and the same statement can be formulated for any other distribution. We will see that 
the methods that enable the proof of the result can also be used to show the validity 
of similar statements concerning the full time evolution and the stationary state of the 
modified SIS process in the same parameter regime. The usual SIS model has uniform (k 
independent) normalized infection and curing rate. We will show that for small values 
of the expectation value of the stopping time, the average prevalence vanishes in the 
n → ∞ limit, even if the normalized infection rate is larger than the curing rate.

The paper is organized as follows. In section 2, we introduce the spreading processes 
under consideration and show how the final prevalence of the SIS and the modified SIS 

processes are related to each other. Section 3 contains the main results of our paper con-

cerning the τ/δ < 1 parameter regime. The detailed discussion of the usual SIS model is 
given in section 4. Summary of the results and the outlook are presented in section 5. 
The necessary mathematical preliminaries and some auxiliary calculations, including 
new upper and lower bounds on the Schur complements of tridiagonal infinitesimal 
generators are omitted in the main text, they can be found in the appendix.

2. The SIS process on the complete graph

Thanks to the high symmetry of the complete graph Kn, the continuous time Markov 
process of a SIS dynamics is lumpable [23], i.e. the states of the process can be joined 
together to form a new Markovian process with a smaller state space. The lumping 
results in a state space S = {0, 1, . . . ,n}, where a given state is the total number of the 
infected individuals in the system. The state space and the transition rates of the SIS 
process on Kn is shown in figure 1. It is clear that the process has an absorbing state 
characterized by the absence of infected individuals. Removal of the absorbing state 
leads to the modified SIS (MSIS) process [13]. Note that since the MSIS dynamics has 
no absorbing state its asymptotic distribution has a non-trivial dependence on the 
infection and curing rates [13].

The master equation of the time evolution of the probabilities pk(t) corresponding 
to the number of infected individuals is

https://doi.org/10.1088/1742-5468/aaa10f
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ṗT (t) = pT (t)Qn,� (3)

where p(t) = ( p0(t), . . . , pn(t))
T  contains the probabilities gathered into a vector and 

Qn is the (infinitesimal) generator of the process. The subscript indicates the size of the 
population. The generator is a tridiagonal matrix (see the appendix for details about 
these matrices) of the form

Qn =




0 0 0

δ1 a1 (n− 1)β1

2δ2 a2 2(n− 2)β2

3δ3 a3
. . .

(n− 1)βn−1

nδn an




,� (4)

containing the state dependent infection rates k(n− k)βk and curing rates kδk. In each 
row, the entries in the main diagonal are the opposite of the sum of the o-diagonal 
entries:

ak =

{−k(n− k)βk − kδk if 1 � k < n

−nδn if k = n.� (5)

The topmost row of Qn contains only zeros. This is the benchmark of the absorbing 
state: When infected individuals are absent, the state of the population cannot change 
[24]. The formal solution of (3) can be obtained by

pT (t) = pT (0) exp(Qnt).� (6)

The generator Qn has the special form

Qn =

(
0 0T

δ1e1 An

)
,� (7)

where e1 = (1, 0, . . . , 0)T  and 0 = (0, . . . , 0)T  are n-component vectors and An is the 
n× n (tridiagonal) matrix obtained by deleting the topmost row and the leftmost col-
umn of Qn. The structure of exp(Qnt) is also special:

Figure 1.  State space and transition rates of the SIS process on the complete 
graph Kn. The MSIS process has a similar transition graph, except the presence of 
the 0 state, which is then removed.

https://doi.org/10.1088/1742-5468/aaa10f
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exp(Qnt) =

(
1 0T

a(t) exp(Ant)

)
,� (8)

where

a(t) = δ1

∞∑
k=1

tk

k!
Ak−1

n e1.� (9)

The matrix An is of special importance for us. It gives a connection between the SIS 
process and the MSIS process. The time evolution of the MSIS process is generated by 

Q̂n:

Q̂n =




â1 (n− 1)β1

2δ2 a2 2(n− 2)β2

3δ3 a3
. . .

(n− 1)βn−1

nδn an




,� (10)

where the only dierence between An and Q̂n pops up in the first entry of the main 
diagonal:

â1 = a1 + δ1.� (11)
Thus, the two diers by only a projection of rank one:

Q̂n = An + δ1P1,� (12)

where P1 = e1e
T
1 . This has some important consequences. The invertibility of An (which 

we prove in section 3, see equation (36)) implies

a(t) = δ1A
−1
n (exp(Ant)− )e1,� (13)

where  is the n× n identity matrix. Furthermore, An is a tridiagonal matrix contain-
ing positive entries in the first diagonals, so it is similar to a symmetric tridiagonal 
matrix (see appendix A). Since the entries of exp(Qnt) are bounded functions of t, this 
symmetric matrix must have non-positive eigenvalues. But An is invertible, so the spec-
trum of An contains only negative numbers. Therefore exp(Ant) vanishes in the t → ∞ 
limit. The rate of convergence is dictated by the greatest eigenvalue of An. This implies 
that in the long time limit a(t) approaches −δ1A

−1
n e1, that is the first column of A−1

n , 
multiplied by −δ1. This can be calculated directly, but can be stated to be equal to one 
by noting that the entries of the time evolution operator, i.e. [exp(Qnt)]kl give the prob-
ability that the system containing initially k infected individuals will have l infected 
ones after the passing of time t, so

n∑
l=0

[exp(Qnt)]kl = 1.� (14)

In the long time limit this equation can hold if and only if the first column of the time 
evolution operator contains only ones. Thus, the stationary state of the system is trivial.

https://doi.org/10.1088/1742-5468/aaa10f
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Assume now that after some time t, the original process stops. The state of the 
system at t is given by (6). If the running time follows an exponential distribution with 
density f(t) = κ exp(−κt), then the expectation value of the final state is given by

∫ +∞

0

pT (0) exp(Qnt)κ exp(−κt)dt = κpT (0)(κ −Qn)
−1.� (15)

This calculation shows that the determination of the resolvent R(Qn;κ) = (κ −Qn)
−1 

is crucial to understand the final (stochastic) state of the system. The kl entry of 
κR(Qn;κ) gives the average probability of observing l infected individuals when the 
process stops, if there were initially k infected ones. This shows that each row of 
κR(Qn;κ) is a probability distribution, thus its row sums are equal to one.

