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Physical observables of the Ising spin glass in 6 − ε dimensions:
Asymptotical behavior around the critical fixed point
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The asymptotical behavior of physical quantities, like the order parameter, the replicon, and longitudinal
masses, is studied around the zero-field spin-glass transition point when a small external magnetic field is
applied. An effective field theory to model this asymptotics contains a small perturbation in its Lagrangian which
breaks the zero-field symmetry. A first-order renormalization group supplemented by perturbational results
provides the scaling functions. The perturbative zero of the scaling function for the replicon mass defines a
generic Almeida-Thouless surface stemming from the zero-field fixed point.
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I. INTRODUCTION

Since the invention of the renormalization group (RG) by
Wilson [1], replacing a statistical system (which is close to
its critical state) by an effective field theory has become the
basic analytical tool to calculate the asymptotical behavior of
physical quantities around a critical point. Such an effective
theory is defined by its Lagrangian L, usually called the
Landau-Ginzburg-Wilson (LGW) Lagrangian, which depends
on the fluctuating order parameter components, the “fields”,
with the statistical weight of a configuration being ∼e−L. This
formalism was set up in the 1970s for the prototype spin-glass
model of Edwards and Anderson (EA) [2], with an immediate
application of the renormalization group [3]. The EA model
for N Ising spins on a d-dimensional hypercubic lattice is
defined by the Hamiltonian

H = −
∑
(ij )

Jij sisj − H
∑

i

si , (1)

where the Jij ’s are independent, Gaussian-distributed random
variables with zero mean and variance J 2, and a homogeneous
external magnetic field H was also included. Summations are
over nearest-neighbor pairs (ij ) of lattice sites in the first sum
but over the N lattice sites in the second one. Averages over the
quenched disorder of the EA model are managed by the replica
trick, and as a result, the effective theory representing the lattice
system close to criticality is a cubic replicated field theory
with the fluctuating fields (in momentum space) φ

αβ
p = φ

βα
p

and φαα
p = 0 for α,β = 1, . . . ,n, with the replica number n

going to zero at the end of a calculation. Harris et al. [3], and
later Refs. [4,5], deduced the following LGW Lagrangian for
the zero-external-field case, i.e., for H = 0:

Lzero-field = 1

2

∑
p

(
1

2
p2 + m

)∑
αβ

φαβ
p φ

αβ
−p

− 1

6
√

N

∑
p1p2p3

′
w

∑
αβγ

φαβ
p1

φβγ
p2

φγα
p3

. (2)

Momentum conservation is indicated by the primed sum,
and a continuum of p’s, cutoff at some �, results in the
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thermodynamic limit N → ∞. Replica summations above
and in the following are unrestricted. For a nonzero magnetic
field H which is not necessarily small, the Lagrangian
L gets additional replica symmetric (RS) invariants (i.e.,
homogeneous polynomials built up of the fields φ

αβ
p , which

are invariant under any permutation of the n replicas; see
Ref. [6]), and the theory becomes the generic cubic RS field
theory with L = Lzero-field + δL, with m and w in Lzero-field

replaced by m1 = m + δm1 and w1 = w + δw1, respectively,
and

δL = −1

2
N

1
2 h2

∑
αβ

φ
αβ

p=0

+ 1

2

∑
p

[
m2

∑
αβγ

φαγ
p φ

βγ
−p + m3

∑
αβγ δ

φαβ
p φ

γδ
−p

]

− 1

6
√

N

∑
p1p2p3

′ [
w2

∑
αβ

φαβ
p1

φαβ
p2

φαβ
p3

+w3

∑
αβγ

φαβ
p1

φαβ
p2

φαγ
p3

+ w4

∑
αβγ δ

φαβ
p1

φαβ
p2

φγδ
p3

+w5

∑
αβγ δ

φαβ
p1

φαγ
p2

φβδ
p3

+ w6

∑
αβγ δ

φαβ
p1

φαγ
p2

φαδ
p3

+w7

∑
αβγ δμ

φαγ
p1

φβγ
p2

φδμ
p3

+ w8

∑
αβγ δμν

φαβ
p1

φγδ
p2

φμν
p3

]
.

(3)

The zero-field Lagrangian of Eq. (2) contains RS invariants
with all the replica indices occurring an even number of times,
thus reflecting the spin-inversion symmetry of the EA model
without an external magnetic field. Although the insertion of a
small magnetic field breaks the spin-inversion symmetry and
consequently the higher symmetry of the field theory with
Lzero-field, the generic RS field theory with all the coupling
constants nonzero in (3) is redundant when the magnetic field
is small. Accordingly, the first study of the Almeida-Thouless
(AT) [7] instability below eight dimensions considered the
simplest model with h2 the only nonzero coupling in (3) [8].
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Finding the H dependence of the couplings in Eq. (3) and, in
this way, selecting the dominant couplings for small H can be
accomplished by two different methods: The first one applies
the Gaussian-integral representation (Hubbard transformation)
of the original EA model plus additional truncation for small
momentum; this was the approach in [6] to derive the generic
RS field theory. Here the second method is chosen; namely, ne-
glecting the fluctuations of the order parameter fields provides
the field-theoretic representation of the infinite-dimensional
EA model, which is most easily realized on the complete
graph providing the Sherrington-Kirkpatrick (SK) model [9]
(see also Ref. [10]). In the following paragraphs, therefore, the
Landau free energy of the field theory is compared with the
Lagrangian of the SK model LSK, which has an explicit and
well-known magnetic field dependence.

