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Abstract

Two, replica symmetry breaking specific, quantities of the Ising spin glass — the breakpoint x1 of the
order parameter function and the Almeida–Thouless line — are calculated in six dimensions (the upper
critical dimension of the replicated field theory used), and also below and above it. The results confirm that
replica symmetry breaking does exist below d = 6, and also the tendency of its escalation for decreasing
dimension continues. As a new feature, x1 has a nonzero and universal value for d < 6 at criticality. Near
six dimensions we have x1c = 3(6 − d) + O[(6 − d)2]. A method to expand a generic theory with replica
equivalence around the replica symmetric one is also demonstrated.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Frustration in disordered systems gives rise to a complex equilibrium state with a nontrivial
breaking of ergodicity (see [1] for a review and important reprints of the field). In the mean field
version of the Ising spin glass [2], the decomposition of the Gibbs state into ultrametrically or-
ganized pure states is (mathematically) encoded in the replica symmetry broken (RSB) solution
of the replicated system [1]. This solution has characteristics — such as the order parameter
function q(x), and the spin glass transition in nonzero external magnetic field along the so-called
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Almeida–Thouless (AT) line — which fully distinguish it from the much simpler replica sym-
metric (RS) case. This RS solution is unstable in the mean field glassy phase [3].

From the physical point of view, RSB implies the presence of violations of nontrivial
fluctuation–dissipation relations at off-equilibrium (during aging), while the off-equilibrium
fluctuation–dissipation relations would be trivial in the RS case: in particular no aging of the re-
sponse function is expected then, in variance with the experimental evidence in three dimensions
at zero magnetic field. It is a very important task to determine the dimensional regime where the
low temperature phase with aging response function survives. Evidently, there is no glassy phase
in the one-dimensional system, whereas there is an ample numerical evidence against any transi-
tion in the two-dimensional case too. Generally speaking, we expect that the transitions disappear
at the corresponding lower critical dimensions, i.e at d0

SG in zero magnetic field, and at dh
SG in the

presence of a magnetic field. We cannot say a priori if these two lower critical dimensions are the
same: in the case of an Ising ferromagnet with a random magnetic field, for instance, it is well
known that d0

IF = 1, whereas dh
IF = 0. The situation in spin glasses is quite unclear: the different

structure of the low momentum singularities in zero and nonzero magnetic field [4] suggest that
d0

SG < dh
SG, while the arguments based on domain wall energies give d0

SG = dh
SG = 2.5 [5]. The

existence of a low temperature phase with aging response function should be ultimately decided
by investigating the structure of infrared divergences in the perturbative expansion, and by the
analysis of nonperturbative contributions. This task goes by far beyond the goals of the present
paper. We aim to study in details the properties of the low temperature phase near the critical
temperature, and around the upper critical dimension (i.e. six) where the critical exponents at
zero magnetic field become nontrivial. Our study also aims to correct some recent claims on the
nonexistence of a RSB phase below six dimensions that are due to an incorrect analysis of the
consequences of some renormalization group equations [6].

The mean field Ising spin glass, at least when studied with the replica trick, can be consid-
ered as the infinite-dimensional limit of the replica field theory representing the d-dimensional
short ranged model defined on a hypercubic lattice [7]. The study of this replica field theory for
decreasing dimensionalities seems to be a good strategy for reaching a full understanding of the
three-dimensional Ising spin glass.

This project has had by now a long history whose first period was summarized in Ref. [8].
It turns out from these studies that the RS glassy phase is notoriously unstable even down to
d � 6, with a persistently escalating RSB phase (see, for instance, Fig. 1 of Ref. [9]). A scaling
picture was proposed in [10] for helping to understand one-loop calculations in the (zero external
magnetic field) RSB phase. Some of the results of this reference are reproduced and/or revised in
the present paper, especially the behaviour of the breakpoint x1 of q(x) around six dimensions.
The AT line was first found in Ref. [11] for the range 6 < d < 8, whereas it was followed up
from mean field (d = ∞) to d � 6 (and also for nonzero replica number n) in [7].

Nevertheless, the RS spin glass phase has remained an alternative due to the so-called droplet
model [12–14]. This theory predicts a unique Gibbs state (apart from spin inversion) for T < Tc

— that is why the replicated theory is RS — which is massless, and the glassy phase is unstable
for any infinitesimal magnetic field, i.e. there is no AT line. A schematic picture of the two
scenarios on the temperature-magnetic field plane is presented in Fig. 1. The phase boundary
lies along the temperature axis in the droplet case, a zero-temperature fixed point governing its
behaviour; the analogous attractive — and also zero-temperature — fixed point for the RSB
scenario is shifted to a nonzero external field hc . The other end of the phase boundary is, in
both cases, the zero-field critical fixed point at Tc . Since the symmetry of the transition line —
namely, an RS state with nonzero order parameter q , which is massless in the so-called replicon
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Fig. 1. Schematic phase diagrams for a d-dimensional Ising spin glass in the temperature-magnetic field plane. There is
an RSB glassy phase in (a) bordered by the AT line. On the other hand, the glassy phase is RS in (b), and lies in the zero-
field subspace. Both the AT line and the zero-field glassy phase are represented by the same generic replica symmetric
field theory with massive longitudinal and massless replicon modes.

sector, while massive in the longitudinal one — is the same (notwithstanding the fact that the
AT line proceeds in nonzero magnetic field), the two renormalization group (RG) pictures can be
studied in a common field theory. This is the generic replica symmetric field theory elaborated in
Refs. [9,15]. The vicinity of the (hypothetical) zero temperature fixed point can be studied in this
field theory by assuming a hard (practically infinite) longitudinal mass, thus projecting the theory
into the replicon sector. This was done decades ago by Bray and Roberts [16], who found a stable
Gaussian fixed point for d > 6, whereas it was impossible to find any physically relevant and
stable fixed point for d < 6. This was later interpreted [6,14] as a sign that the AT line disappears
below six dimensions, and the droplet scenario takes over. This is, however, a faulty argument,
since — as we have explained above — the RG equations (those for instance of Ref. [16]) are not
specific to the low temperature behaviour of the AT line. An effort to understand the crossover
from the zero-field critical fixed point to the zero-temperature one was made in Ref. [17], where
the whole set of RG equations was derived in a first order perturbative renormalization. (The
Bray–Roberts equations are naturally included there.) The runaway flows found were discussed
in details in [7], and it was argued in this reference that the RG scheme used could not be expected
to detect a zero-temperature fixed point in epsilon expansion. But again, the lack of a fixed
point with infinite longitudinal mass in the RG equations valid around the critical point is not
specific to spin glasses, and this property cannot distinguish between the two rival spin glass
theories.