Integrating the product of f(t) and the blocks of (8) gives that κR(Qn;κ) is of the 
form

κR(Qn;κ) =

(
1 0T

b κR(An;κ)

)
,� (16)

where

b = δ1A
−1
n

(
κ(κ − An)

−1 −
)
e1 = δ1R(An;κ)e1,� (17)

thus R(Qn;κ) is entirely determined by R(An;κ).
To study possible outbreaks in the system, we restrict our attention to the case 

when initially there is only one infected individual in the system, that is

pT (0) = (0, 1, 0, . . . , 0)T .� (18)

Let N be the number of infected individuals at the end of the process. The expectation 
value of the prevalence in the final state of the system is

I(Qn;κ) =
n∑

k=0

k

n
Prob(N = k) = κ

n∑
k=1

k

n
[R(An;κ)]1k,� (19)

and the probability of N being greater than zero is

ρn(κ) = 1− Prob(N = 0) = κ
n∑

k=1

[R(An;κ)]1k.� (20)

Both I(Qn;κ) and ρn(κ) can be calculated by the help of the first row of R(An;κ), 

which can be related to the resolvent of Q̂n, the generator of the MSIS process. To see 
this, note that the equality

R(Q̂n;κ)−R(An;κ) = R(Q̂n;κ)(Q̂n − An)R(An;κ),� (21)

which is called the second resolvent identity, combined with (12) gives

eT
1R(Q̂n;κ)− eT

1R(An;κ) = δ1e
T
1R(Q̂n;κ)e1e

T
1R(An;κ),� (22)

that is

eT
1R(An;κ) =

eT
1R(Q̂n;κ)

1 + δ1[R(Q̂n;κ)]11
.� (23)

https://doi.org/10.1088/1742-5468/aaa10f
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Since the entries of κR(Q̂n;κ) sums up to one in any of its rows, the preceding 
equation gives

ρn(κ) =
1

1 + δ1[R(Q̂n;κ)]11
� (24)

and

I(Qn;κ) = ρn(κ)I(Q̂n;κ),� (25)

where I(Q̂n;κ) is the expectation value of the prevalence of the MSIS process with the 
same initial condition and running time distribution. As mentioned in [13], the state of 
the system of an SIS process for some finite time is either being in the absorbing state, 
or it is identical to that of the corresponding MSIS process with the same initial con-
dition. This enables one to think about the steady state of the MSIS process as some 
metastate [13] or quasi-stationary distribution [25] of the SIS process. We see that such 

a connection translates naturally to stochastic finite running times also. Here, I(Q̂n;κ) 
is the conditional expectation of the prevalence, conditioned on not being in the absorb-
ing state of the SIS process at the stopping time.

The survival probability ρn(κ) is bounded away from zero for every 0 < κ. To see 
this, let N(t) be the state of the system in a particular realization of the SIS process at 
some time t. We have the following inequality:

Prob(0 < N(t)|N(0) = 1)

� Prob(N(t′) = 1 for all 0 � t′ � t) = e−(δ1+(n−1)β1)t,
�

(26)

where δ1 + (n− 1)β1 is the overall rate of a jump in the state space from the initial 
state (containing a sole infected individual), see figure 1. Multiplying both sides with 
κ exp(−κt) and integrating with respect to t from zero to infinity gives

ρn(κ) �
κ

κ+ δ1 + (n− 1)β1

.� (27)

If one would like to formulate a well defined n → ∞ limit of the SIS process on the 
complete graph, one always has to regulate the infection intensity, that is we have to 
choose constants τk and set βk as the size dependent quantity βk = τk/n [26]. Then, the 
lower bound of ρn(κ) is

ρn(κ) >
κ

κ+ δ1 + τ1(1− n−1)
> 0,� (28)

which remains finite in the n → ∞ limit. Thus, a vanishing limn→∞ I(Q̂n;κ) always 
implies limn→∞ I(Qn;κ) = 0 and vice versa.

The introduction of a stochastic finite running time enables the study of the param
eter dependence of the prevalence of the SIS process separately from the presence of 
the absorbing state. In the next section we show that whenever the constants τk are on 
average less than δk, then in the n → ∞ limit, albeit ρn(κ) remains non-zero, I(Qn;κ) 

as well as I(Q̂n;κ) vanish. But before moving to the proof and the consequences of the 
statement, we illustrate the behaviour of I(Qn;κ) with results of numerical calculations.

https://doi.org/10.1088/1742-5468/aaa10f
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For the sake of simplicity, assume that the constants τk and δk are independent of 
the number of infected individuals, that is τk = τ  and δk = δ. From a practical point of 
view the interesting regime of the parameter space formed by τ, δ and κ is character-
ized by κ � τ , δ. This is the case when the timescale of the spreading process is smaller 
than the timescale of the decay of the group in which the spreading occurs. In order to 
study the eect of the finite running time on the final state of the SIS process on Kn, 
we set κ = 10−3 and performed numerical calculation of the resolvent to obtain I(Qn;κ) 
for various values of δ. The results can be seen in figure 2, where we plot the prevalence 
as the function of τ. The figure shows that even a small decay rate can imply a drastic 
change in the final state of the system. Assuming a fixed δ, the small value of τ leads to 
small I(Qn;κ). At the beginning, increasing τ has only a little eect on the prevalence, 
then close to δ the situation changes and the prevalence starts to significantly increase. 
This rapid growth has two dierent phases: An initial convex phase pushes out the 
prevalence from the close-to-zero value, after which the forthcoming concave phase 
starts and leads to a moderate growth.

In order to gain insight into the n → ∞ limit we fixed κ = 10−3 and δ = 1 and 
evaluated the τ dependence of the prevalence for various increasing values of the 
population size. Figure  3 illustrates the results. It can be seen that the width 
and the height of the previously mentioned convex phase become smaller and 
smaller as n increases. On the other hand, the concave phases seemingly accumu-
late in the large n limit. For suciently large values of τ, the dierence between 
the curves corresponding to dierent population sizes becomes less and less pro-
nounced. These numerical calculations suggest that in the large n limit the preva-
lence I(Qn;κ) remains zero if the ratio τ/δ is less than a threshold which is close 
to one. Above the threshold the limit of I(Qn;κ) is non-zero and possibly depends 
on κ, see figure 4.

Figure 2.  Average prevalence in the final state of the SIS process on K50 initiated by 
one infected individual. The resolution of the numerical calculations is ∆τ = 10−4 
and κ is set to 10−3.

https://doi.org/10.1088/1742-5468/aaa10f
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3. Large n limit of τ/δ < 1

The matrix κ − An is tridiagonal

κ − An =




ã1(κ) −b2
−c2 ã2(κ) −b3

−c3
. . . . . .
. . . . . . −bn

−cn ãn(κ)




,� (29)

where

bk = τk−1(k − 1) (1− (k − 1)/n)

ck = kδk

ãk(κ) = κ+ bk+1 + ck

� (30)

with bn+1  =  0 and 1 � k � n. The entries of the first row of R(An;κ) = (κ − An)
−1 are 

given by (see appendix B)

[R(An;κ)]1k =
1

d1(κ)

b2 · · · bk
d2(κ) · · · dk(κ)

,� (31)

where (here and for the rest of the paper) the empty product is always understood to 
be equal to one and the (backward) Schur complements dk(κ) of κ − An are defined 
by the recursion

Figure 3.  Average prevalence in the final state of the SIS process on Kn initiated 
by one infected individual. The curing rate and the decay rate of the group are set 
to δ = 1 and κ = 10−3. The resolution of the numerical calculations is ∆τ = 10−3. 
The sizes of the populations where I(Qn;κ) was examined: n  =  100, 200, 300, 400, 
600, 1600, 2000, 3000, 5000. Curves corresponding to smaller n are always closer 
to the horizontal axis.

https://doi.org/10.1088/1742-5468/aaa10f
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dn(κ) = ãn(κ)

dk(κ) = ãk(κ)−
bk+1ck+1

dk+1(κ)
k < n.�

(32)

Since the bk’s are positive numbers, the Schur complements have to be also positive to 
maintain the non-negativity of the entries of R(An;κ). The recursion is non-linear and 
analytically intractable in most of the cases. Fortunately, we have the following two 
observations.