The SK model has the Hamiltonian (1) on the complete
graph (i.e.,

∑
(ij ) means summation over all the pairs), and the

variance of the Jij ’s is J 2/N . With the notation E[· · · ] for
the average over the Jij ’s, the quenched averaged replicated
partition function of the SK model can be put into the form

E
[
Zn

SK

] ∼
∫ ⎡

⎣∏
(αβ)

dqαβ

⎤
⎦ e−LSK ,

with

1

N
LSK = −1

2
H̄ 2

∑
αβ

qαβ + 1

2
(−τ̄ + H̄ 2)

∑
αβ

q2
αβ

− 1

2
H̄ 2

∑
αβγ

qαγ qβγ − 1

6
(1 − 3 H̄ 2)

∑
αβγ

qαβqβγ qγα

− 1

3
H̄ 2

∑
αβ

q3
αβ + H̄ 2

∑
αβγ

q2
αβqβγ

− 1

2
H̄ 2

∑
αβγ δ

qαβqαγ qβδ + O(H̄ 4,q4), (4)

where τ̄ ≡ 1
2 [1 − (J/kT )−2] and H̄ ≡ H/kT . Stationarity of

LSK with respect to qαβ yields the order parameter in the
thermodynamic limit.

In the case of the field theory, it is the Legendre-transformed
free energy F (qαβ) that is stationary in the equilibrium state. It
is defined by the common rules of the Legendre transformation,
namely,

F (qαβ) = − ln Z(Hαβ) + N
∑
(αβ)

Hαβ qαβ,

∂ ln Z(Hαβ)

∂Hαβ

= N qαβ,

where the partition function Z(Hαβ) = ∫
Dφ e−L acquires

its dependence on the Hαβ’s by adding a source term
−N

1
2

∑
(αβ) Hαβ φ

αβ

p=0 to the RS Lagrangian Lzero-field + δL.
[
∑

(αβ) in these formulas means summation over n(n − 1)/2
pairs of replicas.] Neglecting fluctuations of the fields (tree
approximation), i.e., replacing φ

αβ
p by its average 〈φαβ

p 〉 =
δKr

p,0N
1
2 qαβ , provides the mean-field, or Landau, free energy of

the model:

1

N
F (qαβ) = −1

2
h2

∑
αβ

qαβ + 1

2

[
(m + δm1)

∑
αβ

q2
αβ

+m2

∑
αβγ

qαγ qβγ + m3

∑
αβγ δ

qαβqγ δ

]

− 1

6

[
(w + δw1)

∑
αβγ

qαβqβγ qγα + w2

∑
αβ

q3
αβ

+w3

∑
αβγ

q2
αβqβγ + w4

∑
αβγ δ

q2
αβqγ δ

+w5

∑
αβγ δ

qαβqαγ qβδ + w6

∑
αβγ δ

qαβqαγ qαδ

+w7

∑
αβγ δμ

qαγ qβγ qδμ + w8

∑
αβγ δμν

qαβqγ δqμν

]

+O(q4). (5)

Comparing Eqs. (4) and (5), one can conclude the following
for the bare couplings of the field theory:

(i) Writing m ≡ mc − τ with τ = 0 at the critical point
of the field theory, mc ∼ (T 2

c − T mf
c

2
) results, where Tc and

T mf
c are the critical temperatures of the field theory and its

mean-field approximation, respectively. This shows that mc is
the one-loop order.

(ii) The couplings h2, δm1, m2, δw1, w2, w3, and w5 are
of order H̄ 2, whereas all the other couplings are, at most, of
order H̄ 4.

A simple three-parameter model was used in Ref. [11] to
study, among other things, the AT instability for 6 < d < 8,
d = 6, and d � 6; the nonzero bare parameters were m1 =
m = mc − τ , w1 = w, and h2. It was found in [11] that the
critical field h2

AT behaves continuously while crossing the
upper critical dimension 6 for fixed values of the reduced-
temperature-like parameter τ and cubic coupling w, and the
AT line takes the simple form

h2
AT ≈ 4

(1 − w2 ln τ )4
w τ 2, d = 6, (6)

which is valid if τ � 1 and w2 � 1, in exactly the upper
critical dimension. As the main motivation of the present paper,
we want to check whether a suitable extension of this simple
model in such a way that, besides h2, the bare couplings m2,
w2, w3, and w5 are small but nonzero will or will not modify
the results of Ref. [11] about the AT instability around the
zero-field critical point and for d � 6. In the dimensional
regime 6 < d < 8 where a standard perturbational method is
applicable, an extended parameter space with all the couplings
of order H̄ 2 seems to be a convenient extension. Below six
dimensions, however, where the simple perturbative method
breaks down (due to the more and more infrared divergent
graphs as the number of loops increases), it becomes inevitable
to apply the RG for the calculation of the asymptotical behavior
of physical quantities. In this case, however, it is difficult to
define the model by the set of bare couplings (by those, for
instance, which are at least of order H̄ 2), as new couplings
will be generated by the RG flow.
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In the present paper, we propose to define the model by the
set of nonlinear scaling fields: this ensures the closedness of
the model under RG flow. The simple three-parameter model
of Ref. [11] can be formulated in this way, and its extension
will be done by introducing a new (masslike) nonlinear scaling
field which, on the level of the bare couplings, leads to a more
complicated model. In this more complicated field theory, one
can calculate in 6 − ε dimensions the RS order parameter,
the replicon, and longitudinal masses, all in the framework
of the first-order RG combined with perturbational analysis.
We focus on the asymptotical behavior close to the zero-field
critical fixed point. The perturbative zero of the replicon mass
defines the onset of the instability of the RS phase (AT surface).
The problem of the runaway RG flows along this partially
massless, i.e., massless in the replicon sector, manifold (caused
by the repulsion of the critical fixed point) is also discussed.