In a recent paper [6], Moore and Bray suggest a proof that RSB disappears when six dimen-
sions is approached form above. They take the d → 6+ limit of known first order results, using
RG arguments, for x1 (the breakpoint of the order parameter function) and the AT line, and find
both going to zero. We reproduce their results in a more complete RG scheme in Section 2, and
show what is the fundamental flaw in their argument. At this point, the reader is advised to jump
to Fig. 2(b) in Section 6 where x1 is plotted against dimension along with the so-called scaling
variable, which is effectively the relative error of the approximation. The breakpoint x1 is mono-
tonically increasing for decreasing dimension as long as the scaling variable is small. This is the
range where the approximation is valid! However at around d ≈ 6.1, the scaling variable starts
to steeply increase (and actually goes to 1 for d → 6), simultaneously x1 suddenly changes its
behaviour, and falls to zero: this is the effect (and a similar scenario for the AT line) that has been
found in [6], but it must be clear that these results fall outside the range of validity of the approx-
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imate RG equations. As a matter of fact, x1 can be calculated directly in d = 6 (Section 3), its
value is shown as the horizontal line in Fig. 2(b): it is visibly an extrapolation of the curve from
the range where the approximation is good. (In fact, it is an old wisdom of the RG theories that
the upper critical dimension requires special care.) There is only one case where the arguments
of Ref. [6] are correct [and interestingly enough, this is admitted there below Eq. (18) of that
reference], namely just at criticality. But that yields only the trivial results for the d = 6 system:
x1 is zero for T = Tc, and the AT line starts at the origin, i.e. at T = Tc and h2 = 0, and does not
say anything about the disappearance of RSB.1

The outline of the paper is as follows: Section 2 is devoted to the study of the dimensional
regime 6 < d < 8, although the perturbative results of Section 2.1 are extensively used in later
sections too. In Section 3, the renormalization group ideas are specifically applied to the d = 6
case, simply following the lines explained in classical RG textbooks (see, for instance, [18]).
The breakpoint x1 and the AT line are calculated at the upper critical dimension, both display-
ing logarithmic temperature corrections. A method for expanding a general (except that replica
equivalence is assumed) RSB theory around the RS one is presented in Section 4, and applied
to the ultrametric case. By this method, quantities of the RSB theory, like x1, can be expressed
in terms of vertices of the RS theory. In the next section, Section 5, we return to our original
program, and study the case d < 6: generic RG arguments are presented, and the calculation
of x1 and the AT line in ε-expansion is performed. A new feature emerges below six dimensions,
namely x1 becomes nonzero and universal at criticality. In the last section, Section 6, special ex-
amples, both for x1 and the AT line, are used to conclude that RSB escalates both in the regime
above and below six dimensions.

2. Formulation of the spin glass problem for 6 < d < 8

The simplest replicated field theory corresponding to the Ising spin glass in zero external
magnetic field and below d = 8 has two bare parameters defining the model: τ (measuring the
distance from criticality and w (the only bare cubic coupling compatible with the symmetrical
— paramagnetic — state). Its Lagrangian is

L = 1

2

∑
p

(
1

2
p2 + m̄

)∑
αβ

φ
αβ
p φ

αβ
−p − 1

6N1/2
w

∑′

p1p2p3

∑
αβγ

φ
αβ
p1 φ

βγ
p2 φ

γα
p3 (1)

where the bare mass m̄ = m̄c −τ , and the critical mass has been presented in the literature several
times in leading order of the loop expansion:

m̄c = 1

2
(n − 2)w2 1

N

∑
p

1

p4
.

In this n(n − 1)/2 component field theory the fluctuating fields are symmetric in the replica
indices with zero diagonals: φ

αβ
p = φ

βα
p and φαα

p = 0, α,β = 1, . . . , n. [Momentum conservation
is indicated by the primed summation. The number N of the Ising spins becomes infinite in the
thermodynamic limit, rendering summations to integrals over the continuum of momenta in the
diagrams of the perturbative expansion. A momentum cutoff Λ is always understood to block

1 Somewhat surprisingly, [6] neglects discussing and even citing Ref. [7], where the AT line is followed up from mean
field to d � 6. Section 5.3 reconsiders and confirms the existence of an AT line below six dimensions.
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ultraviolet divergences, although it can be (and will be) absorbed into the definition of different
quantities.] The replica number n goes to zero in the spin glass limit.

2.1. Perturbative results

We are now going to recollect several results for the replica symmetric (RS) spin glass phase
— see Refs. [9,15,17,19] — which are needed for the following discussion. Due to the severe
technical difficulties, only one-loop calculations have been accomplished (ε ≡ 6 − d and n = 0).

• RS order parameter q , i.e. the equation of state:

wq

τ
= 1 − 2w2τ |ε|/2 1

N

Λ√
τ∑

p

p2 − 2

p4(p2 + 2)2
+ 1

2
wτ−2h2. (2)

(The last term with the external magnetic field h has been included here for later reference. At
the moment, it is to be considered as zero.) We can use wq = τ in the one-loop diagrams, and
after rescaling the momentum as p → p/

√
τ , two different propagators remain: the replicon

(p−2) and the longitudinal [(p2 +2)−1] ones. To make the formulae for the one-loop vertices
more transparent, it is useful to introduce a common notation I... for the occurring integrals,
as is illustrated below:

IRRLL ≡ 1

N

Λ√
τ∑

p

1

p4(p2 + 2)2
=

Λ√
τ∫

ddp

(2π)d

1

p4(p2 + 2)2
= Kd

Λ√
τ∫

dp p−1+d

p4(p2 + 2)2
.

• The replicon mass:

ΓR = 2m1 = −2τ + 2wq + 4w2τ 1+|ε|/2(4IRLL − 3IRRL). (3)

• The basic cubic vertex of the Trφ3 operator:

w1 = w + 2w3τ |ε|/2(−8IRRL + 7IRRR − 14IRRLL − 8IRLLL). (4)

• The quartic vertex of φαβ4
:

u2 = 24w4τ−1+|ε|/2IRRLL. (5)

In fact, this last result is new. Details of the somewhat lengthy calculation of the replicon-type
quartic vertices will be published later.

2.2. Simple two-parameter renormalization group

An extensive renormalization group (RG) study of the generic RS glassy phase was pub-
lished in Ref. [17]. When close to the Gaussian fixed point,2 i.e. w 	 1 and τ 	 1, and only
infinitesimally breaking the high-temperature (paramagnetic) symmetry of the system, we have
the following simple two-parameter RG flow-equations:

2 From now on, we redefine the parameters by suitably absorbing the geometrical factor Kd and Λ: τ/Λ2 → τ ,

w2KdΛ|ε| → w2 and h2K
−1/2

Λ−4−|ε|/2 → h2.

d
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ẇ2 = −|ε|w2 − 2w4,

τ̇ =
(

2 − 10

3
w2

)
τ. (6)

Physical quantities take simple scaling forms when, instead of w and τ , they are expressed in
terms of the nonlinear scaling fields w̃ and r defined by:

˙̃w2 = −|ε|w̃2,

ṙ = 2r. (7)

A straightforward calculation provides:

w2 = w̃2
(

1 − 2
w̃2

|ε|
)−1

,

τ = r

(
1 − 2

w̃2

|ε|
)−5/3

. (8)

We are now going to compute the quantities q , ΓR , w1 and u2 by the RG in terms of w̃2 and r .
In this way, we can get more general results when approaching dimension six from above as
compared with the perturbative computation: now we may have |ε| 	 w2 	 1, although the
scaling variable w̃2r |ε|/2 must be small:

w̃2r |ε|/2 	 |ε|, even when |ε| 	 w2.

• The renormalization flow equation for q is

q̇ =
(

2 + |ε|
2

+ ηL

2

)
q (9)

with ηL = ηR = − 2
3w2 in this approximation. It can be solved by using Eqs. (7) and (8):

q = r1+ |ε|
4 q̂

(
w̃2r |ε|/2)(1 − 2

w̃2

|ε|
)−1/6

, (10)

and a comparison with (2) makes it possible — after some manipulations — to get the leading
terms of the scaling function:

q̂(x) = 1√
x

(1 + Cx + · · ·),

with the constant C = 21+ |ε|
2 Γ

(
1 + |ε|

2

)
Γ

(
1 − |ε|

2

)(
1

|ε| + 1

)
. (11)

• The replicon mass evolves under renormalization as

Γ̇R = (2 − ηR)ΓR =
(

2 + 2

3
w2

)
ΓR, (12)

with the solution

ΓR = rΓ̂R

(
w̃2r |ε|/2)(1 − 2

w̃2

|ε|
)1/3

. (13)

Substituting q in Eq. (3) by τ from (2) provides:
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ΓR = −16w2τ 1+ |ε|
2 IRRLL + wτ−1h2. (14)

