PHYSICAL REVIEW E 100, 052201 (2019)

State-dependent vulnerability of synchronization

Everton S. Medeiros,""2* Rene O. Medrano-T,? Iberé L. Caldas,! Tamds Tél,*> and Ulrike Feudel®
Unstitute of Physics, University of Sdo Paulo, Rua do Matdo, Travessa R 187, 05508-090, Sdo Paulo, Brazil
2[nstitute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg,
Carl-von—Ossietzky—Strafie 911, Box 2503, 26111 Oldenburg, Germany
3Department of Physics, Federal University of Sdo Paulo, Rua Sdo Nicolau, 210, 09913-030, Sdo Paulo, Brazil

*Institute for Theoretical Physics, E6tvos Lordnd University, Pdzmdny Péter Sétany 1/A, H-1117 Budapest, Hungary

SMTA-ELTE Theoretical Physics Research Group, Pdzmdny Péter Sétdny 1/A, H-1117 Budapest, Hungary
® (Received 12 April 2019; revised manuscript received 4 October 2019; published 4 November 2019)

A state-dependent vulnerability of synchronization is shown to exist in a complex network composed of
numerically simulated electronic circuits. We demonstrate that disturbances to the local dynamics of network
units can produce different outcomes to synchronization depending on the current state of its trajectory. We
address such state dependence by systematically perturbing the synchronized system at states equally distributed
along its trajectory. We find the states at which the perturbation desynchronizes the network to be complicatedly
mixed with the ones that restore synchronization. Additionally, we characterize perturbation sets obtained
for consecutive states by defining a safety index between them. Finally, we demonstrate that the observed

vulnerability is due to the existence of an unstable chaotic set in the system’s state space.
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I. INTRODUCTION

Many complex systems, ranging from technological de-
vices to ecology and human physiology, are composed of
smaller parts operating in synchrony in order to perform
their global behavior [1]. For example, in power grids, the
power generators have to remain synchronized to guarantee
the frequency stability of the network. Failures in this state
can lead to severe power outages [2]. In ecology, phenologi-
cal synchronization establishes the temporal overlap between
interacting species. Such synchrony is now threatened by
climate change [3]. In the heart, asynchronous pumping of the
left and right ventricles leads to out-of-sync heart contractions
causing severe health conditions due to low blood flow to the
body [4].

In networks, the asymptotic stability of synchronous states
with respect to small perturbations is well determined in the
linear limit by the formalism of the master stability func-
tion [5,6]. Yet the impact of large perturbations has been
addressed only by measurements performed in the synchro-
nization basins, i.e., the state space configuration in the ini-
tial instant [7,8]. Additionally, the fractality of the bound-
aries of such synchronization basins has been also identi-
fied as a source of the sensitivity of synchronized states to
perturbations [9].

However, instead of estimating whether a perturbation of
an initial condition leads a network to desynchronization,
one can also raise a different question. Suppose the system
has already reached a completely synchronized trajectory
performing some oscillatory dynamics. One now asks how
vulnerable is this synchronized oscillation with respect to
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prescribed perturbations occurring at a certain state along the
trajectory? Does it matter at which state this perturbation
occurs along the trajectory? The answers to these questions
are essential for the safety of technological applications as
well as for designing responsible interventions in natural
systems.

To address this question, we consider a random network
composed of identical electronic circuits simulated numeri-
cally. By perturbing the synchronized oscillation in chrono-
logical instants of time to achieve different states, we demon-
strate that the susceptibility of synchronization to disturbances
changes in a nontrivial manner along the system’s trajectory.
A perturbation applied at one state along the trajectory could
lead to a restoration of the synchronized oscillation, while the
same perturbation applied in another state, very close to the
previous one, could desynchronize the whole network. We
call this phenomenon state-dependent vulnerability of syn-
chronization. We analyze it by applying sets of perturbations
in subsequent states along the trajectory. For these pertur-
bation sets, we identify safe sets that still lead the network
to synchronization and characterize their transformations by
measuring the safety index, a measure of their alikeness. A
basin stability analysis shows that the relative size of the
safe sets does not change significantly between consecutive
states along the trajectory, suggesting that only the location of
the sets is important. Finally, we attribute the phenomenon
to the existence of an unstable chaotic set in the state
space and show the mechanism at which this set influences
the network.