Firstly, members of the sequence d1(κ), . . . , dn(κ) are monotonically increasing as 
functions of ãk(κ) (see appendix C). Since all of the former depends linearly on κ we 
have

dk(κ1) � dk(κ2),� (33)
whenever κ1 < κ2. By equation (31) and the positivity of the Schur complements, this 
clearly indicates

[R(An;κ1)]1k � [R(An;κ2)]1k� (34)
for all 1 � k � n.

Secondly, for κ = 0 the Schur complements dk(0) can be calculated explicitly and 
they are equal to ck:

cn = an

ck = ck + bk+1 − bk+1 = ak −
bk+1ck+1

ck+1

k < n.�
(35)

The determinant of a tridiagonal matrix is the product of its Schur complements (see 
appendix B), therefore

Figure 4.  Average prevalence in the final state of the SIS process on K10 000 
initiated by one infected individual. The curing rate is set to δ = 1. The resolution 
of the numerical calculations is ∆τ = 2 · 10−3.
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det(−An) = d1(0) · · · dn(0) = n!
n∏

l=1

δl� (36)

and An must be invertible.
Combining equation (35) with the inequality dk(0) < dk(κ) gives

0 � [R(An;κ)]1k �
b2 · · · bk
c1c2 · · · ck� (37)

for all 0 � κ. Thus the prevalence satisfies the inequality:

I(Qn;κ) = κ
n∑

k=1

k

n
[R1k(An;κ)]1k

�
κ

δ1

n∑
k=1

k

n

k−1∏
l=1

τl
δl+1

l

l + 1

(
1− l

n

)
.

�

(38)

Using the inequality

l

l + 1

(
1− l

n

)
< 1� (39)

provided that l  <  n, we arrive to

I(Qn;κ) <
κ

δ1

n∑
k=1

k

n

k−1∏
l=1

τl
δl+1

<
1

n

κ

δ1

∞∑
k=0

(k + 1)
k∏

l=1

τl
δl+1

.� (40)

The mean ratio of the normalized infection rates τk and the curing rates δk is defined as

τ/δ = lim
k→∞

1

k

(
τ1
δ2

+ · · ·+ τk
δk+1

)
.� (41)

When τ/δ  is less than one, the infinite sum on the rhs of (40) is finite. This becomes 
transparent when the root test and the inequality of the geometric and arithmetic mean 
is applied to the series. For any non-negative integer m, we have

lim
k→∞

(
km

k∏
l=1

τl
δl+1

)1/k

< lim
k→∞

km/k

k

(
τ1
δ2

+ · · ·+ τk
δk+1

)
= τ/δ.� (42)

With the introduction of the constants

µm =
∞∑
k=0

km

k∏
l=1

τl
δl+1

� (43)

the previous result leads to

I(Qn;κ) <
1

n

κ

δ1
(µ0 + µ1) .� (44)

This implies that

lim
n→∞

I(Qn;κ) = lim
n→∞

I(Q̂n,κ) = 0� (45)
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for all 0 < κ. That is, if τ/δ < 1, the introduction of a finite running time cannot sus-
tain a finite prevalence in the n → ∞ limit because even the MSIS process which does 
not have an absorbing state has a vanishing average prevalence, which is one of the main 
results of our paper. We show three other consequences of the inequality (44).

First, we show that (45) implies that the average prevalence of the stationary state 
of the MSIS process initiated by a single infected individual is zero in the n → ∞ limit 

whenever τ/δ < 1. For uniform τk and δk, this has been proved in [27] or [13]. Here, we 
give an independent proof in the general, state dependent case.

The matrix R(Q̂n;κ) has the decomposition

R(Q̂n;κ) =
n∑

k=1

1

κ− λk(Q̂n)
rkl

T
k ,� (46)

where rk and lTk  are the right and left eigenvectors of Q̂n corresponding to the eigenval-
ues λk(Q̂n) which are now indexed such that they form a descending sequence:

0 = λ1(Q̂n) > λ2(Q̂n) � · · · � λn(Q̂n).� (47)

The right and left eigenvector corresponding to the zero eigenvalue are the vector 1 
containing only ones and π, the vector that contains the stationary probabilities of the 

MSIS process. To calculate the prevalence, one has to calculate κR(Q̂n;κ):

κR(Q̂n;κ) = 1πT +
n∑

k=2

κ

κ− λk(Q̂n)
rkl

T
k .� (48)

The expectation value of the prevalence in the stationary state of the MSIS process is

P (Q̂n) =
n∑

k=1

k

n
πk.� (49)

Using the n component vector

x = (1/n, 2/n, . . . , (n− 1)/n, 1)T ,� (50)

we have

I(Q̂n;κ) = P (Q̂n) +
n∑

k=2

κ

κ− λk(Q̂n)
eT
1 rk · lTkx.� (51)

The left and right eigenvectors are of the form lTk = (Tuk)
T  and rk = T−1uk, where uk 

is a unit vector and T is a diagonal matrix with entries [T ]11  =  1 and

[T ]kk =

√
b2 · · · bk
c2 · · · ck

1 < k � n� (52)

in the main diagonal (see appendix A). Hence the magnitude of the scalar products of 
(51) are bounded by

|lTkx| = |uT
k Tx| � ‖Tx‖,� (53)
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and

|eT
1 rk| = |eT

1 T
−1uk| = |eT

1uk| � 1,� (54)

with ‖ · ‖ being the Euclidean norm. We also have an upper bound on ‖Tx‖:

‖Tx‖ =
n∑

k=1

k

n

√√√√(k − 1)!

k!

k−1∏
l=1

(
1− l

n

) k−1∏
l=1

τl
δl+1

�
n∑

k=1

1

n

√√√√k
k−1∏
l=1

τl
δl+1

CBS

�

√√√√ n∑
k=1

k

n

k−1∏
l=1

τl
δl+1

�

√√√√ 1

n

∞∑
k=1

k
k−1∏
l=1

τl
δl+1

=

√
µ0 + µ1

n
,

�

(55)

where µ0 and µ1 are defined in (43). Let κn = |λ2(Q̂n)|α−1
n e−n, where

αn = max{1, τ1 + δ1, . . . , τn + δn},� (56)
then

|I(Q̂n;κn)− P (Q̂n)| <
n∑

k=2

√
µ0 + µ1

n

1

1 + enαn|λk(Q̂n)/λ2(Q̂n)|

<
n∑

k=2

√
µ0 + µ1

n
e−n

<
√
µ0 + µ1n

1/2e−n,
�

(57)

that is in the n → ∞ limit I(Q̂n;κn) and P (Q̂n) converge to the same number. Since 
the magnitude of λk(Q̂n)/αn is bounded from above (see appendix A) by

|λk(Q̂n)|
αn

< 2n
max1�k�n{τk + δk}

αn

< 2n,� (58)

the sequence κn tends to zero when n goes to infinity. We can write

P (Q̂n) <
√
µ0 + µ1n

1/2e−n +
I(Qn;κn)

ρn(κn)
(28)
<

√
µ0 + µ1n

1/2e−n +
I(Qn;κn)

κn

(
κn + δ1 + τ1

(
1− n−1

))

(44)
<

√
µ0 + µ1n

1/2e−n +
µ0 + µ1

n

κn + δ1 + τ1
δ1

,

�

(59)

from which

lim
n→∞

P (Q̂n) = 0� (60)
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readily follows.