Keeping in mind that (14) is valid for w̃2 ≈ w2 	 |ε| and h2 is zero at the moment, it is
straightforward to derive the scaling function in Eq. (13):

Γ̂R(x) = C′x + · · · , with C′ = −22+ |ε|
2 Γ

(
1 + |ε|

2

)
Γ

(
1 − |ε|

2

)
. (15)

• As for w1, we have

ẇ2 =
(

−|ε|
2

− 3

2
ηR

)
w1 =

(
−|ε|

2
+ w2

)
w1 (16)

and

w1 = r− |ε|
4 ŵ1

(
w̃2r |ε|/2)(1 − 2

w̃2

|ε|
)1/2

. (17)

Comparing (4) and (17) yields

ŵ1(x) = √
x
(
1 + C′′x + · · ·),

with C′′ = 2
|ε|
2 Γ

(
1 + |ε|

2

)
Γ

(
1 − |ε|

2

)(
16

|ε| − 9 − |ε|
)

. (18)

• Finally, from the flow

u̇2 = (−2 − |ε| − 2ηR)u2 =
(

−2 − |ε| + 4

3
w2

)
u2 (19)

follows the scaling form of the most important quartic vertex:

u2 = r−1− |ε|
2 û2

(
w̃2r |ε|/2)(1 − 2

w̃2

|ε|
)2/3

. (20)

From (5) and (20) results [see also (15)]

û2(x) = −3

2
C′x2 + · · · . (21)

2.3. The calculation of x1 and the Almeida–Thouless line

The leading contribution to the breakpoint of the order parameter function q(x) is derived in
Section 4, and has the simple form [see (42) and the more general considerations in that section
about getting x1 on the basis of the generic RS field theory]:

x1 = u2

w1
q.

Inserting (10), (17) and (20), the scaling equation of x1 follows:

x1 = x̂1
(
w̃2r |ε|/2), with x̂1(. . .) = û2(. . .)

ŵ1(. . .)
q̂(. . .).

By the help of Eqs. (11), (18), (21) and (15), we can conclude

x1 = 6 × 2
|ε|
2 Γ

(
1 + |ε|)

Γ

(
1 − |ε|)

w̃2r |ε|/2 + · · · . (22)

2 2
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Inverting (8), x1 can be expressed by the original bare coupling w:

x1 ∼ w2

1 + 2w2

|ε|
r |ε|/2. (23)

This equation agrees with Eq. (21) of Ref. [6].3 The range of applicability of the above equation:

w2, r 	 1, 0 < |ε| < 2 and (most importantly) w̃2r |ε|/2 	 |ε|. (24)

If we fix the system’s bare coupling w and approach six dimensions, then w̃2 → |ε|/2 and x1 ∼
|ε|r |ε|/2. This behaviour was interpreted by the authors of Ref. [6] as the sign of the end of RSB
at six dimensions: a vanishing x1 is consistent with RS. But, as Eq. (24) clearly shows, in this
limit r must go to zero,4 i.e. the breakpoint disappears at the critical surface in six dimensions —
a property valid also for d > 6 (but, as we will see later, not for d < 6).5 In the next section we
will show that below the critical surface x1 > 0 and has a logarithmic temperature dependence at
exactly six dimensions.

We now turn to the problem of the Almeida–Thouless line. The introduction of a magnetic
field h2 involves a new nonlinear scaling field h̃2 with

˙̃
h2 =

(
4 + |ε|

2

)
h̃2.

Eq. (13) remains valid, but the scaling function Γ̂R has now two arguments: x = w̃2r |ε|/2 and
y = h̃2r−2−|ε|/4. Realizing that the replicon mass starts at one-loop order, the bare parameters in
(14) can be replaced by their corresponding nonlinear scaling fields, making it possible to read
off the scaling function:

Γ̂R(x, y) = C′x + √
xy;

see also (15). The vanishing replicon mass defines the AT line, i.e. y = −C′√x providing

h̃2 = −C′w̃r2+ |ε|
2 . (25)

The connection between h2 and h̃2 may be found from the flow equation

ḣ2 =
(

4 + |ε|
2

− ηL

2

)
h2 =

(
4 + |ε|

2
+ 1

3
w2

)
h2, (26)

with the solution [see also (7) and (8)]:

h2 = h̃2
(

1 − 2
w̃2

|ε|
)1/6

. (27)

It is useful to display the AT line (25) in the original bare parameters by Eqs. (8) and (27):

h2 = −C′ w

(1 + 2w2

|ε| )
4+ 5

6 |ε| τ
2+ |ε|

2 . (28)

3 |r(0)| = |r| in that paper is what we call τ here, whereas w(0) = w agrees with our notation for the bare cubic
coupling.

4 That point has been noticed in Ref. [6], but was completely misinterpreted. We will return to this problem in Section 6;
see the first row of Eq. (59) showing the impossibility of the limit |ε| → 0 in this approximation.

5 The multiplicative factor |ε| in x1 has its origin in the termination of the definition of the nonlinear scaling field w̃ in
d = 6. This is a feature of the RS renormalization group, and is not related to the problem of replica symmetry breaking.
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This equation is identical with Eq. (15) of Ref. [6], and the |ε|4 factor, arising when |ε| → 0
while fixing w, led those authors to conclude that the AT line disappears in six dimensions. But,
again, Eq. (24) and the discussion below it shows that this limit provides results only on the
critical surface (τ and r zero), and it informs us only about the trivial fact that the AT line starts
at the origin of the τ,h2 plain.

3. At the upper critical dimension: d = 6

As can be seen from the previous section, knowledge about the six-dimensional system cannot
be gained from the RG results in the d � 6 case. The fundamental reason for that is the impos-
sibility to linearize the RG flow equations at exactly an upper critical dimension. Therefore, the
scaling field w̃ is not defined for d = 6, and we keep w (although r and h̃2 are still meaningful).
The RG flow (6) is now:

ẇ2 = −2w4,

τ̇ =
(

2 − 10

3
w2

)
τ. (29)

The connection between τ and r becomes [instead of (8)]:

τ = rw
10
3 , (30)

and the scaling variable with zero scaling dimension is now (instead of w̃2r |ε|/2):

w2

1 − w2 ln r
,

which can be easily checked by Eq. (29) and the nonlinear scaling field property ṙ = 2r .

3.1. The calculation of x1

The renormalization group flow equations for the three relevant physical quantities q , w1 and
u2 are as follows:

q̇ =
(

2 − 1

3
w2

)
q,

ẇ2 = w2w1,

u̇2 =
(

−2 + 4

3
w2

)
u2.

They all have the same form, and their solutions are easily found in scaling form.

• The RS order parameter:

q = w
1
3 rq̂

(
w2

1 − w2 ln r

)
,

q̂(x) = x

[
1 + (2 + ln 2)x + 5

3
x lnx + · · ·

]
. (31)

The scaling function q̂(x) has been obtained by evaluating (2) in d = 6 (in zero magnetic
field at the moment) and using the connection between τ and r in (30).
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• The cubic vertex w1 in six dimensions:

w1 = w−1ŵ1

(
w2

1 − w2 ln r

)
,

ŵ1 = x

[
1 +

(
−39

2
+ 8 ln 2 − 7 lnn

)
x + 5

3
x lnx + · · ·

]
. (32)

Eqs. (4) and (30) has been used to get the scaling function. One important remark is ap-
propriate here. The term with the logarithm of the replica number, lnn, comes from IRRR

in (4), and is a prominent example of the severe infrared divergences caused by the replicon
propagator. Similar contributions enter in higher order vertices, such as IRRRR in the quartic
vertex belonging to the operator Trφ4. This is a clear indication — beside the instability of
the replicon mode — that the replica symmetric theory is ill-defined in the spin glass limit.
In fact, these infrared divergent terms can be resummed when we build up the RSB theory
on the basis of the RS one, as explained in Section 4. What is gained in this resummation,
after setting n to zero, is the small mass regime of the RSB solution which effectively acts
as an infrared cutoff. It must be stressed that without this resummation, the theory is infrared
divergent in any arbitrarily high dimension.