II. STATE-DEPENDENT VULNERABILITY

We study a random network composed of N electronic cir-
cuits numerically simulated via the following dimensionless
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dynamics [10]:
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where f(y;) = %£(lyi +y~'| — lyi — ¥ ~'|) describes a piece-
wise linear diode resistance with slope y. The vector v;(t) =
(x;(2), yi(t), z;(t)) defines the state space of each circuit i
with i = 1,...,N. The parameters o and S are related to
circuit elements. Following Ref. [10], for each circuit we fix
o =0.6, B =2.18, and y = 470. The parameters o and N
are the coupling strength and the network size, respectively.
The parameter D; is the number of units to which the circuit i
is connected. The set of adjacent units of i, D;, is specified by
an adjacency matrix shown in the Supplemental Material [11].
The ordinary differential equations that simulate the electronic
circuits [Eq. (1)] have been integrated by a Runge-Kutta-
Fehlberg algorithm with adaptive step size. The numerically
obtained trajectory is shown for points equally spaced by 0.01.

Considering first an isolated electronic circuit, i.e., 0 =0
in Eq. (1), the system exhibits a stable limit cycle A with
dimensionless period T = 16, a chaotic saddle A embedded
in the basin of attraction of A, and an attractor at infinity.
Next, we couple N = 25 circuits with these features in a
network with coupling strength fixed at o = 0.1. Initially, all
network circuits are set to synchronize at their limit-cycle
attractor A. The synchronized state lies in a synchronization
manifold S, defined as vi(z) = v,(t) = - - - = vy (¢), where all
states, in the limit cycle, are generally denoted by vg(¢) =
(xs(1), ys(t), zs(2)). In order to distinguish the attractor A of
a single uncoupled circuit from the synchronized oscillating
dynamics of the high-dimensional system, we refer to the
latter as Ag, the limit-cycle attractor in the 3N-dimensional
state space. However, we emphasize that in the synchronized
oscillation there are no interactions between the nodes be-
cause of the vanishing coupling term. Consequently, each
circuit behaves as isolated and the limit cycle A is a projection
of Ag onto the state space of each circuit. Additionally, in the
3N-dimensional state space, we refer to the chaotic set as A,
not to be confused with the chaotic saddle in the state space
of a single unit denoted by A. The synchronized behavior of
the network can be assessed by a next-neighbor error, E;(¢) =
[lvi(t) — vi—1(¢)]|. The perturbation applied to one unit resid-
ing on Ag consists of a perturbation A; = (Ax;, Ay;, Az),
directly applied to the dynamical state of a preselected circuit,
i. In this manner, the dynamical state into which a perturbation
brings the unit i is given by v;(t,) = [xs(#,) + Ax;, ys(tp) +
Ay;, z5(tp) + Az, the time ¢, (¢, € [t,t + T]) specifies all
perturbed states along the trajectory starting from the state at
initial instant ¢ = 0 given by v;(0) = v,(0) = --- = vy (0) =
(—0.765, 0.003, 1.040).

The perturbed state v;(z,) and the one belonging to Ag,
vs(t,), at which the perturbation is applied are the central
quantities in this work. In Fig. 1(a), the network is perturbed
in one of the states belonging to Ag arbitrarily chosen to
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FIG. 1. Time evolution of the system. The color code indicates
neighbor error, E;. (a) The perturbation, Ay = (0.0, 0.97, —1.14), is
added to the local dynamics of node 19 to realize the state v;9(z,;) at
t,1 = 4005.97. (b) Synchronized oscillation. (c) Same perturbation
applied to the node 19 to realize the state vio(t,; + At) with At =
1072. (d) Chaotic behavior observed in the state space of node 19 in
the networked system in the fully desynchronized regime.

be vs(tp1), at t, = 4005.97, by applying the perturbation
A9 = (0.0,0.97, —1.14) also to an arbitrarily chosen unit
(i = 19 with D9 = 10). For an alternative perturbed unit see
the Supplemental Material in Ref. [11]. We observe that the
system returns to the synchronization manifold S leading to
the conclusion that the perturbed state vi9(z,;) belongs to the
synchronization basin B of Ag, i.e., Vio(#y1) € B(Ag). As a
consequence, the synchronization is restored after the pertur-
bation and all units follow the same limit cycle A depicted in
Fig. 1(b). Now, if the same perturbation is applied in a slightly
different state specified by #,; + At with Az = 1072, then we
find that the network desynchronizes, indicating the opposite
as before, i.e., vig(t,1 + At) ¢ B(Ag), as shown in Fig. 1(c).
Each unit is trapped in irregular trajectories [cf. Fig. 1(d)].
This disagreement suggests that the synchronization stability
depends crucially on the particular state at which a certain per-
turbation is applied. Consequently, the very same perturbation
imposed on the system at the same circuit may not lead the
network to normal functioning in synchrony.