The outline of the paper is as follows: The method of
using nonlinear scaling fields for the calculation of physical
quantities below six dimensions is discussed in Sec. II. The
results in this section are equally valid below and above
the critical temperature. The free propagators (replicon and
longitudinal) are constructed in Sec. III. The central part of
the paper is Sec. IV, where the critical asymptotics of physical
quantities, such as the order parameter, the replicon, and

longitudinal masses, are elaborated. The more interesting case
of T < Tc is presented in Sec. IV A, whereas results for T > Tc

are displayed for the sake of completeness and comparison in
Sec. IV B. The limitations of the various approximations used
to achieve our results are discussed in some detail in the next
section. Zeros of the replicon mass are found in a region of the
parameter space around the critical fixed point which belongs
to the range of applicability of our approximations. There is
also a discussion of this Almeida-Thouless critical manifold
in Sec. V. Some conclusive remarks and a paragraph about
the applied perturbative method are left to Sec. VI. The basic
perturbative formulas are displayed in the Appendix.

Many results in this paper, especially the connection
between bare parameters and nonlinear scaling fields in Sec. II,
are built upon the first-order RG equations of Ref. [12].

II. BELOW SIX DIMENSIONS

The RG equations for the generic cubic field theory defined
in Eqs. (2) and (3) can be obtained by integrating out degrees of
freedom in a momentum shell at the cutoff �. The structure of
these flow equations in the one-loop approximation for n = 0
can be written as

ḣ2 =
[

4 − ε

2
− H(2)(m1,m2,m3; w1, . . . ,w8)

]
h2 + H(1)(m1,m2,m3; w1, . . . ,w8),

ṁi = 2 mi+M(2)
i (m1,m2,m3; w1, . . . ,w8), i = 1,2,3,

ẇi = ε

2
wi+W (3)

i (m1,m2,m3; w1, . . . ,w8), i = 1, . . . ,8. (7)

The functions F (k)(m1,m2,m3; w1, . . . ,w8) above (with F = H, Mi , or Wi) are homogeneous polynomials of degree k in the
w’s and are analytic in the masses with a nonzero value for m1 = m2 = m3 = 0. All but the first equation in (7) were published
in Ref. [12], although the set of bare couplings was chosen differently there [13]. The flow equation for the magnetic field in the
generic case, however, has not been published before:

ḣ2 =
(

4 − ε

2
− 1

2
ηL

)
h2 + (3g3 + 3g6 + 2ḡ7)

1

1 + 2m1
+ (3g6 + 2ḡ7)

2m2

(1 + 2m1)(1 + 2m1 − 2m2)
− 2g6

m2 − 2m3

(1 + 2m1 − 2m2)2
,

(8)

with

ηL = 2g2
3

1 + 6m1

(1 + 2m1)4
− 8

3

(
g2

6 + g6ḡ7
) 1 + 6m1 − 6m2

(1 + 2m1 − 2m2)4
+ 4

3
g2

6 (m2 − 2m3)
1 + 18m1 − 18m2

(1 + 2m1 − 2m2)5
, (9)

where we adopted the notation from Ref. [12] (see also [14]):

g3 ≡ −w1 + w2 − 1
3 w3, g6 ≡ 2w1 − w2 + w3 − w5 − w6,

ḡ7 ≡ − 3
2 w1 + 1

2 w2 − 5
6 w3 + 2

3 w4 + 4
3 w5 + w6 − 2

3 w7.

One can derive the following information from the RG equations (7):
(i) The zeros on the right-hand side provide the fixed points. In this paper, we are interested in the vicinity of the zero-field

critical fixed point: w∗2 = 1
2 ε, m∗ = − 1

2 w∗2 = − 1
4 ε, with all the other couplings being zero. We prefer using 2w∗2, instead of

ε, in the remainder part of the paper.
(ii) All the eigenmodes of the linearized RG equations, with the only exception being that belonging to h2, were published in

[12]. In this paper we restrict ourselves to a model with the following four modes:

gh2 with λh2 = 4 − 2
3 w∗2

, gm1 with λm1 = 2 − 10
3 w∗2

, gm2 with λm2 = 2 − 4
3 w∗2

,

gw with λw = −2w∗2
. (10)
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(iii) The g’s above, with subscripts h2, m1, m2, and w referring to the modes to which they belong, are nonlinear scaling fields
[15] which satisfy exactly, by definition, the equations ġ = λg and are zero at the fixed point. By means of the RG equations (7)
above, one can express the original bare couplings in terms of the g’s. Keeping the fields which break the zero-field symmetry
(i.e., gh2 and gm2 ) linear in these expressions (which is sufficient for a small external field), only the following couplings in δL
are generated:

w∗h2 = (
1 − 1

3 gw − 1
3 w∗2

gm1

)
gh2 + ( − w∗2 − 7

3 w∗2
gw + 2 gm1

)
gm2 , m2 = (

1 + 4
3 gw + 5w∗2

gm1

)
gm2 ,

w2/w
∗ = (−12w∗2 − 52 w∗2

gw + 48 w∗2
gm1

)
gm2 , w3/w

∗ = (
49
2 w∗2 + 637

6 w∗2
gw − 94 w∗2

gm1

)
gm2 , (11)