• As for the quartic vertex u2, its scaling form and the leading term of the scaling function are
[see (5) and (30)]:

u2 = w− 4
3 r−1û2

(
w2

1 − w2 ln r

)
,

û2(x) = 6x + · · · . (33)

By Eqs. (31), (32) and (33) x1 turns out to be a function of the scaling variable, as it must be:

x1 = u2

w1
q = x̂1

(
w2

1 − w2 ln r

)
with x̂1(. . .) = û2(. . .)

ŵ1(. . .)
q̂(. . .).

The leading order of the scaling function is simply x̂1(x) = 6x + · · · , providing one of our basic
results

x1 = 6

(
w2

1 − w2 ln r

)
+ · · · ; w, r 	 1 and r = τw− 10

3 , d = 6. (34)

It is clear from the above equation that x1 is zero at criticality (r = τ = 0), and for fixed w the
approach to zero is logarithmic:

x1 = 6| ln r|−1 + · · · ; r, τ → 0 and w fixed, d = 6.

3.2. Almeida–Thouless line in six dimensions

The flow equation for the replicon mass is unchanged as compared with the d > 6 case,
and is given by Eq. (12). The nonlinear scaling field corresponding to the external magnetic

field satisfies ˙̃
h2 = 4h̃2, therefore the second variable with zero scaling dimension is h̃2/r2.

Straightforward considerations lead us to

ΓR = w− 2
3 rΓ̂R

(
w2

2
,
h̃2

2

)
. (35)
1 − w ln r r
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The evolution of the “bare” magnetic field, i.e. ḣ2 = (4 + 1
3w2)h2 [see (26)] and (29) yield

h2 = h̃2w− 1
3 . (36)

Evaluating Eq. (14) at d = 6, and replacing the bare parameters τ and h2 by r and h̃2 according
to (30) and (36), respectively, makes it possible to read off the scaling function in leading order:

Γ̂R(x, y) = 1

x

(−4x4 + y + · · ·).
From its zero, the AT line is obtained as follows:

h̃2 = 4r2
(

w2

1 − w2 ln r

)4

+ · · · ; w, r 	 1 and r = τw− 10
3 ,

h̃2 = h2w
1
3 ; d = 6. (37)

For a given cubic coupling w, the magnetic field vs. temperature relationship for the boundary
of the RS phase when approaching the critical point becomes:

h̃2 = 4r2| ln r|−4 + · · · ; r, τ → 0 and w fixed, d = 6.

4. Formulation of replica symmetry breaking on the basis of the generic replica
symmetric theory

The considerations in this section are quite general and, therefore, the paramagnetic system
(i.e. an RS system with zero order parameter) must be represented — instead of the simple case
of (1) which is sufficient around d = 6 — by a model which includes all the invariants compatible
with its higher symmetry [20]. The replicated field theory is now defined by the Lagrangian L of
the symmetrical (high-temperature and zero-field) theory:

L = 1

2

∑
p

(
1

2
p2 + m̄1

)∑
αβ

φ
αβ
p φ

αβ
−p − 1

6N1/2

∑′

p1p2p3

w̄1

∑
αβγ

φ
αβ
p1 φ

βγ
p2 φ

γα
p3

− 1

24N

∑′

p1p2p3p4

(
ū1

∑
αβγ δ

φ
αβ
p1 φ

βγ
p2 φ

γδ
p3 φδα

p4
+ ū2

∑
αβ

φ
αβ
p1 φ

αβ
p2 φ

αβ
p3 φ

αβ
p4

+ ū3

∑
αβγ

φ
αγ
p1 φ

αγ
p2 φ

βγ
p3 φ

βγ
p4 + ū4

∑
αβγ δ

φ
αβ
p1 φ

αβ
p2 φ

γδ
p3 φ

γδ
p4

)

− 1

120N3/2

∑′

p1p2p3p4p5

(
v̄1

∑
αβγ δμ

φ
αβ
p1 φ

βγ
p2 φ

γδ
p3 φ

δμ
p4 φ

μα
p5 + v̄2

∑
αβγ

φ
αβ
p1 φ

αβ
p2 φ

αβ
p3 φ

αγ
p4 φ

βγ
p5

+ v̄3

∑
αβγ δ

φ
αβ
p1 φ

βγ
p2 φ

γα
p3 φ

γδ
p4 φ

γδ
p5 + v̄4

∑
αβγμν

φ
αβ
p1 φ

βγ
p2 φ

γα
p3 φ

μν
p4 φ

μν
p5

)
+ · · · (38)

where the bare mass m̄1 ≡ m̄ = m̄c − τ , with τ measuring the distance from criticality, has been
also used in (1), and w̄1 ≡ w (momentum conservation is indicated by the primed summations).
The fifth order invariants with the v̄ bare couplings were also included here. In what follows, we
use the same notation for an exact vertex (e.g. u2) and its corresponding bare coupling (ū2), the
bar indicating always a bare quantity.
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As explained in details in Appendix D of Ref. [9], the generic Legendre-transformed free
energy can be expanded around the RS spin glass state with order parameter q; see (D.5) of this
reference:

1

N
F(qαβ)

= 1

N
F(q) + 1

2

[
m1

∑
αβ

(qαβ − q)2 + m2

∑
αβγ

(qαγ − q)(qβγ − q)

+ m3

∑
αβγ δ

(qαβ − q)(qγ δ − q)

]

− 1

6

[
w1

∑
αβγ

(qαβ − q)(qβγ − q)(qγα − q) + w2

∑
αβ

(qαβ − q)3

+ w3

∑
αβγ

(qαβ − q)2(qαγ − q) + · · ·
]

− 1

24

[
u1

∑
αβγ δ

(qαβ − q)(qβγ − q)(qγ δ − q)(qδα − q) + u2

∑
αβ

(qαβ − q)4 + · · ·
]

− 1

120

[
v1

∑
αβγ δμ

(qαβ − q)(qβγ − q)(qγ δ − q)(qδμ − q)(qμα − q) + · · ·
]

+ · · · .

(39)

In zero external field F(qαβ) has the same symmetry as L of Eq. (38) — which is higher than
that of a generic RS system — even when T < Tc, and using this symmetry, a set of equations
can be found between the exact vertices of the generic RS theory (see Refs. [9,20]). The most
effective way to get the required vertex relationships is demanding that invariants incompatible
with the symmetrical theory, e.g.

∑
αβ q3

αβ , must finally disappear from (39). In this manner, all
the vertices of the lower symmetry: m2, m3; w2, . . . , w8; u5, . . . , u23; etc. (see Appendix A of
Ref. [9] for the classification of cubic and quartic vertices) and, as a bonus, m1 can be expressed
in terms of w1, u1, u2, u3, u4, v1, v2, v3, v4, and higher order symmetrical vertices.6 We than
have

m1 = 1

2
nw1q + 1

6

(
n2u1 − 2u2

)
q2 + 1

24
n
(
n2v1 − 2v2

)
q3 + · · · ,

m2 = −w1q − 1

3
(nu1 + u3)q

2 + 1

60

[
5n

(
3n2 − 5n + 1

)
v1 + 2v2 − 4nv3

]
q3 + · · · ,

m3 = −1

6
(u1 + 2u4)q

2 − 1

60

[
5(5n − 4)v1 + 2v3 + 6nv4

]
q3 + · · · ,

and furthermore

w2 = u2q + 1

20
nv2q

2 + · · · ,

w3 = u3q + 1

10
(3v2 + nv3)q

2 + · · · ,

6 A vertex is called symmetrical if it is nonzero in the zero order parameter RS system.
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w4 = u4q + 1

20
(v3 + 3nv4)q

2 + · · · ,

w5 = u1q + 1

20
(5nv1 + 4v3)q

2 + · · · ,

w6 = 1

10
v3q

2 + · · · ,

w7 = 1

40
(10v1 + 12v4)q

2 + · · · ,
w8 = O

(
q3).