The second consequence concerns the point-wise limit of P (Q̂n; t), that is the full 
time evolution of the expectation value of the prevalence of the MSIS process initiated 
by a single infected individual. If N(t) denotes the number of infected individuals, then

P (Q̂n; t) =
n∑

k=1

k

n
Prob(N(t) = k|N(0) = 1) =

n∑
k=1

k

n
[exp(tQ̂n)]1k.� (61)

The Laplace transform of P (Q̂n; t) is

P̂ (Q̂n; z) =

∫ +∞

0

P (Q̂n; t)e
−ztdt = eT

1R(Q̂n; z)x,� (62)

which is finite if �[z], the real part of z ∈ C is positive, due to the fact that Q̂n has 
non-positive eigenvalues. The second resolvent identity

R(An; z)−R(Q̂n; z) = −δ1R(An; z)e1e
T
1R(Q̂n; z)� (63)

gives

eT
1R(Q̂n; z)x =

eT
1R(An; z)x

1− δ1[R(An; z)]11
,� (64)

which enables us to give an upper bound of the magnitude of P̂ (Q̂n; z) as follows. Since

[R(An; z)]1k =
1

d1(z)

b2 · · · bk
d2(z) · · · dk(z)

,� (65)

where dk(z) are the Schur complements of z − An, equation (64) can be written as

eT
1R(Q̂n; z)x =

1

d1(z)− δ1

n∑
k=1

k

n

b2 · · · bk
d2(z) · · · dk(z)

.� (66)

Let z = κ+ iω and assume that 0 < κ. In appendix C, we show that �[dk(κ+ iω)] has 
the lower bound

�[dk(κ+ iω)] � κ+ dk(0) = κ+ ck,� (67)
which results in the following upper bound:∣∣∣∣∣

n∑
k=1

k

n

b2 · · · bk
d2(z) · · · dk(z)

∣∣∣∣∣ �
n∑

k=1

k

n

b2 · · · bk
|d2(z)| · · · |dk(z)|

�
n∑

k=1

k

n

b2 · · · bk
d2(0) · · · dk(0)

�
n∑

k=1

k

n

b2 · · · bk
c2 · · · ck

<
µ0 + µ1

n
,

�

(68)
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where we have used the same bounds for the sum that were used in the derivation of 
(44). Since the inequality

�[δ1 − d1(κ+ iω)] � δ1 − κ− c1 = −κ� (69)
also holds (see appendix C) and results in

|δ1 − d1(κ+ iω)| � κ,� (70)
we see that—as a function of the variable ω—the magnitude of the Laplace transform 

P̂ (Q̂n;κ+ iω) is uniformly bounded by

|P̂ (Q̂n;κ+ iω)| < 1

κ

µ0 + µ1

n
,� (71)

that is P̂ (Qn;κ+ iω) converges uniformly to the constant zero function on the �[z] = κ 
line of the complex plane. This implies the same convergence of the integrand of the 
inverse Laplace transform

P (Q̂n; t) =
1

2π

∫ +∞

−∞
P̂ (Qn;κ+ iω)e(κ+iω)tdω� (72)

for all 0  <  t, i.e. when τ/δ < 1 the limit curve of the sequence P (Q̂n; t), that is the time 
evolution of the prevalence of the MSIS process initiated by a single individual vanishes 
in the large n limit for all time instances 0  <  t. By the absence of the absorbing state 

P (Qn; t) � P (Q̂n; t) also holds and implies similar consequences for the large n limit of 
P(Qn;t).

Finally, let f(t) be an arbitrary running time distribution of the process. The Fourier 

transform of f(t) is denoted by f̂(ω). The average prevalence after the halt of the SIS 
dynamics initiated by only one infected individual is

If (Qn) =

∫ +∞

0

eT
1 exp(Ant)xf(t)dt =

∫ +∞

−∞
f̂(ω)eT

1R(An;−iω)xdω.� (73)

The magnitude of the integrand is bounded by

|f̂(ω)eT
1R(An;−iω)x| < 1

n

|f̂(ω)|
δ1

(µ0 + µ1) ,� (74)

which can be obtained by using (68) and |d1(−iω)| � δ1 for the first Schur complement 

of z − An. Since |f̂(ω)| � 1, the integrand converges uniformly to the constant zero 
function. Thus, whenever τ/δ < 1 holds, using any distribution of the running time of the 
process results in a vanishing average prevalence of the SIS process (initiated by a sole 
infected individual) in the final state, in the n → ∞ limit.

4. Large n limit of δ < τ

In this section, we analyze the usual SIS model whose individual normalized infection 
rates do not depend on the number of infected individuals, that is
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bk+1 = τ(k − 1)(1− (k − 1)/n),

ck = k 1 � k � n,
� (75)

where, for the sake of simplicity, we have set δ = 1. Our result here is only partial, that 
is, it does not cover the whole parameter space formed by κ and τ. However it remains 
significant, because in a huge region of the parameter space, we are able to demonstrate 
the absence of a finite prevalence in the n → ∞ limit: We prove that whenever 2 � τ  
and κ satisfies the inequality

7τ + 1

2
� κ,� (76)

then the prevalence I(Qn;κ) vanishes in the n → ∞ limit. In order to prove the state-
ment, we first give a lower bound of the Schur complements of the matrix κ − An. In 
appendix C, we show that whenever

3τ + 1

2
� κ� (77)

holds, then the Schur complements of κ − An have the lower bound

dk(κ) > κ− 3τ + 1

2
+ max{bk, ck},� (78)

see inequality (C.62) and the discussion that precedes it. Furthermore, if 2 � τ , then 
for all 2 < k < nxτ − 1, where xτ = 1− τ−1, the inequality ck < bk holds, while for all 
nxτ − 1 < k � n, we have bk < ck (see appendix C, especially inequality (C.68)). In the 
first case, max{bk, ck} = bk and the product bk/dk(κ) has the upper bound

bk
dk(κ)

<
bk

κ− (3τ + 1)/2 + bk

<
(k − 1)(1− k/n)

G(κ, τ) + (k − 1)(1− k/n)

<
k − 1

G(κ, τ) + k − 1
,

�

(79)

where G(κ, τ) stands for

G(κ, τ) =
κ

τ
− 1

2τ
− 3

2
.� (80)

Note that 2 � G(κ, τ) if and only if inequality (76) holds. In the second case, 
max{bk, ck} = ck, so

bk
dk(κ)

<
bk

κ− (3τ + 1)/2 + ck

<
bk

κ− (3τ + 1)/2 + bk

<
k − 1

G(κ, τ) + k − 1
.

�

(81)

https://doi.org/10.1088/1742-5468/aaa10f


The SIS process in populations with exponential decay

18https://doi.org/10.1088/1742-5468/aaa10f

J. S
tat. M

ech. (2018) 013404

Thus, the prevalence I(Qn;κ) has the upper bound

I(Qn;κ) <

<
κ

d1(κ)

1

n
+

κb2
d1(κ)d2(κ)

2

n
+

κb2
d1(κ)d2(κ)

n∑
k=3

k

n

k∏
l=3

l − 1

G(κ, τ) + l − 1
.