w4/w
∗ = ( − 9

2 w∗2 − 39
2 w∗2

gw + 18 w∗2
gm1

)
gm2 , w5/w

∗ = ( − 1
2 w∗2 − 13

6 w∗2
gw − 2w∗2

gm1

)
gm2 ,

whereas the symmetric couplings m1 and w1 are

m1 − m∗ = [
gm1 − w∗2

gw + 10
3 gm1gw − 2w∗2

g2
w + 16

3 w∗2
g2

m1

] + ( − 1 − 4
3gw − 5w∗2

gm1

)
gm2 ,

w1/w
∗ − 1 = [

5w∗2
gm1 + gw + 190

6 w∗2
gm1 gw + 3

2 g2
w − 14 w∗2

g2
m1

] + (
1
2 w∗2 + 13

6 w∗2
gw + 2 w∗2

gm1

)
gm2 . (12)

(The zero-field-symmetric part above has been written up to quadratic order in gm1 and gw.)
The three-parameter model of Ref. [11] corresponds to the three scaling fields: gm1 and gw span the symmetric (zero-field)

system, whereas gh2 breaks this symmetry. Having a look at Eqs. (11) and (12), one can realize that h2 is the only coupling
of the symmetry-breaking part δL which is generated. Therefore, this model can be equivalently defined by the bare couplings
m1 = m, w1 = w, and h2.

In the present paper, we supplement the model by gm2 , whose introduction considerably complicates the model when it
is written as in Eqs. (2) and (3). (One cannot avoid using this representation when, for instance, a scaling function is to be
calculated.) The following couplings enter for a small gm2 , according to Eqs. (11) and (12): δm1, δw1, m2, w2, w3, w4, and w5.

Any observable O can now be considered as depending on the four scaling fields, and according to the generic theory in
Sec. 5.1 of [11], one can write the following asymptotically exact expression around the fixed point:

O
(
gm1 ,gw; gh2 ,gm2

) = ∣∣gm1

∣∣ k
λm1 Ô(x,y,z)

[
1 + km1

λm1

gm1 + kw

λw

∣∣gm1

∣∣ λw
λm1 x + kh2

λh2

∣∣gm1

∣∣ λ
h2

λm1 y + km2

λm2

∣∣gm1

∣∣ λm2
λm1 z + · · ·

]
, (13)

where the RG invariants are defined as

x ≡ gw

∣∣gm1

∣∣− λw
λm1 , y ≡ gh2

∣∣gm1

∣∣− λ
h2

λm1 , z ≡ gm2

∣∣gm1

∣∣− λm2
λm1 . (14)

The · · · symbol indicates neglected terms, namely, higher powers of the temperaturelike field gm1 and/or quadratic or higher-order
monomials of the RG invariants. The k’s above are defined for a given O by its RG flow as

Ȯ = (
k + km1gm1 + kwgw + kh2gh2 + km2gm2 + · · · )O. (15)

The scaling function Ô is not determined by the renormalization group, but auxiliary information is needed (the perturbative
method, for instance) to compute it. Hereinafter, we study three observables: the RS order parameter q, the replicon, and
longitudinal masses, i.e., �R and �L.

III. FREE PROPAGATORS OF THE MODEL

When the order parameter q is nonzero, a reorganization of the perturbational series by the shift φ
αβ
p → φ

αβ
p − √

N q δKr
p=0 of

the fluctuating fields is useful, as one then gets rid of “tadpole” insertions. As a result, the bare magnetic field and the masses
suffer similar shifts:

h2 → h̄2 = h2 + (−2m1 + 2m2) q + (−2w1 + w2 − w3 + w5) q2,

m1 → m̄1 = m1 + (
w1 − w2 + 1

3 w3
)
q,

m2 → m̄2 = m2 + (−w1 − 2
3 w3 + w5

)
q,

m3 → m̄3 = m3 + (− 2
3 w4 − 1

3 w5
)
q.

In the n → 0 limit, two free propagators emerge in the generic RS theory, namely,

ḠR = 1

p2 + 2m̄1
,

the replicon propagator, and

ḠL = 1

p2 + 2m̄1 − 2m̄2
,
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the longitudinal propagator. Any perturbative contribution for some observable will, therefore, depend on q, which must be
computed from the equation of state, i.e., from the condition 〈φαβ

p 〉 = 0. For the free propagators, we need the tree (zero-loop)
approximation of this equation:

2w∗q = h2 q−1 − 2m1 + 2m2 + [−2(w1 − w∗) + w2 − w3 + w5] q.

Using Eqs. (11) and (12) together with the definitions of the RG invariants in (14), the zero-loop order parameter follows, up to
first order in x, y, and z, as

w∗q = ∣∣gm1

∣∣ ×
{

1 + 7
3x + z + 1

2y if gm1 < 0, T < Tc,

z + 1
2y if gm1 > 0, T > Tc.

This is the point where the calculations above and below Tc separate. Writing the free propagators as

ḠR = 1

p2 + ∣∣gm1

∣∣ × R
, ḠL = 1

p2 + ∣∣gm1

∣∣ × L
, (16)

it is obtained in the two respective regimes: for T < Tc,

R = y, L = 2 + 20
3 x + 2y, gm1 < 0 ; (17)

for T > Tc,

R = 2 + 20
3 x + y, L = 2 + 20

3 x + 2y, gm1 > 0. (18)

Terms higher than first order in x, y, and z are again neglected in the above formulas, in accordance with the smallness of these
RG invariants.