Of the quartic vertices, only those are listed below which are required up to the order of the
present calculation:

u5 = 3

5
v2q + · · · , u6 = 2

5
v3q + · · · , u7 = 2

5
v4q + · · · ,

u8 = 2

5
v2q + · · · , u10 = 1

5
v3q + · · · , u11 = 2

5
v3q + · · · ,

u14 = 3

5
v4q + · · · , u16 = v1q + · · · .

By exploiting these expressions, the free energy functional in Eq. (39) can now be written (omit-
ting an additive term depending only on q):

1

N
F(qαβ) = 1

4
Mq

∑
αβ

q2
αβ − 1

6
W

∑
αβγ

qαβqβγ qγα

− 1

24

[
(u1 + v1q + · · ·)

∑
αβγ δ

qαβqβγ qγ δqδα +
(

u2 + 2

5
v2q + · · ·

)∑
αβ

q4
αβ

+
(

u3 + 3

5
v3q + · · ·

)∑
αβγ

q2
αγ q2

βγ +
(

u4 + 3

5
v4q + · · ·

)(∑
αβ

q2
αβ

)2]

− 1

120

[
(v1 + · · ·)

∑
αβγ δμ

qαβqβγ qγ δqδμqμα + (v2 + · · ·)
∑
αβγ

q3
αβqαγ qβγ

+ (v3 + · · ·)
∑
αβγ δ

qαβqβγ qγαq2
γ δ + (v4 + · · ·)

(∑
αβγ

qαβqβγ qγα

)(∑
αβ

q2
αβ

)]

− · · · ,
with the following notations for M and W :

M ≡ (n − 2)w1 + 1

3

[(
n2 − 3

)
u1 + u2 + (n − 1)ũ3

]
q

+ 1

60

[
5
(
n3 − 4

)
v1 − 2(2n − 8)v2 + 2(n − 1)(n + 4)ṽ3

]
q2 + · · · ,

W ≡ w1 + u1q + 1

20

[
10v1 − 3v2 − (n − 1)ṽ3

]
q2 + · · · .

The tilded vertices ũ3 ≡ u3 + nu4 and ṽ3 ≡ v3 + nv4 were introduced here; in fact, only these
combinations will enter the equation of state.
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Stationarity of the free energy functional provides the equation of state:

0 = Mqqαβ − W
(
q2)

αβ
− 1

3

[
(u1 + v1q + · · ·)(q3)

αβ
+

(
u2 + 2

5
v2q + · · ·

)
q3
αβ

+
(

ũ3 + 3

5
ṽ3q + · · ·

)(
q2)

αα
qαβ

]
− 1

60

{
5(v1 + · · ·)(q4)

αβ

+ (v2 + · · ·)
[

3
(
q2)

αβ
q2
αβ +

∑
γ

(
q3
αγ qβγ + q3

βγ qαγ

)]

+ (ṽ3 + · · ·)[2(
q3)

αα
qαβ + 3

(
q2)

αα

(
q2)

αβ

]} − · · · . (40)

Only replica equivalence was used in the derivation of this equation — (q2)αα , for instance, is
independent of the replica number — otherwise it is quite general: it provides an RSB solution in
terms of the RS order parameter q (which measures the distance from criticality now), and of the
exact RS vertices. It can equally be used in any regime where some kind of perturbation theory
is valid.

We now turn to the case of infinite step, ultrametrically organized RSB. The small parameter
making possible a perturbative treatment is x1, the breakpoint of the order parameter function: it
is proportional to q in the SK model and for the field theory above 8 dimensions, to qd/2−3 be-
tween 6 and 8 dimensions, whereas it is of order ε below 6 dimensions. q(x), the order parameter
function, has the form7:

q(x) = q1
[
r + x2

1δq̄(r)
]
, with r ≡ x/x1 and δq̄(1) = 0. (41)

The contributions of the various vertices to Eq. (40) are listed below. The definition of the
bilinear expression {. . . ; . . .} used extensively in that list is as follows:

{
f (r);g(r)

} ≡ f (r)g(1) + f (1)g(r) − f (r)

1∫
r

dug(u) − g(r)

1∫
r

duf (u) − rf (r)g(r)

−
r∫

0

duf (u)g(u).

• w1:

2(q1 − q)r − x1q1

(
r − 1

3
r3

)
+ 2x2

1(q1 − q)δq̄(r) − 2x3
1q1

{
r; δq̄(r)

} + O
(
x4

1

)
,

• u1:

−(q1 − q)2r + x1(q1 − q)q1

(
r − 1

3
r3

)
− 1

3
x2

1q2
1

(
3

4
r − 1

2
r3 + 3

20
r5

)
+ O

(
x4

1

)
,

• u2:

1

3
q2r − 1

3
q2

1 r3 + 1

3
x2

1q2δq̄(r) − x2
1q2

1 r2δq̄(r) + O
(
x4

1

)
,

7 We hope that the ratio r of x to x1 introduced here cannot be confused with the temperature-like scaling field of
previous sections.
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• ũ3:

1

3

(
q2

1 − q2)r − 2

9
x1q

2
1 r + 1

3
x2

1

(
q2

1 − q2)δq̄(r) − 2

3
x3

1q2
1 r

{
r; δq̄(r)

}
r=1

− 2

9
x3

1q2
1δq̄(r) + O

(
x4

1

)
,

• v1:

1

3
(q1 − q)3r − 1

2
x1(q1 − q)2q1

(
r − 1

3
r3

)
+ 1

3
x2

1(q1 − q)q2
1

(
3

4
r − 1

2
r3 + 3

20
r5

)

− 1

12
x3

1q3
1

(
1

2
r − 1

2
r3 + 3

10
r5 − 1

14
r7

)
+ O

(
x4

1

)
,

• v2:

−1

5
(q1 − q)q2r + 2

15
(q1 − q)q2

1 r3 − 1

30
x1q

3
1

(
3

4
r + 1

2
r3 − 9

20
r5

)

+ 3

20
x1q

2q1

(
r − 1

3
r3

)
− 1

20
x1q

3
1 r2

(
r − 1

3
r3

)
+ 1

10
(q1 − q)2qr

+ 1

30
(q1 − q)3r − 1

5
x2

1(q1 − q)q2
1

(
1 − 2r2)δq̄(r) − 1

10
x3

1q3
1 r

(
r − 1

3
r3

)
δq̄(r)

+ 3

10
x3

1q3
1

{
r; δq̄(r)

} − 1

10
x3

1q3
1 r2{r; δq̄(r)

} − 1

30
x3

1q3
1

{
r3; δq̄(r)

}

− 1

10
x3

1q3
1

{
r; r2δq̄(r)

} + O
(
x4

1

)
,

• ṽ3: [
− 3

10
(q1 − q)2q1 + 2

15
x1(q1 − q)q2

1 − 1

75
x2

1q3
1 + 2

15
(q1 − q)3

]
r

+ 1

20
x1q1

[
2(q1 − q)q1 − 2

3
x1q

2
1 − (q1 − q)2

](
r − 1

3
r3

)
+ O

(
x4

1

)
.