To clarify this matter, we check the response to a particular
perturbation applied at different states along the trajectory
on the completely synchronized limit cycle Ag. During one
period 7 = 16 of the limit cycle Ag, each state vs(z,) is
uniquely specified by the time #,. Hence, to study the effect
of the perturbation along the system trajectory, we vary the
instants of the perturbation in the interval 7, € [4000, 4016].
We define an order parameter Z = (1/N) Zivz | Ki with K; =
0 for E;(t.na) < 8, and K; = 1 for E;(tenq) > 6. The overall
integration time, fenq, is fixed at feng =3 X 10%. Employ-
ing this definition, the completely synchronized oscillation
gives Z = 0, while the completely desynchronized one gives
Z = 1. The parameter § = 0.01 controls the synchronization
quality, see the Supplemental Material in Ref. [11] for this
choice of §. In Fig. 2(a), we show the component zg of the
synchronized oscillatory state as a function of the perturbation
time 7,. The blue-colored (dark-gray) points indicate the z
component of states in which the applied perturbation A9 =
(0.0,0.97, —1.14) leads to restoration of synchronization in
the network, Z = 0. The yellow-colored (light-gray) points
indicate the z component of states in which the same applied
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FIG. 2. (a) The z coordinate of the synchronized oscillation
as function of the perturbation instant 7,. In yellow (light gray)
are the z component of vg(f,) for which a perturbation, Ay =
(0.0,0.97, —1.14), would desynchronize the network. The blue
(dark-gray) color corresponds to z component of vg(#,) for which the
perturbation restores synchronization. (b) A blow-up of the squared
region of (a). The inset shows the sensitivity to the state at a finer
scale.

perturbation, A9, would desynchronize the network, Z = 1.
In Fig. 2(b), we highlight a very sensitive interval of the
synchronized oscillation [squared region of Fig. 2(a)]. In the
inset, we show a magnification of an interval in which both
outcomes are mixed even at a finer scale. This confirms
the observations of Fig. 1 and shows that the distribution
of states leading to synchronization or desynchronization is
very intricate, exhibiting a fractal-like behavior with more and
more mixing of outcomes at finer and finer scales.

Next, we investigate the synchronization dynamics in the
space of perturbations A; applied to preselected states. For
the sake of visualization, we restrict ourselves to applying
perturbations in the plane Ax; = 0. In Fig. 3(a), for the
perturbation leading to the state vio(#,1) at 7, = 4005.97,
we show a synchronization diagram for (Azj9 X Ayjg). The
blue (dark-gray) color indicates perturbation regions for
which the network synchronizes (Z = 0), the safe set. The
yellow color (light gray) indicates regions for which the
network desynchronizes (£ = 1). Regions in white indicate
perturbations for which the solution converges to infinity,
the second attractor in the system. In this figure, we find
continuous regions of perturbations leading the network to
both, synchronized or desynchronized, states. Additionally,
we also observe regions where the perturbations leading
to each behavior appear to possess a riddledlike structure

[12,13]. However, to confirm this hypothesis one would need
to compute, for example, the uncertainty exponent [14,15].
In Fig. 3(b), we present the synchronization diagram for a
subsequent state vg(f,; + Ar) with Ar = 1072, and obtain
similar characteristics for the distribution of the blue (dark-
gray) points. Moreover, if the procedure is repeated for other
states along the synchronized trajectory, for instance, vg(#,2)
at t,o = 4009.95 and vs(#,2 + At) with At = 102 [Fig. 3(c)
and 3(d)], we find a completely different distribution of such
points, though the pictures of subsequent states along the
trajectory are again similar. The white dots in the insets of
Fig. 3 indicate changes, from O to 1, of the order parameter
for subsequent states.