IV. ASYMPTOTICAL BEHAVIOR AROUND Tc

A. Below Tc (gm1 < 0)

1. The order parameter q

The RG flow for q is simply q̇ = (2 − w∗2 + ηL/2) q with ηL in (9). Inserting the nonlinear scaling fields with the help of (11)
and (12), the k coefficients for q can be read off by the general definition in (15): k = 2 − 4

3 w∗2, km1 = 2
3 w∗2, kw = − 2

3 w∗2,
kh2 = 0, and km2 = − 2

3 w∗2. Using the eigenvalues of the various modes from (10), the generic scaling form in (13) becomes

q = ∣∣gm1

∣∣1+w∗2

q̂(x,y,z)
[
1 + 1

3 w∗2
gm1 + 1

3

∣∣gm1

∣∣−w∗2

x − 1
3 w∗2 ∣∣gm1

∣∣1+w∗2

z + · · · ]. (19)

Comparing this RG formula with its perturbative counterpart [16]

w∗q = ∣∣gm1

∣∣{[1 + (2 + ln 2) w∗2] + 1
2 [1 + (4 − 2 ln 2) w∗2] y + 7

3 [1 + O(w∗2)] x + [1 + O(w∗2)] z
}

+w∗2 (∣∣gm1

∣∣ ln
∣∣gm1

∣∣) (
1 + 1

2 y + 2x + z
)

(20)

[which follows from Eq. (A1) by using (11), (12), (10), (14), (A2), and (17)] has a double use: First, the scaling function can be
derived as

w∗q̂ = [1 + (2 + ln 2) w∗2] + 1
2 [1 + (4 − 2 ln 2) w∗2] y + [2 + O(w∗2)] x + [1 + O(w∗2)] z. (21)

Second, the logarithm in (20) should correctly exponentiate in accordance with the asymptotic scaling above: this property is
easily checked by comparison.

2. The replicon mass

The replicon mass satisfies the equation �̇R = (2 − ηR) �R , with ηR computed in Ref. [12]. (See also [14].) Instead of
providing the complete formula for ηR here again, we show it expressed and linearly truncated in terms of the nonlinear scaling
fields:

ηR = − 2
3 w∗2(1 − 2gm1 + gm2 + 2gw

)
.

The k coefficients (of �R) follow then from (15): k = 2 + 2
3 w∗2, km1 = − 4

3 w∗2, kw = 4
3 w∗2, kh2 = 0, and km2 = 2

3 w∗2. The
generic result (13) can then be translated to the case of the replicon mass [see also (10)] as

�R = ∣∣gm1

∣∣1+2w∗2

�̂R(x,y,z)
[
1 − 2

3 w∗2
gm1 − 2

3

∣∣gm1

∣∣−w∗2

x + 1
3 w∗2 ∣∣gm1

∣∣1+w∗2

z + · · · ]. (22)

The corresponding perturbative formula follows from (A3) and the use of Eqs. (11), (12), (10), (14), (A4), and (17):

�R = ∣∣gm1

∣∣{−4w∗2 + [1 + (−8 + 3 ln 2 − 4 ln y)w∗2]y + O(w∗2) x + O(w∗2) z} + w∗2 (∣∣gm1

∣∣ ln
∣∣gm1

∣∣) 2y. (23)
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Matching these two expressions of the replicon mass provides the scaling function:

�̂R(x,y,z) = −4w∗2 + [1 + (−8 + 3 ln 2 − 4 ln y) w∗2] y + O(w∗2) x + O(w∗2) z, (24)

and it is easy to check that the criterion of proper exponentiation is satisfied.

3. The longitudinal mass

The k coefficients, defined in (15), for �L follow from its RG equation �̇L = (2 − ηL) �L and Eqs. (9), (11), and (12):
k = 2 + 2

3 w∗2, km1 = − 4
3 w∗2, kw = 4

3 w∗2, kh2 = 0, and km2 = 4
3 w∗2. Just like for the replicon case, one can easily conclude

the scaling form of the longitudinal mass:

�L = ∣∣gm1

∣∣1+2w∗2

�̂L(x,y,z)
[
1 − 2

3w∗2
gm1 − 2

3

∣∣gm1

∣∣−w∗2

x + 2
3w∗2 ∣∣gm1

∣∣1+w∗2

z + · · · ], (25)

which can be compared with (A5) in the Appendix:

�L = ∣∣gm1

∣∣{[2 + (−8 + 4 ln 2) w∗2] + [2 + (1 + 4 ln 2 − 6 ln y) w∗2]y + 20
3 [1 + O(w∗2)]x + O(w∗2)z

}
+ 4w∗2 (∣∣gm1

∣∣ ln
∣∣gm1

∣∣) (
1 + y + 11

3 x
)
. (26)

[Using Eqs. (11), (12), (10), (14), (A6), and (17) is necessary to put (A5) into this form.] The scaling function can now be read
off as

�̂L(x,y,z) = [2 + (−8 + 4 ln 2) w∗2] + [2 + (1 + 4 ln 2 − 6 ln y) w∗2] y + [8 + O(w∗2)] x + O(w∗2) z, (27)

and exponentiation can be checked.