Inserting the above expressions into Eq. (40) and demanding that the coefficients of r and r3

disappear, x1 can be read off with some effort. It is best to give x1 as the zero, f (x1) = 0, of the
following function:

f (x) ≡
[
−

(
u2

w1
q

)
+ 1

2

(
y2

w1
q3

)
+ · · ·

]
+

[
1 − 13

60

(
v2

w1
q2

)
+ · · ·

]
x

+
[
−1

3
+ 1

6

(
u1

w1
q

)
+ · · ·

]
x2 +

[
−1

9
+ · · ·

]
x3 + · · · .

The leading contribution is the well-known formula

x1 = u2

w1
q (42)

which is used extensively throughout this paper. As a byproduct, the shift of q1 from the RS order
parameter is given by

q1 − q = 1
x1q

(
1 + 2

x1 + · · ·
)

. (43)

3 3



308 G. Parisi, T. Temesvári / Nuclear Physics B 858 [FS] (2012) 293–316
[To preserve consistency, a sixth order contribution − 1
6!y2

∑
αβ(qαβ − q)6 should have been

included in the free energy expansion (39), as it enters the constant of f (x) at the third order, i.e.
at the highest order studied here.]

5. Below six dimensions

5.1. The renormalization group: fixed point and nonlinear scaling fields

In d = 6−ε the Gaussian fixed point becomes unstable, and the zero-field spin glass transition
is governed by the nontrivial one. Here we collect and present the available results for this fixed
point (in the results for the fixed point below, a generic n is kept, although n = 0 is taken in the
further parts of the section):

w̄∗2
1 ≡ w∗2 = 1

2 − n
ε, m̄∗

1 ≡ m̄∗ = −2 − n

4
w∗2; see Refs. [21] and [17].

Although they will not be used in this paper, the fixed point values of the quartic couplings (which
— according to our knowledge — have not been published before) are also listed here:

ū∗
1 = 3

2
nw∗4, ū∗

2 = 12w∗4, ū∗
3 = −24w∗4, ū∗

4 = 9

2
w∗4.

The renormalization flow equations for the bare couplings of the generic RS theory were dis-
played in Ref. [17]. Using these equations, a new set of parameters gi — the so-called nonlinear
scaling fields introduced by Wegner [22] — can be defined with the following properties8:

• gi ≡ 0 at the fixed point for all i.
• An infinitesimally small gi , with all the others kept zero, gives an eigenvector belonging to

the eigenvalue λi of the linearized renormalization group equations around the fixed point.
• They satisfy exactly the equations ġi = λigi .

The RG flow of an observable y — the order parameter or an irreducible vertex, for instance —
can be written in terms of the gi ’s as follows:

ẏ =
(

k +
∑

i

kigi +
∑
ij

kij gigj + · · ·
)

y. (44)

The solution of this equation, i.e. y in terms of the scaling fields is easily found:

y(g1, g2, . . .) = g
k/λ1
1 ŷ

(
g2g

−λ2/λ1
1 , . . . , gig

−λi/λ1
1 , . . .

)

× exp

(∑
i

ki

λi

gi +
∑
ij

kij

λi + λj

gigj + · · ·
)

, (45)

the scaling function ŷ(. . .) can be determined by perturbative methods.
In our two-parameter system defined by τ and w the two nonzero scaling fields9 r ≡ g1 and

g̃ ≡ g2 (the notations are chosen to keep connection with previous sections) can be found by

8 The summary presented in this paragraph about the use of nonlinear scaling fields is quite general, not limited to the
nontrivial fixed point of the RS replica field theory.

9 A second relevant scaling field g3 with eigenvalue λ3 = 2 − 2
3 ε + · · · , see [17], is also nonzero, though infinitesi-

mal, arising from the small shift of the fluctuating fields to generate the nonzero order parameter RS system. The bare
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starting with the RG equations (6)10 and taking the temperature-like relevant eigenvalue λr and
the irrelevant one, λg̃ , from Ref. [17] as

λr ≡ 1

ν
= 2 − 5

3
ε + · · · , λg̃ = −ε + · · · . (46)

The bare parameters are then straightforwardly expressed by the scaling fields as

w2 = w∗2 + g̃

1 − 2 g̃
ε

= ε/2

1 − 2 g̃
ε

,

τ = r

(
1 − 2

g̃

ε

)−5/3

. (47)

5.2. x1 below the upper critical dimension

For the calculation of x1 to first order in ε, the RG study of q , w1 and u2 is required. The
truncated (one-loop) renormalization group equations (9), (16) and (19) — see also footnote 10
— can be used whenever w2 	 1 and τ 	 1. We can solve these truncated equations in a similar
way as (45) was derived from the generic equation (44). The scaling exponents and the relations
between bare and scaling parameters are taken from Eqs. (46) and (47), respectively. The scaling
functions, which are always denoted by the “hat” symbol, cannot be determined by the RG
equations alone, but the perturbative results of Eqs. (2), (4) and (5) make it possible to get them
to first order in ε. [The bare values must be replaced by the scaling fields using (47), and take into
account again footnote 10.] In the following, the results for q , w1 and u2 are listed in itemized
form. The k and k2 ≡ kg̃ quantities defined in (44) are also presented for completeness.

•

q = r1+ ε
2 q̂

(
g̃r

ε
2
) ×

(
1 − 2

g̃

ε

)−1/6

, (48)

with the scaling function

w∗q̂(x) =
[

1 +
(

1

2
ln 2 + 1

)
ε + · · ·

]
+ 2

[
1 +

(
ln 2 + 17

6

)
ε + · · ·

](
x

ε

)

+ O

[(
x

ε

)2]
; (49)

k = 2 − ε

2
+ 1

2
η∗

L = 2 − 2

3
ε + O

(
ε2) and kg̃ = −1

3
+ O(ε). (50)

parameters of this generic RS theory can be expressed in term of g3 using the RG equations of Ref. [17]. The two

most prominent examples are: m̄2 = −g3 + · · · and w̄2 = 12w∗3g3 + · · · . As g3 × g
−λ3/λ1
1 is a RG invariant which

is infinitesimal, g3 itself remains infinitesimal in the regime of our approximation, justifying in this way the neglect of
nonsymmetrical bare couplings from our RG equations. In references [7,20] an alternative scheme was used with a finite
g3 entering after appropriately redefining the field theory for getting rid of “tadpole” diagrams. (The irreducible vertices
are the same in both approaches.)
10 But be careful to replace −|ε| with ε.
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•

w1 = r
ε
2 ŵ1

(
g̃r

ε
2
) ×

(
1 − 2

g̃

ε

)1/2

, (51)

with the scaling function

ŵ1(x)

w∗ =
[

1 +
(

4 ln 2 − 39

4
− 7

2
lnn

)
ε + · · ·

]

+ 2

[
1 +

(
8 ln 2 − 56

3
− 7 lnn

)
ε + · · ·

](
x

ε

)
+ O

[(
x

ε

)2]
;

k = ε

2
− 3

2
η∗

R = ε + O
(
ε2) and kg̃ = 1 + O(ε). (52)

•

u2 = r−1û2
(
g̃r

ε
2
) ×

(
1 − 2

g̃

ε

)2/3

, (53)

with the scaling function

û2(x)

w∗4
= 6

[
1 + O(ε)

] + 12
[
1 + O(ε)

](x

ε

)
+ O

[(
x

ε

)2]
;

k = −2 + ε − 2η∗
R = −2 + 5

3
ε + O

(
ε2) and kg̃ = 4

3
+ O(ε). (54)

The following remarks are appropriate here: Firstly, according to Eqs. (45), (46) and (50) the
temperature exponent for the order parameter q is exactly k/λr = (2 − ε/2 + η∗/2)ν ≡ β =
1 + ε/2 + O(ε2); see (48). The temperature exponents in (48), (51) and (53) are correct up to
ε order. Secondly, the discussion below Eq. (32) concerning the fully replicon, infrared divergent
contribution to w1 is equally valid for the lnn terms in (52). Thirdly, the O(ε) corrections in
the scaling functions q̂ and ŵ1 are unnecessary for the leading order calculation of x1; they are
displayed here to demonstrate the general form of the ε expansion. The corresponding corrections
for û2 are not even available, see (54), as they would require a two-loop level calculation.