�
(82)

Assuming 2 � G(κ, τ), we get

n∑
k=3

k

k∏
l=3

l − 1

G(κ, τ) + l − 1
<

n∑
k=3

k

k∏
l=3

l − 1

l + 1
.� (83)

The sum in the rhs can be evaluated explicitly:

n∑
k=3

k

k∏
l=3

l − 1

l + 1
=

n∑
k=3

6

k + 1
= 6(Hn+1 −H3),� (84)

where Hk is the kth harmonic number. This gives rise to the inequality

I(Qn;κ) <
κ

d1(κ)

1

n
+

κb2
d1(κ)d2(κ)

2

n
+

6κb2
d1(κ)d2(κ)

(Hn+1 −H3).� (85)

In the n → ∞ limit, all the terms of the rhs of the preceding inequality converges to 
zero, thus

lim
n→∞

I(Qn;κ) = 0,� (86)

which is the desired result. This calculation also allows to give an upper bound on the 
prevalence if 1 � G(κ, τ) < 2 holds. In that case, instead of (83), we have

n∑
k=3

k

k∏
l=3

l − 1

G(κ, τ) + l − 1
<

n∑
k=3

k

k∏
l=3

l − 1

l
= 2(n− 2),

�
(87)

which can be inserted to (82). Then, using (C.11) and taking the n → ∞ limit on both 
sides gives

lim
n→∞

I(Qn;κ) <
2κτ

(κ+ 1)(κ+ 2)

5τ + 1

2
� κ <

7τ + 1

2
.

�
(88)

In figure 5, we summarize the results concerning the usual SIS model. If τ/δ < 1, 
then there is no non-vanishing prevalence in the large n limit, regardless of the value 
of κ. The same remains true if 2 < τ/δ and κ/δ is great enough to exceed 7τ/2δ + 1/2. 
The parameter regime 1 < τ/δ < 2 remained completely untouched. Nonetheless, we 
believe that τ/δ = 2 is not a real critical value, where the process significantly changes 
its behaviour, but its appearance is supposed to be more or less a result of the approx
imation method we used in appendix C, that is it can be eliminated from the analysis in 
the future, if one works out better approximation schemes of the Schur complements. 
The low κ/δ regime remains undiscovered. Here, the numerical results that have been 
presented for instance in figure 3 supports the idea of a non-vanishing prevalence in 
the n → ∞ limit. Furthermore, we can give a theoretical argument also: To be more 
precise, we show that if δ < τ  holds, then an upper bound I(Qn;κ)/κ < B(n) which is 
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uniform with respect to 0 < κ and vanishes in the large n limit cannot exist. To prove, 
note that if δ < τ  holds, then the magnitude of the vector ‖Tx‖, introduced in equa-
tion (53) has the upper bound

‖Tx‖ �

√√√√
n∑

k=1

k

n

(τ
δ

)k−1

�

√
1

n

(n− 1)(τ/δ)n − n(τ/δ)n−1

(τ/δ − 1)2

� e
n
2
ln(τ/δ)(τ/δ − 1)−1,

�

(89)

which can be shown analogously as in (55). Let κn be defined by

κn = |λ2(Q̂n)|(τ + δ)−1e−n(1+ 1
2
ln(τ/δ)),� (90)

where λ2(Q̂n) is the second largest eigenvalue of Q̂n, the infinitesimal generator of the 
MSIS process. Then, in the same vein as it has been presented in (57), one can show 

that the dierence of the prevalence of the MSIS process I(Q̂n;κn) and its stationary 
value P (Q̂n) is bounded by

|I(Q̂n;κn)− P (Q̂n)| <
n∑

k=2

e−n

τ/δ − 1
<

ne−n

τ/δ − 1� (91)

that is, when n → ∞, κn as well as the dierence tend to zero. On the other hand, 
I(Q̂n;κn) and I(Qn;κn) are related to each other by equality (25), so the same calcul
ation that was carried out in (59) now results in

P (Q̂n) <
ne−n

τ/δ − 1
+

I(Qn;κn)

κn

(κn + τ + δ)

<
ne−n

τ/δ − 1
+ B(n)(κn + τ + δ).

�

(92)

Figure 5.  The prevalence I(Qn;κ) in the large n limit, as the function of the 
parameters κ/δ and τ/δ.
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Thus if B(n) tends to zero as n → ∞, then P (Q̂n) must vanish in the large n limit 
which is known to be not the case [27].

5. Summary and outlook

In this paper we examined the eect of finite, stochastic stopping time on the Markovian 
SIS and MSIS dynamics. We examined the average prevalence in the final state of these 
systems if the spreading process was initiated by a sole infected individual. We have 
shown numerical evidence that in the n → ∞ limit universal behaviour occurs. We 
have proven this universality when the normalized infection rate is on average less than 
the curing rate. We have shown that the upper bounds on the magnitude of the entries 
of the resolvent of the infinitesimal generator of these processes lead to results concern-
ing the full time evolution of the SIS process also. We have proven that the choice of 
the distribution of the stopping time, i.e. the exponential distribution was not restric-

tive at all in the τ/δ < 1 parameter regime: Similar conclusions apply for any other 
distribution. In case of the usual SIS model, we have shown that δ < τ  is not enough 
to maintain a non-vanishing average prevalence in the large n limit: If the expectation 
value of the exponentially distributed stopping time is not large enough, the process 
cannot sustain significant average prevalence.

Historically, the first mathematical epidemiological models were based on the 
assumption of homogeneous mixing. These models and their refinements (like for 
instance the age-structured models) have the advantages of being analytically tractable 
but they miss the capability of describing the dynamics of the contagion on the short 
time scale or to incorporate the non-homogeneous structure of the contact networks of 
populations where the spreading takes place. The data driven interest in contact net-
works states urgent demand for quantitative description of spreading processes evolv-
ing on time-varying contact networks. Nevertheless simulations gave crucial insights 
how epidemics evolve in artificial [28] or empirical [19, 29, 30] time-varying networks, 
the phenomenological models of these spreading processes are still in their infancy. 
One possible direction to break the homogeneity assumption of certain epidemiologi-
cal models is considering group formation dynamics [21], where groups can form and 
decay in a stochastic manner. While each group is well mixed within the collection of 
the individuals, the whole population has a contact structure that can be very far from 
being studiable with the usual homogeneous models. This is where our considerations 
can have much impact.

To interpret the state dependent transition rates τk and δk that were used in sec-
tion 3, we just mention the well known processes which can aect the transition rates 
of epidemiological processes, for instance immunization, state organized preventive 
actions, the change of behaviour of humans under pandemics, uncertainty in model-
ling, etc. Enabling the infection and curing rates to depend on the number of the 
infected individuals can have theoretical importance also. For instance, consider the 
sequence τk = rkδk+1, where the sequence rk is formed by i.i.d. random variables of 
mean r. If r  <  1, the, the strong law of large numbers guarantees, that the SIS processes 
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parametrized by an arbitrary (positive) sequence δk and the corresponding τk satisfies 
almost surely the assumptions of the statements given in the main text.

The future directions of the theoretical research consists of further exploration of 

the 1 < τ/δ parameter regime, the study of dierent initial conditions and the general-
ization of the methods presented here to other homogeneous processes formulated on 
the complete graph Kn.
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Appendix A. Spectral decomposition of tridiagonal matrices

Throughout the text we use tridiagonal matrices. Here, we review some of their proper-
ties. Let ak, bk and ck be sequences of length n, the subscripts having values 1 � k � n. 
A tridiagonal matrix Mn has the form

Mn =




a1 −b2
−c2 a2 −b3

−c3
. . . . . .
. . . . . . −bn

−cn an




.� (A.1)

If none of the members of the o-diagonal sequences are equal to zero and the sign of bk 
is always the same as the sign of the corresponding ck, then the similarity transforma-
tion with the diagonal matrix T defined through

[T ]11 = 1

[T ]kk =

√
b2 · · · bk
c2 · · · ck

2 � k
�

(A.2)

turns Mn into a symmetric tridiagonal matrix with entries −
√
ckbk in the first diagonals. 