B. Results for T > Tc (gm1 > 0)

For the sake of completeness and a possible comparison with the T < Tc case, results for the three observables above the
critical temperature (in a small but finite magnetic field) are presented in this section. Their scaling forms in Eqs. (19), (22),
and (25) are equally valid in this high-temperature asymptotical regime; the scaling functions, however, are different. Due to the
change in the free propagators according to (16) and (18), the one-loop perturbative results are now [instead of (20), (23), and
(26)]

w∗q = gm1

{
1
2 [1 − (1 + 2 ln 2) w∗2] y + [1 + O(w∗2)] z

} + w∗2 (
gm1 ln gm1

) (
1
2 y + z

)
,

�R = gm1

{
2[1 + (1 + 2 ln 2) w∗2] + 1

2 [2 + (1 − 2 ln 2) w∗2] y + [
20
3 + O(w∗2)

]
x + O(w∗2)z

}
+w∗2 (

gm1 ln gm1

)[
4 + 2y + 44

3 x
]
,

�L = gm1

{
2[1 + (1 + 2 ln 2) w∗2] + 1

2 [4 + (5 + 2 ln 2) w∗2]y + [
20
3 + O(w∗2)

]
x + O(w∗2)z

}
+w∗2 (

gm1 ln gm1

) [
4 + 4y + 44

3 x
]
.

After a comparison with the scaling forms in Eqs. (19), (22), and (25), the scaling functions above the critical temperature can
be concluded:

w∗q̂ = 1
2 [1 − (1 + 2 ln 2) w∗2] y + [1 + O(w∗2)]z, (28)

�̂R(x,y,z) = 2[1 + (1 + 2 ln 2) w∗2] + [
1 + 1

2 (1 − 2 ln 2) w∗2]
y + [8 + O(w∗2] x + O(w∗2) z, (29)

�̂L(x,y,z) = 2[1 + (1 + 2 ln 2) w∗2] + [
2 + 1

2 (5 + 2 ln 2) w∗2]
y + [8 + O(w∗2] x + O(w∗2) z. (30)

One can make the following observations about the behav-
ior of the three quantities around the critical point:

(i) The high-temperature (gm1 > 0) and zero-external-
magnetic-field (y = z = 0) phase possesses a higher symme-
try with a zero-order parameter [see (28)] and a single mass
[due to the degeneration between the replicon and longitudinal
masses; see Eqs. (29) and (30)].

(ii) In zero-external-magnetic-field (y = z = 0) below
the critical temperature (gm1 < 0), the order parameter is
nonzero (Eq. (21); this is the RS spin-glass phase invented
by Edwards and Anderson [2]). However, according to

Eq. (24), the replicon mass becomes negative due to the
one-loop term, showing that this phase is unstable, just as
in mean-field theory [9], and replica symmetry must be
broken.

(iii) There is a slight splitting between the replicon and
longitudinal masses in a small magnetic field above Tc

[Eqs. (29) and (30)], whereas the longitudinal mass is definitely
massive below Tc [Eq. (27)] and therefore separates from the
replicon one.

(iv) It is obvious from Eq. (24) that stability of the RS phase
is restored for y > y0 ∼ O(w∗2) and gm1 < 0.
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V. DISCUSSION: RANGE OF APPLICABILITY
AND ASYMPTOTICALLY DETECTED
ALMEIDA-THOULESS INSTABILITY

In deriving our basic results for the scaling forms and
scaling functions of the three observables (q, �R , and �L),
several approximations were applied in the previous section.
To see clearly the limits of these approximations, it might be
useful to give an overall list of them here:

(i) The RG equations and the auxiliary perturbative cal-
culations have the one-loop character, and therefore, w∗2 =
ε/2 � 1.

(ii) The multiplicative factor (which is analytic in the fields
gm1 , gw, gh2 , and gm2 ) in the, in principle, exact scaling formula
(13) was truncated to linear order in the nonlinear scaling
fields. We must have, therefore, |gm1 |, |gw|, |gm2 |, and gh2 much
smaller than unity. In fact, the normalization of the nonlinear
scaling fields (which is not fixed originally) was chosen in
such a way that their asymptotic regime around the fixed point
is independent of ε.

(iii) Quadratic and higher-order terms in the RG invariants
were neglected in the scaling functions, i.e., |x| � 1, |z| �
1, and y � 1. The first of them is automatically fulfilled if
|gw| � 1 since gw is an irrelevant field. The other two fields
are relevant, and therefore, we have the stronger conditions

|gm2 | � |gm1 |
λm2
λm1 and gh2 � |gm1 |

λ
h2

λm1 .
(iv) Up to this point, we have conditions for the parameters

of the effective field theory representing the physical spin
glass. Translating the above results as a requirement between
temperature and magnetic field, we observe that |gm1 | is
proportional to the reduced temperature, gh2 ≈ w∗h2 ∼ H 2,
and |gm2 | ≈ |m2| ∼ H 2 [see Eqs. (4) and (5)]. As λh2 is the
leading relevant eigenvalue, we arrive at

H 2 � ∣∣gm1

∣∣ λ
h2

λm1 ∼
∣∣∣∣T − Tc

Tc

∣∣∣∣
λ
h2

λm1

.

An important consequence of the above analysis is that the
ratio z/y is independent of H 2 and z � y: this justifies the
simple three-parameter model in [11] with the fields |gm1 |, gw,
and gh2 (or, equivalently, m1, w1, and h2). Anyway, z entered
only the scaling function for q in (21).

The scaling functions in Eqs. (21), (24), and (27) for T < Tc

[and also Eqs. (28), (29), and (30) for T > Tc] constitute
our basic result: they are the leading part of a perturbative
series, and one could calculate, in principle, any higher-order
terms in ε and/or in the invariants (say y). These series belong
completely to the critical fixed point; in other words, they are
characteristics of the zero-magnetic-field fixed point. Their
validity is therefore independent of the fate of the relevant
couplings (like h2, m2, and wi , i = 2, . . . ,5) under the iteration
of the renormalization group, i.e., whether they approach
another fixed point (perturbative or nonperturbative) or flow
away to infinity.