The leading contribution in the ε expansion for x1 follows from substituting q , w1 and u2 from
Eqs. (48), (49), and (51), (52), and (53), (54), respectively, into the basic formula in Eq. (42).
A remarkably simple formula reflecting the invariance of x1 under renormalization can be con-
cluded:

x1 = 6w∗2x̂1
(
g̃r

ε
2
) = 3εx̂1

(
g̃r

ε
2
)
, with the scaling function

x̂1(x) = [
1 + O(ε)

] + 2
[
1 + O(ε)

](x

ε

)
+ O

[(
x

ε

)2]
. (55)

5.3. Almeida–Thouless line for d < 6

The external magnetic field h2 evolves under renormalization according to Eq. (26), with |ε|
replaced by −ε. The corresponding nonlinear scaling field h̃2 has now the relevant eigenvalue

λ
h̃2 = 4 − ε − η∗

≡ δβ
.

2 2 ν
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The flow equation for the replicon mass — Eq. (12) — does not contain explicitly the mag-
netic field, therefore it enters the solution only through the invariant h̃2r−δβ ; see Eqs. (44), (45)
and (46). According to the generic scheme (45), we have

ΓR = r(2−η∗)ν Γ̂R

(
g̃r−λg̃ν, h̃2r−δβ, . . .

) × exp

(
2

3

g̃

λg̃

+ · · ·
)

.

The exponential part can again be calculated in the truncated, one-loop approximation, in the
usual way, providing (note that λg̃ = −ε + · · ·)

(
1 − 2

g̃

ε

) 1
3

,

whereas a comparison with the perturbative result (14) — after substituting the bare parameters
by their corresponding nonlinear scaling fields [see Eq. (47) and also

h2 = h̃2
(

1 − 2
g̃

ε

)1/6

(56)

which follows from (26)] — gives the scaling function:

Γ̂R(x, y) = w∗2
{[−4 + O(ε)

] + [−24 + O(ε)
](x

ε

)
+ [

1 + O(ε)
]( y

w∗

)

+ [−2 + O(ε)
](x

ε

)(
y

w∗

)
+ · · ·

}
. (57)

The zero of the scaling function gives the AT line:

h̃2 = 4w∗rδβ = 4w∗r2+···, g̃

ε
rε/2 	 1 and 0 < ε 	 1. (58)

For the fixed point system, w = w∗ implies g̃ = 0 and h̃2 = h2, r = τ . The result in (58) is then
identical with Eq. (18) of Ref. [7].

6. Discussion of the results and conclusions

For a thorough analysis of the d-dependence of x1 while crossing the upper critical dimension,
we recollect here the one-loop truncated results from previous sections; see Eqs. (22), (34) and
(55). The goodness of these approximations depends on the smallness of the scaling variable,
which is defined and expressed in terms of the bare parameters w2 and τ as follows:

scaling variable =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
|ε| w̃

2r |ε|/2 = 2
|ε|w

2τ |ε|/2(1 + 2
|ε|w

2)−1− 5
6 |ε|,

d > 6, see (8),

w2(1 − w2 ln r)−1 = w2(1 + 5
3w2 lnw2 − w2 ln τ)−1,

d = 6, see (30),
2
ε
g̃rε/2 = τw∗2

(w∗2

w2 )
5
3 w∗2

(1 − w∗2

w2 ), w∗2 = ε
2 ,

d < 6, see (47).

(59)

This scaling variable is displayed — for a chosen pair of bare values w2 = 0.005 and τ = 0.0001,
both much smaller than one, as it should be in this approximation — as a function of dimension d
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Fig. 2. The scaling variable (left vertical axis) measures the goodness of the approximation. (a): d < 6 and (b): d > 6.
The dependence of x1 is also shown in both regimes, together with its d = 6 value (horizontal lines). w2 = 0.005 and
τ = 0.0001 are fixed in this figure. The approximation breaks down when approaching d = 6 from both sides.

below [Fig. 2(a)] and above [Fig. 2(b)] 6, where it takes ≈ 0.005. x1 is also shown in this figure,
with the awkward behaviour of approaching zero from both sides of the upper critical dimension
six, while x1 ≈ 0.03 in d = 6. It is clear, however, from the figure that our approximation breaks
down when approaching d = 6 from either side, as the scaling variable goes to unity in that limit.
As a matter of fact, it must be stipulated that the scaling variable be at least as good as in d = 6,
i.e. � 0.005. Therefore, the range of applicability of our approximation (for the given w and τ ) is
constrained to d ≈ 5.99 and d � 6.4, respectively. (Note that the chosen w is just the fixed point
when d = 5.99.) Representative values of x1 in these ranges, together with the six-dimensional
case, are presented in Table 1. It can be concluded from this example that x1 keeps on being
monotonically increasing when lowering dimensions through 6. Nevertheless, a discontinuity of
x1(w

2, τ ) at d = 6 cannot be excluded. An extrapolation of the data from the range d � 6.4,
using an exponential and/or a power law fit, provides x1(0.005,0.0001) ≈ 0.026–0.028, a value
somewhat lower than the six-dimensional one, 0.030, when considering the scaling variable as a
measure of the relative error (it is ≈ 0.005 in six dimensions, see Table 1). A similar extrapolation
from the d < 6 side, however, does not exist.

Below six dimensions x1 has only a slight temperature dependence, and it becomes nonzero
and universal at criticality:

x1 = [
3ε + O

(
ε2)] + Cτ

ε
2 +··· + · · · , d = 6 − ε;

C is a nonuniversal, i.e. w-dependent, amplitude. The typical behaviour for both below and above
six dimensions is displayed in Fig. 3, the value of the cubic coupling is kept w2 = 0.005. The
tendency of an increasing x1 while lowering the dimension is again obvious. The vertical scale
was magnified in the left subfigure (a) to show the qualitative difference between the 6- and
5.99-dimensional curves.

The critical field along the AT line, for a given pair of bare parameters w2 and τ , can be
analysed using results from previous sections. See Eqs. (15), (28) for d > 6, and (37) for d = 6.
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Table 1
x1 around six dimensions shows monotonically increasing behaviour with decreas-
ing dimensionality. The smallness of the scaling variable verifies the approximation.
The bare parameters w2 = 0.005 and τ = 0.0001 are the same as in Fig. 2.

d x1 × 102 Scaling variable

6.8 0.1287 0.000308
6.6 0.2648 0.001026
6.4 0.5649 0.003834
6 2.9943 0.004991
5.99005 2.9993 0.004776
5.99 3.0000 0
5.98995 3.0006 −0.004774

Fig. 3. x1 as a function of the reduced temperature τ ; w2 = 0.005. (a): d � 6 and (b): d � 6. x1 is zero at criticality, i.e.
for τ = 0, when d � 6. On the contrary, it is nonzero for d < 6 and has the universal value x1 = 3ε + O(ε2) at Tc .

Below six dimensions, if we wish to move somewhat away from the fixed point, the zero of the
expanded equation (57) must be found, providing [instead of (58)]:

h̃2 = 4w∗rδβ

(
1 + 8

g̃

ε
rε/2

)
,

g̃

ε
rε/2 	 1 and 0 < ε 	 1.

Eqs. (47), (56) and (59), together with δβ = 2 + 3
2ε, give us the critical field as

wh2 = 4w2τ 2+3w∗2
(

w∗2

w2

)4+5w∗2[
1 + 4τw∗2

(
w∗2

w2

) 5
3 w∗2(

1 − w∗2

w2

)]
,

w∗2 = ε

2
.