Whenever λ is an eigenvalue of TMnT
−1 with the corresponding eigenvector u, the 

vectors uTT  and T−1u are left and right eigenvectors of Mn, corresponding to the same 
eigenvalue. Thus, the spectral decomposition of Mn is

Mn =
n∑

k=1

λk(Mn) · (T−1uk)(Tuk)
T .� (A.3)

The non trivial entries of the diagonal matrix that symmetrize the infinitesimal 

generator of the MSIS process Q̂n with individual infection rates βk = τk/n and curing 
rates δk, are given by

[T ]2kk =
(k − 1)!

k!

k−1∏
l=1

(
1− l

n

) k−1∏
l=1

τl
δl+1

.� (A.4)
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One can calculate an upper bound of the magnitude of the eigenvalues of Q̂n with 

the help of Gershgorin’s circle theorem [31]: An eigenvalue of Q̂n is contained within 

at least one interval of the real line of radius 
∑

l �=k |[Q̂n]kl| and center [Q̂n]kk. Since 

Q̂n is an infinitesimal generator of a Markov process, we have [Q̂n]kk = −
∑

l �=k[Q̂n]kl, 

thus

|λk(Q̂n)| < 2 max
1�k�n

(bk+1 + ck) < 2 max
1�k�n

(τkk + δkk) < 2n max
1�k�n

(τk + δk)� (A.5)

which results in

|λk(Q̂n)| < 2n max
1�k�n

{τk + δk}.� (A.6)

Appendix B.  Inversion of tridiagonal matrices

The canonical n× n shift matrix is

Sn =




0 1

0 1

0 1
. . . 1

0




.� (B.1)

We introduce the notational convention that whenever x1, · · · , xn is a sequence, x̂ 
denotes the diagonal matrix whose entries in the main diagonal are the members of 
the sequence, i.e. [x̂]kk = xk. The matrix Mn in (A.1) can be written in the compact 
form

Mn = â− Snb̂− ĉST
n .� (B.2)

Assume that Mn is invertible. The so called UDL decomposition of Mn is a factorization 
of Mn such that U is an upper, L is a lower triangular matrix, both of them containing 
ones in their main diagonal and D is a diagonal matrix. For tridiagonal matrices, the 
UDL decomposition is relatively simple. Define the sequence d1, . . . , dn by the backward 
recursion relations

dn = an,

dk = ak −
bk+1ck+1

dk+1

k < n,
�

(B.3)

then the matrices

U = − Snb̂d̂
−1,

L = − d̂−1ĉST
n ,

D = d̂

�
(B.4)

give the desired decomposition. The members of the sequence d1, . . . , dn are called the 
(backward) Schur complements of Mn. Since det(U) = det(L) = 1, the determinant of 
Mn is equal to the determinant of D, that is

https://doi.org/10.1088/1742-5468/aaa10f


The SIS process in populations with exponential decay

23https://doi.org/10.1088/1742-5468/aaa10f

J. S
tat. M

ech. (2018) 013404

det(A) = d1 · · · dn.� (B.5)
Thus, an invertible Mn has non-vanishing Schur complements.

The inversion of U and L can be carried out explicitly using Gaussian elimination:

(L−1)kl =





cl···ck−1

dl···dk−1
if k < l

1 if k = l

0 if k > l
� (B.6)

and

(U−1)kl =





bl···bk−1

dl···dk−1
if l < k

1 if l = k

0 if l > k

.� (B.7)

Our primary interest concerns usually the first row of the inverse of a tridiagonal 
matrix. This can be calculated easily in the UDL decomposition. Since L−1 is a lower 
triangular matrix, it leaves eT

1  invariant when multiplied from the left, thus

[eT
1 (UDL)−1]k = [d̂−1U−1]1k =

1

d1

b2 · · · bk
d2 · · · dk� (B.8)

where an empty product—if it appears—understood to be equal to one. More on the 
inversion of the tridiagonal matrices can be found in [32, 33] and references therein.

Appendix C. Monotonicity of the Schur complements and some  
of its consequences

The members of the sequence D1, . . . ,Dn, which satisfy the recursion

Dn = an

Dk = ak −
bk+1ck+1

Dk+1

1 � k < n� (C.1)

are monotone functions of the members of the sequence a1, . . . , an, if the signs of bk and 
the corresponding ck are the same. To see this, note that by the backward recursion 
relations, Dk depends only on ak, . . . , an. This gives

∂

∂ak
Dk(a1, . . . , an) = 1� (C.2)

and

∂

∂al
Dk(a1, . . . , an) =

bk+1ck+1

d2k+1

∂

∂al
Dk+1(a1, . . . , an),� (C.3)

if k  <  l. The repeated application of this formula results in

∂

∂al
Dk(a1, . . . , an) =

bk+1ck+1 · · · blcl
D2

k+1 · · ·D2
l

,� (C.4)
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for all k < l � n. Since 0 � bk+1ck+1, we arrive to the desired result.
In Section  3, we study the Schur complements of the matrix z − An where 

z = κ+ iω has a non-negative real part 0 � κ. The matrix z − An is tridiagonal and 
has the following relationship between entries in the main and first diagonals (in the 
notation of (A.1)):

an = cn

ak = z + ck + bk+1 1 � k < n� (C.5)

with the positivity prescription that 0 < bk, ck. For z  =  0, the Schur complements can 
be calculated explicitly:

ak = ck 1 � k � n.� (C.6)
We show that the z dependent Schur complements dk(z) of z − An satisfy the inequality

�[dk(z)] � κ+ dk(0) = κ+ ck� (C.7)
for all 1 � k � n if κ = �[z] is non-negative. The real part of the Schur complements 
satisfy the recursion

�[dn(z)] = κ+ cn

�[dk(z)] = κ+ ck + bk+1 −
bk+1ck+1

|dk+1(z)|2
�[dk+1(z)].

�
(C.8)

Note that the relationship

�[dn(z)] � κ+ cn� (C.9)
trivially holds. Assuming �[dk+1(z)] � κ+ ck+1, we get

�[dk(z)] = κ+ ck + bk+1 −
bk+1ck+1�[dk+1(z)]

�[dk+1(z)]2 + �[dk+1(z)]2

� κ+ ck + bk+1 −
bk+1ck+1

�[dk+1(z)]

� κ+ ck + bk+1 −
bk+1ck+1

κ+ ck+1

� κ+ ck + bk+1 −
bk+1ck+1

ck+1

� κ+ ck,
�

(C.10)

which proves the desired result for all 1 � k < n.
For positive κ, the Schur complements of κ1− An are also positive and the recur-

sion of (C.1) tells that they are bounded from above by κ+ ck + bk+1. Setting bn+1 to be 
equal to zero, we have the following estimates of the Schur complements

κ+ ck � dk(κ) � κ+ ck + bk+1 1 � k � n.� (C.11)
These crude estimates can be refined. To go on, we need the following statement: 

Whenever Mn is an n× n tridiagonal matrix of the form (A.1), whose diagonal entries 
satisfy