As a matter of fact, the question is what information you
can extract from these perturbative series. Let’s make this point
clearer with the case of the longitudinal mass in (27). (For the
sake of simplicity, invariants other than y are neglected in
the following discussion.) �̂L is positive for y = 0; that is, the
zero-field spin-glass phase is longitudinally massive. Although

it is physically plausible that �L remains massive in an external
field too, this cannot be verified using (27) (or from a longer
series), as a nonperturbative zero of �̂L is not available from
such a series.

The situation is fundamentally different for the replicon
mass �̂R(y) below Tc, as it has a perturbative zero: y0 =
4w∗2 + · · · , whereas the longitudinal mode is massive, �L =
2 + 4 ln 2 w∗2 + · · · , along this Almeida-Thouless instability
surface. �̂R(y) will probably be singular at this zero:

�̂R(y) ∼ (y − y0)γ̇ ,

with some exponent. This asymptotic form, however, cannot
be verified from the series (24) due to the lack of proper
exponentiation. The exponent γ̇ cannot be extracted from (24),
as it does not belong to the critical fixed point but possibly to
some, at this moment unknown, zero-temperature fixed point.
(The scenario drafted above follows closely the crossover
behavior at a bicritical point presented in Ref. [17].)

VI. FINAL REMARKS

It has been shown how one can detect the critical surface
with zero replicon mass (the Almeida-Thouless critical mani-
fold) asymptotically in the close vicinity of the zero-magnetic-
field fixed point perturbatively just below the upper critical
dimension. Nevertheless, this AT critical surface is spanned
by relevant scaling fields like gh2 and gm2 , which break the
symmetry of the critical zero-magnetic-field fixed point, and
runaway RG flows toward infinite couplings follow [10]. The
lack of an attractive perturbative fixed point governing the AT
instability surface [18] and the runaway flows can be under-
stood by the schematic phase diagrams from Refs. [11,19]: RG
flows along the AT line terminate into a zero-temperature fixed
point, and the effective cubic field theory (fitted to the asymp-
totics around the zero-magnetic-field critical transition) is, in
fact, not appropriate for representing the zero-temperature spin
glass. A field theory for the low-temperature spin glass is
obviously sorely needed for the understanding of the critical
asymptotics along the AT line.

What is claimed above, namely, that the existence of a
spin-glass transition in an external magnetic field may be
possible even if the RG trajectories run away from the critical
fixed point without terminating in a perturbative novel fixed
point, has been demonstrated with a simpler model in which
the interaction depends on the hierarchical distance between
the Ising spins, i.e., in the hierarchical Edwards-Anderson
(HEA) model. A first-order RG analysis of the generic
replica symmetric phase [20] in Ref. [21] found no relevant
fixed point governing the transition in a field: the couplings
renormalize toward infinite values. Notwithstanding that, a
careful Monte Carlo simulation on a modified version of
the HEA [22] provided evidence for a transition in nonzero
external field through a study of the spin-glass susceptibility
and the correlation length associated with it. Most importantly,
Ref. [22] found a transition in nonzero field in the non-mean-
field region σ � 2/3, where σ , the parameter of the HEA
analogous to the spatial dimension d of the short-range model
in Euclidean space, was within 2% of the upper critical value
σ = 2/3. This clearly shows that the AT instability persists
while traversing the analog of the upper critical dimension
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from the mean-field to the non-mean-field region, in spite of
the absence of a perturbative fixed point governing the AT
critical surface [21]. One point is still lacking here, namely,
the observation of the transition perturbatively by computing
the asymptotical behavior of the spin-glass susceptibility (or,
equivalently, the replicon mass) around the critical fixed point.
This is left to a subsequent work.

As for the short-range model, it has been advocated for
some time [23,24] that the lower critical dimension for the
AT line should be d = 6, i.e., that the spin-glass transition
in an external field disappears just at the upper critical
dimension of the zero-field model. The fault in the arguments
of Ref. [23] about the behavior of the AT line (computed
perturbatively for d > 6), namely, that it disappears while
approaching d = 6 from above, was pointed out in [11].
The issue was reconsidered in Ref. [25], admitting now that
the six-dimensional AT line cannot be derived by a limiting
process from the perturbative result in d > 6. Yeo and Moore
[25], however, incorrectly claimed that the calculation of the
six-dimensional AT line in [11] was performed by just this
wrong limiting process. In fact, the d = 6 case was studied
separately in Ref. [11], as it must be, by the special one-loop
perturbative RG at the upper critical dimension where the
scaling exponent of the cubic coupling constant is zero (see
also Refs. [26,27]).

From the discussion in the last two paragraphs and also
from the results of the present paper, it follows that the lower

critical dimension for the spin-glass transition of the Ising spin
glass in an external magnetic field is probably less than d = 6.
One must, however, emphasize that the perturbative RG is not
able to make predictions about the existence of the AT line
far below d = 6. Numerical simulation results in d = 3 and
d = 4 (or in the corresponding long-range one-dimensional
model as a “proxy” for the short-range system) in this regard
are controversial (see [28,29] and references therein).