The critical field where RSB sets in as a function of temperature (i.e. the AT line) — or more
precisely wh2 as a function of τ — is shown in Fig. 4 for three different dimensions at fixed
cubic coupling w2 = 0.005. The curve for d = 5.99 (note that the system is at exactly the fixed
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Fig. 4. Almeida–Thouless line (wh2 versus τ ) of the field theoretic model with w2 = 0.005 for three different dimensions.

Table 2
Critical field values around six dimensions for w2 = 0.005 and τ = 0.0001. Below
the critical field replica symmetry is broken. The scaling variable’s values are, of
course, the same as in Table 1.

d wh2 × 1010 Scaling variable

6.8 0.0827 0.000308
6.6 0.1680 0.001026
6.4 0.3497 0.003834
6 1.9849 0.004991
5.99005 1.7410 0.004776
5.99 1.7419 0
5.98995 1.7421 −0.004774

point then) is significantly below the six-dimensional one. It is easy to see that this follows di-
rectly from the exponent inequality δβ − 2 = 3

2ε + · · · > 0. To see clearly the behaviour of the
critical field above and below six dimensions for decreasing d , it is tabulated in Table 2 for the
system with w2 = 0.005 and τ = 0.0001. The last three rows of this table show that the kind
of monotonicity found above six dimensions is restored below it, i.e. the critical field increases
with decreasing dimensions. It must be remarked, however, that around the last dimension value
d = 5.98995, the error11 of our approximation starts to be the same order of magnitude as the
variation of the critical field itself. The range where this one-loop perturbative method is appli-
cable below the upper critical dimension is certainly very narrow.

As a conclusion, we can confidently claim that RSB survives below six dimensions in the
cubic replica field theory representing the Ising spin glass. We focused on two quantities which
are strongly related to RSB: the breakpoint of the order parameter function x1 and the Almeida–
Thouless line. A combination of the perturbative one-loop method with a simple two-parameter
renormalization group (which is correct near the critical fixed point) provided reliable results in
all the three ranges of dimensionalities, i.e. for d larger, equal, and less than six. The calculations

11 The relative error can be estimated as being proportional to the square of the scaling variable.
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above and below six dimensions are rather different, due to the Gaussian versus nontrivial fixed
point governing critical behaviour in the two cases. The applied perturbative method makes it
impossible to approach closely the upper critical dimension: the range of dimensions where the
approximation is correct for a given system (i.e. for given w and τ ) is very narrow and close to 6
when d < 6, whereas it is d � 6.2 when d > 6 (and the farther we are from d = 6, the better
the approximation). The six-dimensional case needs special care along the way systems at their
upper critical dimension are commonly studied [18]. The logarithmic temperature dependences
obtained are quite similar to those in ordinary systems at their upper critical dimension.

Above six dimensions both x1 and the critical field are monotonically increasing for decreas-
ing d , and this tendency persists for d < 6. There seems to be, however, a discontinuity of the
critical field at d = 6−: the AT line for d � 6 is significantly below the six-dimensional one, see
Fig. 4 and Table 2. Nevertheless, we can notice that the trend of increasing dominance of RSB
for decreasing space dimensions persists even below six dimensions.

As a final remark, we recall that for d < 6, x1 gains the qualitatively new feature of being
nonzero (and universal!) at criticality. This might suggest a kind of first order transition. That
this is not the case can be clearly seen by displaying the order parameter function using Eqs. (41)
and (43):

q(x) = q1q̂(x/x1), where q1 ∼ q ∼ τβ.

An elaboration of the equation of state along the lines of Section 4 for d < 6 (which is out of the
scope of the present paper, and is left for a future publication), proves that, next to the spin glass
transition, q̂ is a function independent of temperature,12 and thus nontrivial even at criticality.
The prefactor q1, however, disappears at Tc ensuring continuity of the order parameter through
the spin glass transition.

Acknowledgement

We are extremely grateful to Imre Kondor for his thorough review of the paper prior to publi-
cation, and also for his useful suggestions.

References

[1] M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond, Lecture Notes in Physics, vol. 9, World
Scientific, Singapore, 1987.

[2] D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35 (1975) 1792.
[3] J.R.L. de Almeida, D.J. Thouless, J. Phys. A 11 (1978) 983.
[4] C. De Dominicis, I. Kondor, J. Phys. Lett. (Paris) 46 (1985) 1037.
[5] S. Franz, G. Parisi, M. Virasoro, J. Phys. I (France) 4 (1994) 1657.
[6] M. Moore, A. Bray, Phys. Rev. B 83 (2011) 224408, arXiv:1102.1675.
[7] T. Temesvári, Phys. Rev. B 78 (2008) 220401(R), arXiv:0809.1839.
[8] C. De Dominicis, I. Kondor, T. Temesvári, Beyond the Sherrington–Kirkpatrick Model, Series on Directions in

Condensed Matter Physics, vol. 12, World Scientific, 1998, p. 119, cond-mat/9705215.
[9] T. Temesvári, Nucl. Phys. B 772 (2007) 340, cond-mat/0612523.

[10] T. Temesvári, C. De Dominicis, I. Kondor, Eur. Phys. J. B 11 (1999) 629.
[11] J.E. Green, M.A. Moore, A.J. Bray, J. Phys. C 16 (1983) L815.
[12] D.S. Fisher, D.A. Huse, Phys. Rev. Lett. 56 (1986) 1601.
[13] D.S. Fisher, D.A. Huse, Phys. Rev. B 38 (1988) 386.

12 This has been suggested in Ref. [8], see Eq. (155) of it.



316 G. Parisi, T. Temesvári / Nuclear Physics B 858 [FS] (2012) 293–316
[14] A.J. Bray, M.A. Moore, in: J.L. van Hemmen, I. Morgenstern (Eds.), Proceedings of the Heidelberg Colloquium on
Glassy Dynamics, Lecture Notes in Physics, vol. 275, Springer, 1986, and references therein.

[15] T. Temesvári, C. De Dominicis, I.R. Pimentel, Eur. Phys. J. B 25 (2002) 361, cond-mat/0202162.
[16] A.J. Bray, S.A. Roberts, J. Phys. C 13 (1980) 5405.
[17] I.R. Pimentel, T. Temesvári, C. De Dominicis, Phys. Rev. B 65 (2002) 224420, cond-mat/0204615.
[18] P. Pfeuty, G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena, John Wiley & Sons,

London–New York–Sydney–Toronto, 1977.
[19] T. Temesvári, Nucl. Phys. B 829 (2010) 534, arXiv:0911.0362.
[20] T. Temesvári, J. Phys. A 39 (2006) L61, cond-mat/0510209.
[21] A.B. Harris, T.C. Lubensky, J.-H. Chen, Phys. Rev. Lett. 36 (1976) 415.
[22] F.J. Wegner, Phys. Rev. B 5 (1972) 4529.


	Replica symmetry breaking in and around six dimensions
	1 Introduction
	2 Formulation of the spin glass problem for 6<d<8
	2.1 Perturbative results
	2.2 Simple two-parameter renormalization group
	2.3 The calculation of x1 and the Almeida-Thouless line

	3 At the upper critical dimension: d=6
	3.1 The calculation of x1
	3.2 Almeida-Thouless line in six dimensions

	4 Formulation of replica symmetry breaking on the basis of the generic replica symmetric theory
	5 Below six dimensions
	5.1 The renormalization group: ﬁxed point and nonlinear scaling ﬁelds
	5.2 x1 below the upper critical dimension
	5.3 Almeida-Thouless line for d<6

	6 Discussion of the results and conclusions
	Acknowledgement
	References