In order to determine the changes between perturba-
tion planes obtained for subsequent states along the trajec-
tory causing state-dependent vulnerability, we define a finite
perturbation plane as U = {Ajg € R3 | Axi9 =0, Ay €
[—4, 4], Azj9 € [—13, 13]}, as in the diagrams shown in
Fig. 3. The safe set of perturbations applied at the state vg(z,)
is defined as the subset of U for which Z = 0, and denoted
by Btsp C B(Ag). Similarly, the unsafe set, the perturbations in
U that desynchronize the network, are defined as the elements
of U for which Z > 0 and denoted by B{;. Now we estimate

the fraction of the safe set B,Sp that synchronizes the network
after a perturbation in the state vg(#,) and also in the state
vs(t, + At) by:

I, = Vol(BtSp n Btsp+At)/V01(BtSp)' @

We call this measure the safety index, as it reflects the prob-
ability of the network to possess the same response with re-
spect to perturbations at subsequent states along the trajectory.
Hence, in Fig. 4(a), we find 1, = 0.73, as the safety index
for perturbations applied in the states vg(#,1) and vg(t,1 +
At), and this indicates that only 73% of the perturbations
in the state vg(z,) still synchronize the network in the state
vs(fp1 + At). The same analysis is employed for perturbations
applied in the states vs(t,2) and vs(tp, + Ar) resulting in a
safety index I, , = 0.70, Fig. 4(c). These results indicate that
the safe set B[SP changes for every state along the synchronized
trajectory, causing the system to be vulnerable to a prescribed
perturbation in some states and resilient in others. Increasing
the distance between consecutive states with a bigger time
difference At, the safety index would decrease accordingly.
Comparing the safe sets of Figs. 3(a) and 3(c), where At =
Iy —ty ~ 4.0, the dissimilarity is evident. To investigate
whether the state-dependent vulnerability of synchronization
is related to the relative size of the safe sets, we compute
their basin stability [8]. To this end, for a perturbation ap-
plied to the state vs(t,), we first denote the subset of per-
turbations for which only finite solutions are observed as
Q, = Bti U B,‘:, i.e., all perturbations leading to infinity are
excluded. Then, for a state perturbed at z, we estimate the
measure S, = Vol(B,Sp )/Vol(Q;,) that constitutes an estim-
ate of the volume of Q,, occupied by the safe set Btsp . For the
synchronization diagrams, we obtain S;,; = S;p14a, = 0.213
[Fig. 4(b)] and S;,» = 0.161 and S; 24 A, = 0.164 [Fig. 4(d)].
These findings demonstrate that the relative volume of the
safe sets does not change significantly for subsequent states
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FIG. 3. [(a) and (b)] Synchronization diagrams, Azj9 X Ay, obtained by perturbing the state vs(z,;) at t,; = 4005.97 and vs(¢,; + At)
with At = 1072, respectively. The color encodes the order parameter, blue (dark gray) for Z = 0 (synchronized) and yellow (light gray) for
Z =1 (completely desynchronized). [(c) and (d)] Synchronization diagrams for two different consecutive states vg(¢,) at ¢,, = 4009.95 and
vs(t, + At) with At = 1072, respectively. The white dots in the insets indicate changes of Z.
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FIG. 4. In (a) the blue (dark-gray) color indicates the safety index
between synchronization diagrams obtained for two consecutive
states Vs(7,1) at 1, = 4005.97 and vs(f,; + Ar) with Ar = 1072
(b) The blue (dark-gray) color indicates the corresponding basin
stability of the syncronization diagrams analyzed in (a). In (c), the
blue (dark-gray) color indicates the safety index for two different
consecutive states vg(t,,) at f,, =4009.95 and vs(t,, + At) with
At = 1072. (d) The blue color (dark gray) indicates the correspond-
ing basin stability of the synchronization diagrams analyzed in (a).

along the synchronized trajectory, i.e., S;, & S; A, There-
fore, the state-dependent vulnerability of synchronization is
only related to changes in the location of BZ with respect
to each point on the limit cycle Ag and not to the relative
size of the safe sets. As a consequence, the safety index
is a suitable indicator of this kind of vulnerability, while
basin stability is not a sensitive measure. The safety index
reflects how synchronization diagrams change from one state
to another; therefore, it measures how many perturbations
identified as safe at one state can turn into unsafe ones at
a subsequent state. By contrast, basin stability measures the
relative size of the safe set. This relative size remains almost
unchanged for subsequent states along the trajectory, while
its location in state space changes substantially indicated by
the safety index. The relative size of the safe sets measured
by basin stability varies only over larger time intervals within
the period T, e.g., comparing them at the time instants £,
and t,,. Basin stability is thus not an appropriate measure
for state-dependent vulnerability with respect to perturbation
applied along one cycle of the synchronized trajectory.