0 < a2k − 4bkck,� (C.12)
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then there exists a tridiagonal matrix Fn, whose Schur complements are given by the 

expression (ak +
√

a2k − 4bkck)/2 and the dierence of Mn and Fn is a diagonal matrix 
[34]. Since the construction of Fn is used later on, we repeat the proof here. Assume 
that (C.12) holds and define the sequences

f±,k =
1

2

(
ak ±

√
a2k − 4bkck

)
1 � k � n.� (C.13)

The diagonal matrices f̂+ and f̂− formed of these sequences satisfy Vieta’s formulae:

f̂+ + f̂− = â,

f̂+f̂− = b̂ĉ.
� (C.14)

Let Fn be defined by the UDL decomposition

Fn = ( − Snb̂f̂
−1
+ )f̂+( − ĉf̂−1

+ ST
n ),� (C.15)

then Fn is tridiagonal and its Schur complements are given by the sequence f+,1, . . . , f+,n. 
On the other hand, Fn and Mn are related to each other by

Fn = f̂+ − Snb̂− ĉST
n + Snb̂f̂

−1
+ ĉST

n

= â− f̂− − Snb̂− ĉST
n + Snb̂f̂

−1
+ ĉST

n

= Mn + Snf̂−S
T
n − f̂−,

�

(C.16)

where Vieta’s formulae have been used. By choosing bn+1  =  0 and an arbitrary cn+1, the 
sequence f−,1, . . . , f−,n can be extended by f−,n+1  =  0, in accordance with its definition. 
Introducing the diagonal matrix

Figure C1.  Depiction of the numerical solution of the Schur complements (solid); 
their upper bound according to (C.19) (dashed); their lower bound according to 
(C.42) (dotted); and the approximation of (C.70) (dotdash). The actual parameter 
values are set to δ = 1, τ = 3, κ = (3τ + 1)/2 and n  =  105.
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df̂− = Sf̂−S
T − f̂− =



f−,2 − f−,1

. . .
f−,n+1 − f−,n


 ,� (C.17)

we arrive to

Fn = Mn + df̂−,� (C.18)

which proves the statement.
The refined bounds can be obtained by choosing an appropriate tridiagonal matrix 

Fn of the form (C.15) whose Schur complements can be calculated explicitly, then using 
the monotonicity result will give bounds on the Schur complements of κ − An.

First, we state that the Schur complements of κ − An have upper bounds of the 
form

dk(κ) �
1

2

(
κ+ un + bk + ck +

√
(κ+ un + bk + ck)2 − 4bkck

)
,� (C.19)

where un is specified later. Choosing

ak = κ+ un + bk + ck,� (C.20)
one can calculate the sequences f±,1, . . . , f±,n and the corresponding matrix Fn using 
(C.13) and (C.15). According to the previous statement, the Schur complements of Fn 
are given by

fk,+ = Dk(a1 + df−,1, . . . , an + df−,n).� (C.21)
If un is such that for all 1 � k � n the inequality

κ+ un + bk + ck + df−,k > κ+ bk+1 + ck,� (C.22)
holds, then the monotonicity of the Schur complements guarantees that the inequalities

fk,+ � Dk(κ+ b2 + c1, . . . ,κ+ bn+1 + cn) = dk(κ) 1 � k � n,� (C.23)
where dk(κ) is the kth Schur complement of κ − An, are also satisfied, thereby (C.19) 
holds for all 1 � k � n. Inequality (C.22) is true if and only if

un > max
1�k�n

{dgk},� (C.24)

where the sequence g1, . . . , gn is given by

gk =
1

2

(
bk − ck +

√
(κ+ un + ck + bk)2 − 4bkck

)
.� (C.25)

Since all the gk’s depend on un, inequality (C.24) is implicit in un. Fortunately, in the 
case of the SIS model, we can explicitly solve it in the δ � τ parameter regime: For the 
sake of simplicity, set δ = 1 and let

b1 = 0,

bk+1 = τk

(
1− k

n

)
1 � k � n,�

(C.26)
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and

ck = k.� (C.27)
If we introduce the functions

bn(x) = τ(x− n−1)(1− x+ n−1),

c(x) = x,

hn(α, x) =
√
(α + bn(x) + c(x))2 − 4bn(x)c(x),

gn(α, x) =
1

2
(bn(x)− c(x) + hn(α, x)) ,

�

(C.28)

then gk is given by

gk = ngn(αn, k/n) 1 � k � n,� (C.29)
where αn = κ/n+ un/n. This enables us to approximate the dierences dgk by

dgk = n

∫ (k+1)/n

k/n

∂xgn(αn, x)dx < max
k/n�x�(k+1)/n

{∂xgn(αn, x)},� (C.30)

thus

max
1�k�n

{dgk} < max
1/n�x�1

{∂xgn(αn, x)}.� (C.31)

A short calculation gives

∂x(bn(x)− c(x)) < τ − 1 +
2τ

n
1/n � x � 1,� (C.32)

while the calculation of an upper bound of

∂xhn(αn, x) =
αn∂x(bn(x) + c(x))

hn(αn, x)
+

∂x(bn(x)− c(x))2

2hn(αn, x)
� (C.33)

is a little bit more involved. Since αn can be safely assumed to be positive, the inequality

h2n(αn, x) = α2
n + 2αn(bn(x) + c(x)) + (bn(x)− c(x))2 > α2

n� (C.34)

holds, and the first term of the rhs of equation (C.33) is bounded by

αn∂x(bn(x) + c(x))

hn(αn, x)
< max

1/n�x�1
{∂x(bn(x) + c(x))} < τ + 1 +

2τ

n� (C.35)

for all 1/n � x � 1. Fix a given x between 1/n and one! If bn(x) = c(x) holds, then the 
second term in (C.33) vanishes, thus zero is an upper bound on it. If bn(x) is not equal 
to c(x), then there are two possibilities. If the second term of (C.33) is negative, it is 
bounded again by zero from above. If it is positive, then it is a monotone decreasing 
function of the positive αn and in that case

∂x(bn(x)− c(x))2

2hn(αn, x)
<

∂x(bn(x)− c(x))2

2hn(0, x)
= ∂x|bn(x)− c(x)|

< τ + 1− 2τ

n
,

�
(C.36)
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for all 1/n � x � 1. Finally, we can write

∂xhn(αn, x) < 2τ + 2,� (C.37)
which, together with (C.32) gives

max
1/n�x�1

{∂xgn(αn, x)} <
3τ + 1

2� (C.38)

for all 1 � n. Thus, the constant sequence

un =
3τ + 1

2
1 � n� (C.39)

solves inequality (C.24), thereby inequality (C.19) stands for all 1 � k � n.
In the same vein as before, we can give a lower bound of the Schur complements 

of κ − An, but now the possible values of κ, where the lower bound is applicable is 
restricted. Assume that there exists ln such that 0 < κ+ ln and ln satisfies the implicit 
inequality

ln < min
1�k�n

{dgk},� (C.40)

where gk is now defined by

gk =
1

2

(
bk − ck +

√
(κ+ ln + ck + bk)2 − 4bkck

)
.� (C.41)

Then, the Schur complements of κ − An are bounded from below by

dk(κ) �
1

2

(
κ+ ln + bk + ck +

√
(κ+ ln + bk + ck)2 − 4bkck

)
.� (C.42)