Finally, we have some notes about the perturbative method:
The calculations of physical quantities were performed in the
present paper with the combined use of the renormalization
group and a series expansion in terms of the coupling constants.
This method is absolutely conventional around a perturbative
fixed point: a perturbative result like (20), for instance, is inter-
preted by the RG ansatz in (19), and the scaling function can
be identified as in (21). In the meantime, a consistency check
is available with the proper exponentiation of the logarithms of
the temperature-like scaling field. Two peculiarities, however,
occur: The first one is due to the quadratic symmetry breaking
caused by the nonzero RS order parameter which leads to the
two distinct free propagators, with the replicon mode being
almost massless in a small magnetic field below Tc. The other
one is related to the replicated nature of the field theory,
which may cause problems in the n → 0 spin-glass limit.
Although this limit proved to be quite smooth in our model
with four scaling fields, the behavior and physical meaning of
the remaining modes, like the third mass mode, are not clear.

APPENDIX: SUMMARY OF SOME ONE-LOOP RESULTS FOR THE GENERIC REPLICA SYMMETRIC THEORY

In this Appendix, we provide results which are equally valid in the high- and low-temperature regimes, assuming that the
proper values of R and L [see Eqs. (18) and (17)] must be inserted.

1. The equation of state

The order parameter q satisfies the implicit equation

2w∗q = h2 q−1 − 2m1 + 2m2 + [−2(w1 − w∗) + w2 − w3 + w5] q + q−1 1

N

∑
p

Y (p), (A1)

with the one-loop graph

Y (p) = (
w2 + 1

3w3 + 4
3w4 − 1

3w5 − w6 − 4
3 w7

)
ḠR + (

3w1 − 2w2 + 4
3w3 + 4

3w4 − 1
3w5 − w6 − 4

3w7
)

2m̄2 ḠRḠL

+ (4w1 − 2w2 + 2w3 − 2w5 − 2w6) (−m̄2 + 2m̄3)Ḡ2
L.

This one-loop integral can be computed, and one gets

w∗ 1

N

∑
p

Y (p) = w∗2 ∣∣gm1

∣∣2
(1 − 2x)−1/2

[
1
2 (R − L)

∣∣gm1

∣∣−1 + 1
2 (L − R)(L − 3R) ln

∣∣gm1

∣∣ + 3
2R2 ln R

+ 1
2L(L − 4R) ln L + L(L − R)

] + O(w∗4). (A2)

2. The replicon mass

The one-loop formula for the replicon mass was published in [6] [see Eqs. (49a)–(49h) and (62) therein]. Here we reproduce
it in terms of the set of bare parameters used throughout the present paper and for n = 0:

�R = 2m1 + 2w∗q + 2
[
(w1 − w∗) − w2 + 1

3 w3
]
q − 1

N

∑
p

σR, (A3)
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with the replicon self-energy

σR = (−2w2
1 − 4

3 w1w3 − 16
3 w1w4 − 8

3 w1w5 + 2w2
2 + 8

3 w2w3 + 16
3 w2w4 + 4

3 w2w5 + 2
9 w2

3 − 16
9 w3w4 − 8

9 w3w5

+ 4
9 w2

5

)
Ḡ2

R + (−2w2
1 + 12w1w2 + 4

3 w1w3 − 16
3 w1w4 − 16

3 w1w5 − 8w2
2 + 4

3 w2w3 + 16
3 w2w4 + 8

3 w2w5

+ 6
9 w2

3 − 16
9 w3w4 − 16

9 w3w5 + 8
9 w2

5

)
2m̄2Ḡ

2
RḠL + (−8w2

1 + 16w1w2 − 16
3 w1w3 − 8w2

2 + 16
3 w2w3 − 8

9 w2
3

)
× (−m̄2 + 2m̄3) ḠRḠ2

L + 1
9 (6w1 − 3w2 + 2w3 − 2w5)24m̄2

2 Ḡ2
RḠ2

L.

Performing the momentum integral provides

1

N

∑
p

σR = w∗2 ∣∣gm1

∣∣(1 − 2x)−1

[
−∣∣gm1

∣∣−1 + (L − 3R) ln
∣∣gm1

∣∣ + R(4L + 3R)

L − R
ln R + L(L − 8R)

L − R
ln L + 2(R + 2L)

]

+O(w∗4). (A4)

3. The longitudinal mass

The first-order expression for the longitudinal mass takes the form (for n = 0)

�L = 2m1 − 2m2 + 4w∗q + 2 [2(w1 − w∗) − w2 + w3 − w5] q − 1

N

∑
p

σL, (A5)

with the longitudinal self-energy (which is identical to the anomalous one when n = 0; see Eqs. (49a)–(49h), (63), and (64) of
[6])

σL = [
6
(
w1 − w2 + 1

3w3
)2 − 4

3 (2w1 − w2 + w3 − w5 − w6)(3w1 − 3w2 + w3 + 4w4 + 2w5 − 4w7)
]

× Ḡ2
R − 8

3 (2w1 − w2 + w3 − w5 − w6) (3w1 − 3w2 + w3 + 4w4 + 2w5 − 4w7)
(
2m̄2 Ḡ2

RḠL + 2m̄2
2 Ḡ2

RḠ2
L

)
− 8(−2w1 + w2 − w3 + w5 + w6)2(−m̄2 + 2m̄3) Ḡ3

L.

After integration it becomes

1

N

∑
p

σL = w∗2 ∣∣gm1

∣∣ (1 − 2x)−1[−∣∣gm1

∣∣−1 − 2R ln
∣∣gm1

∣∣ + 6R ln R − 8R ln L + (8L − 9R)
] + O(w∗4). (A6)
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