III. THE MECHANISM OF STATE-DEPENDENT
VULNERABILITY

The mechanism behind this phenomenon is related to the
chaotic set A lying very close to the stable limit cycle Ag.
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FIG. 5. (a) Basin of attraction of the limit cycle A on the plane
xo = 0 of the uncoupled circuit, i.e., o = 0 in Eq. (1). The six blue
(dark-gray) dots represent the intersections of A with this section,
while red (black) dots mark the projection of the chaotic saddle A.
Gray dots mark the initial conditions having lifetime longer than 50
and provide an approximation to the stable manifold of A. (b) A
magnification of the black ractangle in (a) showing the detail of the
chaotic saddle. Note how close the saddle A is located to A.

The low values of the basin stability shown in Figs. 4(b)
and 4(d), i.e., the large fractions of unsafe perturbations,
indicate that a large portion of the system’s state space is
covered by the stable manifold of the chaotic saddle A.
This high-dimensional chaotic set appears from the individual
ones, occurring in every single circuit. Considering a Poincaré
section at x = 0 for an individual uncoupled circuit, i.e., 0 =
0 in Eq. (1), we show in Fig. 5 a projection of the chaotic
saddle A in red (black) obtained by the sprinkler method
[16] and an approximation of its stable manifold (gray dots).
This approximation is obtained by computing the saddle’s
escape time defined as the number of crossings in the Poincare
section before a disk of radius & = 10~ around the attractor
points is reached. The statistics of such escape times obeys an
exponential distribution [16,17]. However, coupling all those
circuits, another large chaotic set A emerges being difficult
to obtain [18]. As demonstrated in Ref. [9], this chaotic
set appears to be an attractor for the coupled system or, at
least, a chaotic saddle with extremely long transients with
escape times beyond our numerical computations. Hence,
when the system is coupled, there is a competition, in each
unit, between the network coupling and the chaotic dynamics
in the vicinity of the chaotic set A. If the coupling is not strong
enough to attract the perturbed unit quickly back to the syn-
chronization manifold, despite the perturbed unit, additional
ones are pulled to the chaotic set. Once a critical number
of units approach this chaotic set, escaping from it becomes
very unlikely [19,20], trapping the high-dimensional system
in a chaotic desynchronized behavior for times indefinitely
long. This mechanism is explained in detail in Ref. [9] for
perturbations applied in the initial instant of time. Here we
show a much stronger consequence of such a phenomenon,
the outcome of such a competition between the coupling
strength and the chaotic dynamics leading to synchronization
or desynchronization, exhibits an intricate dependence on the
current state of the system along its oscillatory trajectory.
Furthermore, we remark that the state-dependent vulner-
ability of synchronization in the example considered in this
study is along a limit cycle. It means that the profile of
vulnerability is repeated every period T of this cycle. There-
fore, the reported phenomenon in this particular case can
be interpreted as a phase-dependent phenomenon similar to
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FIG. 6. Time for the synchronized state be restored, #, as func-
tion of the perturbation instants, #,. The perturbation is given by
Ay =(0.0,0.97, —1.14). The yellow (light-gray) bars delimitate
perturbation instants for which the system desynchronizes, while the
height of the blue (dark-gray) bars represents the restoring time of
synchronization.

others observed in low-dimensional systems, such as phase-
dependent noise-induced switching between different limit
cycles in a phytoplankton-zooplankton model [21] and phase-
sensitive excitability [22].