To prove the statement, note that 0 < κ+ ln holds, so members of the sequence 
a1, . . . , an, defined by

ak = κ+ ln + bk + ck� (C.43)
satisfy inequality (C.12). Thus, the sequences

f±,k =
1

2

(
ak ±

√
a2k − 4bkck

)
1 � k � n� (C.44)

have non-negative members and the sequence f+,1, . . . , f+,n gives the Schur comple-
ments of the matrix

Fn = ( − Snb̂f̂
−1
+ )f̂+( − ĉf̂−1

+ ST
n ).� (C.45)

Thus, the Schur complements f+,1, . . . , f+,n satisfy the equalities

fk,+ = Dk(a1 + df−,1, . . . , an + df−,n),� (C.46)
and whenever ln satisfy the inequalities

κ+ ln + bk + ck + df−,k < κ+ bk+1 + ck� (C.47)
for all 1 � k � n, the monotonicity of the Schur complements guarantees that the 
inequalities
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fk,+ < Dk(κ+ b2 + c1, . . . ,κ+ bn+1 + cn) = dk(κ) 1 � k � n,� (C.48)
where dk(κ) is the kth Schur complement of κ − An, are also satisfied. Since the 
inequalities in (C.47) are equivalent to (C.40) (if the corresponding definition of the 
sequence g1, . . . gn is given by (C.41)), the statement is proved. In case of the SIS model, 
inequality (C.40) can be solved explicitly. Let bn(x), c(x), hn(x) and gn(α, x) defined as 
in (C.28)! Then the minimum of the finite dierences dgk is bounded from below by

min
1�k�n

{dgk} > min
1/n�x�1

{∂xgn(βn, x)},� (C.49)

where βn = κ/n+ ln/n is assumed to be positive. Again the derivative of gn(βn, x) can 
be bounded from below by giving lower bounds on the derivatives of bn(x)− c(x) and 
hn(βn, x). The first is easy to calculate:

∂x(bn(x)− c(x)) > −τ − 1.� (C.50)
Provided that βn is positive, lower bounds of the two terms that consists of ∂xhn(βn, x) 
are given by

βn∂x(bn(x) + c(x))

hn(βn, x)
> min

1/n�x�1
{∂x(bn(x) + c(x))} > 1− τ ,� (C.51)

and

∂x(bn(x)− c(x))

2hn(βn, x)
> min

1/n�x�1
{∂x|bn(x)− c(x)| : bn(x) �= c(x)}

> −1− τ .

� (C.52)

Finally,

gn(βn, x) > −3τ + 1

2
,� (C.53)

that is the constant sequence

ln = −3τ + 1

2
� (C.54)

satisfy inequality (C.40) and if the inequality

3τ + 1

2
< κ� (C.55)

also holds, the Schur complements of κ − An are bounded from below according to 
(C.42).

Due to the appearance of the square root, the applicability of the bounds (C.19) and 
(C.42) is complicated. However, when k is large, using an arbitrary positive constant γ, 
the approximation

bk + ck +
√

(γ + bk + ck)2 − 4bkck ≈ 2max{bk, ck}� (C.56)

sounds reasonable. To quantify it, we introduce the dierence

0 < ∆k(γ) =
1

2

(
ck + bk +

√
(γ + ck + bk)2 − 4bkck

)
−max{bk, ck}.� (C.57)

https://doi.org/10.1088/1742-5468/aaa10f


The SIS process in populations with exponential decay

30https://doi.org/10.1088/1742-5468/aaa10f

J. S
tat. M

ech. (2018) 013404

Introducing the auxiliary sequences

σk = |bk − ck|,� (C.58)

Σk = bk + ck,� (C.59)
a short calculation gives

∆k(γ) =
γ

2

γ + 2Σk

σk +
√

γ2 + 2γΣk + σ2
k

.� (C.60)

Replacing σk with Σk under the square root gives a lower bound

γ

2
<

γ

2

γ + 2Σk

γ + 2max{bk, ck}
< ∆k(γ),� (C.61)

which can be used to give a lower bound of dk(κ): Setting γ = κ− (3τ + 1)/2 and 
assuming 0 < γ , we obtain

dk(κ) >
γ

2
+ ∆(γ) + max{bk, ck}

> γ +max{bk, ck}

> κ− 3τ + 1

2
+ max{bk, ck}.

�

(C.62)

The replacement of σk with zero in the denominator of equation (C.60) results in an 
upper bound:

∆k(γ) <

√
γ

2

√
γ + 2Σk.� (C.63)

Considering the SIS model, whenever 1 < τ holds (the infection rate is set to be equal 
to one), there is at least one specific value of 1 � k � n, such that the corresponding σk 
approaches zero, that is bk and ck are close to each other. That is, inequality (C.63) is 
the sharpest one which holds for all 1 � k � n. Nonetheless, when σk is far away from 
zero, we can give another upper bound:

2∆k(γ) =

∫ γ

0

µ+ Σk√
µ2 + 2µΣk + σ2

k

dµ

<

∫ γ

0

µ√
µ2 + σ2

k

dµ+

∫ γ

0

Σk

σk

dµ

<

[√
µ2 + σ2

k

]γ
0

+
Σk

σk

γ

< γ

(
1 +

Σk

σk

)
,

�

(C.64)

which results in

∆k(γ) < γ
max{bn(xk), c(xk)}
|bn(xk)− c(xk)|

,� (C.65)
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where xk  =  k/n. One may wonder whether the ratio in the rhs of this inequality is small 
enough to recognize (C.65) as a useful upper bound. To answer this question, let k−

n  and k+
n  

be the smallest and the greatest of the (not necessarily integer) solutions of the inequality

k � τ(k − 1)

(
1− k − 1

n

)
1 � k � n.� (C.66)

A short calculation shows

k±
n = 1 +

n

2
xτ ±

n

2

√
x2
τ −

4

τn
,� (C.67)

where xτ = 1− τ−1. For any 0 � c � 1/2 and 0 � z � 1, the inequality 1− z <
√
1− z

< 1− cz holds, thus

1 +
2c

(τ − 1)
< k−

n < 1 +
2

(τ − 1)
,� (C.68)

and

nxτ −
2

τ − 1
< k+

n < nxτ −
2c

τ − 1
.� (C.69)

That is, whenever 2 < τ holds, the integer solutions of the inequality ck < bk are 
between 2 and nxτ − 1. In that case, choosing any k, which is suciently far away form 
2 and nxτ , the rhs of (C.65) remains suciently small. Furthermore, if κ is larger than 
(3τ + 1)/2, the upper and lower bounds given by (C.19) and (C.42) combined with the 
bounds (C.61) and (C.65) give rise to quantify the approximation

dk(κ) ≈ κ+max{bk, ck}.� (C.70)
Introducing the function

e(x) =

{
1 + 1/|x− xτ | if x < xτ

1/|x− xτ | if x > xτ ,
� (C.71)

which is a reasonable approximant of max{bn(x), c(xk)}/|bn(xk)− c(xk)| in the large n 
limit, we get

|κ+max{bk, ck} − dk(κ)| �
3τ + 1− 2κ

4
+ e(x)(2κ+ 3τ + 1),� (C.72)

if the rhs exceeds (3τ + 1)/2 and

|κ+max{bk, ck} − dk(κ)| �
3τ + 1

2
,� (C.73)

otherwise. If k is suciently far away from 2 and nxτ , the rhs of these equations are 
rather small, when compared to the actual values of dk(κ): While the latter is of the 
order o(k), the the former remains of order o(1), see figure C1 for a numerical example.
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