Now, in order to demonstrate the state dependence of the
phenomenon, we analyze the trajectory of the perturbed unit
for perturbations, A9 = (0.0, 0.97, —1.14), applied at differ-
ent states of the synchronized trajectory. Since in one cycle
of the oscillation, ¢, € [4000,4016], each trajectory’s state is
uniquely expressed by the time 7, we show this analysis as a
function of the perturbation instants as in Fig. 2. Hence, for the
states in which the synchronization manifold is restored, the
system can be examined by computing the transient time to
return to the synchronized oscillation [23]. Here, the transient
time fx is defined as the time needed for the order parameter
Z go to zero, i.e., Ei(t) = ||vi(t) —vi_1(#)|| < 0.01 V i. In
Fig. 6, we show the return time #, needed to restore complete
synchronization as a function of the perturbation instants
t, which is equivalent to the phase of the limit cycle. The
yellow (light-gray) bars correspond to perturbations instants
for which full desynchronization occurs, i.e., fg — 00. The
height of the blue (dark-gray) bars indicates the finite return
time for perturbations applied at their respective instant of
time. The variability found in the finite values of #z and the
nontrivial distribution of the yellow (light-gray) bars indicates
the sensitivity encountered by the perturbed unit depending on
the perturbation instants and, consequently, on the state along
one oscillation cycle.

IV. CONCLUSIONS

We report the existence of an intricate state dependence of
the vulnerability of the synchronized oscillations in a network
composed of identical electronic circuits numerically simu-
lated. By perturbing the synchronized dynamics in consecu-
tive states along the trajectory, we find that synchronization
breaks down for some states while it persists for others.
Additionally, the states at which perturbations lead to synchro-
nization or desynchronization, respectively, form a fractallike
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set along the synchronized trajectory. This implies that next to
a safe state there can be an unsafe one and vice versa.

The state-dependent vulnerability of synchronization is the
result of the interplay between the network coupling and the
dynamics on the chaotic saddle. It is important to note that the
amplitudes of the perturbations involved exceed the range of
the validity of linear stability of synchronized states. There-
fore, our description relies on numerical analysis, as analyt-
ical approaches are hardly possible. Another obstruction to
analytical approaches is the difficulty to analytically compute
chaotic saddles even for the simplest nonlinear maps. Possible
extensions of this analysis could be based on further numerical
studies computing the distance between the saddle and the
periodic orbit [24] or the high-dimensional saddles themselves
for smaller networks of simpler dynamical systems computed
by the stagger-and-step method [18].

The mechanism behind this intriguing phenomenon of
state-dependent vulnerability is the existence of a chaotic
set close to the synchronized trajectory. We point out that
such sets related to transient chaos are a rather common
phenomenon characteristic for several classes of dynamical
systems. These classes are (1) systems possessing period-
doubling cascades leading to chaos with embedded periodic
windows, found in many physical applications like mechan-
ical oscillators, laser systems, or electronic circuits; (2) sys-
tems possessing period-adding cascades like in many ex-
citable systems important to neuroscience; and (3) systems
possessing a high degree of multistability, i.e., a multitude
of coexisting attractors possessing fractal basin boundaries,
like most systems with weak damping. As a consequence,
the reported phenomenon plays an important role whenever
dynamical systems of the classes mentioned above are cou-
pled and their synchronization behavior is studied. Moreover,
we would like to emphasize that this phenomenon does occur
not only in model systems described by ordinary differential

equations but also in discrete-time systems. We observe state-
dependent vulnerability in networks of different nonlinear
maps, e.g., logistic and Hénon maps. These results are to be
published elsewhere. Additionally, we remark that, besides the
synchronization in a periodic orbit discussed here, the same
phenomenon occurs for systems synchronized in a chaotic
attractor. Therefore, the state-dependent vulnerability of syn-
chronization is a very ubiquitous phenomenon.

Furthermore, the implications of the state-dependent vul-
nerability of synchronization are twofold: On the one hand,
it is a warning that a harmless perturbation applied to a
complex network in its past can have different consequences
if applied in a different instants along the synchronized trajec-
tory. On the other hand, the knowledge about the possibility
to destroy synchronization when particular perturbations are
applied in the right state can be a useful tool in such cases
when synchronization is undesired. Hence, state-dependent
vulnerability offers to determine those attractor regions in
which interventions aiming at the break of synchrony can be
successful. For instance, a hypersynchronous state in the brain
must be suppressed to terminate an epileptic seizure [25,26].
Additionally, in ecology, the occurrences of synchronization
among different patches are associated with an increasing
risk of global extinction of the species in the ecosystem
[27,28]. The knowledge of states in which synchronization
is vulnerable may now increase the likelihood of success-
ful development of conservation strategies for saving such
ecosystems from extinction.
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