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We propose a novel Bayesian method to analytically continue observables to real baryochemical
potential μB in finite density QCD. Taylor coefficients at μB ¼ 0 and data at imaginary chemical potential
μIB are treated on equal footing. We consider two different constructions for the Padé approximants, the
classical multipoint Padé approximation and a mixed approximation that is a slight generalization of a
recent idea in Padé approximation theory. Approximants with spurious poles are excluded from the
analysis. As an application, we perform a joint analysis of the available continuum extrapolated lattice data
for both pseudocritical temperature Tc at μIB from the Wuppertal-Budapest Collaboration and Taylor
coefficients κ2 and κ4 from the HotQCD Collaboration. An apparent convergence of ½p=p� and ½p=pþ 1�
sequences of rational functions is observed with increasing p. We present our extrapolation up to
μB ≈ 600 MeV.
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I. INTRODUCTION

Despite considerable effort invested so far, the phase
diagram of QCD in the temperature(T)-baryon chemical
potential(μB) plane still awaits determination from first
principles. At the moment, the only solid information
available is the curvature of the crossover temperature
[1–3], together with some upper bound on the absolute
value of the next Taylor coefficient of order Oðμ4BÞ [2,3].
These results come either from the evaluation of Taylor
coefficients with lattice simulations performed at μB ¼ 0 or
via simulations performed at imaginary μB, where the sign
problem is absent, with the Taylor coefficients obtained
from a subsequent fit.
Whether the input data are the Taylor coefficients or the

values of a function at several values of the imaginary
chemical potential, fact is that the numerical analytic
continuation needed to extrapolate the crossover to real
μB is a mathematically ill-posed problem [4,5]. This means
that although the analytic continuation of a function

sampled inside some domain D is uniquely determined
by the approximant used, the extension of a function
differing on D by no matter how small an amount can
lead to arbitrarily different values at points outside D. That
is to say: analytic continuation is unique, but is not a
continuous function of the data. For such ill-posed prob-
lems, the only way to achieve convergence in the results is
to use some kind of regularization. This makes sure that the
noise in the data is not overemphasized by the analytic
continuation. As the noise is reduced, the regularizing term
is made weaker. This leads to a kind of double limit when
the regularization and the noise are taken to zero together.
The simplest kind of regularization for analytic continu-
ation is the use of some ansatz, which is assumed to
describe the physics both in the range where data is
available, and in the range where one tries to extrapolate.
The conservative view is to use for analytic continuation
few-parameter approximants, which all fit the data well,
and perform the continuation only in a range where they do
not deviate much from each other, assessing the systematic
error of the continuation from this deviation. Here we
pursue a more adventurous approach, by considering a
sequence of approximants of increasing functional com-
plexity, and trying to observe whether they converge or not.
In the absence of physicallymotivated ansatz, a goodguess

is to study the ½p=p� (diagonal) and ½p=pþ 1� (subdiagonal)
Padé sequences, as these are only slightly more complicated
to work with than polynomials, but have far superior
convergence properties. Ordinary Padé approximants
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(i.e., rational functions constructed using approximation-
through-order conditions to match the Taylor expansion of a
function at a given point) are known to convergeuniformly on
the entire cut plane for functions of Stieltjes type [6] (which
have a cut on the negative real axis). For this class of functions
the subdiagonal sequence of multipoint (or N-point) Padé
approximants [7], also know as the Schlessinger point
method in the context of scattering theory [8], is also
convergent (see [9] and references therein). For a meromor-
phic function, on the other hand, Padé approximants are
known to converge in measure [10,11], i.e., almost every-
where on the complex plane, in stark contrast to polynomial
approximations, which stop converging at the first pole of
such a function.
While the convergence properties of Padé approximants

in exact arithmetic are often very good, even in cases where
the mathematical reason for the convergence is not fully
understood yet, these approximations tend to be very
fragile in the presence of noise. This often manifests itself
in spurious poles, whose residue goes to zero as the noise
level is decreased, as well as spurious zero-pole pairs
(called Froissart doublets [12]). The distance between the
zero and the pole goes to zero as the noise decreases,
eventually leading to the annihilation disappearance of the
doublet. There is a large body of mathematical literature
devoted to the removal of these spurious poles. Procedures
which do so typically involve some further regularization,
like in Ref. [13], where this is based on singular value
decomposition, or monitoring the existence of Froissart
doublets for later removal, like in Ref. [14]. In cases where
the noise level on the data cannot be arbitrarily decreased,1

the exclusion of spurious poles is mandatory if one wants to
go to higher order approximants in the analysis.
When dealing with numerical analytic continuation, we

need to select the approximant from a class of possible
functions (i.e., a model) and a method to take into account
the data (i.e., a fitting method). For the former we use two
types of rational approximants, the classical multipoint
Padé approximants recently used for analytic continuation
in Refs. [15–17] and a slight generalization of the Padé-
type approximant introduced and studied recently in [18].
The parameters of the multipoint Padé approximant are
determined solely in terms of the interpolating points and
information on Taylor coefficients, if it exists, can be taken
into account in the second, data fitting step. In contrast, the
Padé-type approximant allows for a joint use of interpolat-
ing points and Taylor coefficients in determining the
parameters of the approximant. Although the focus in
[18] was on the diagonal sequence ½p=p� of Padé-type
approximants, the method can be easily generalized to

construct the subdiagonal sequence as well. For the data
fitting step we use a Bayesian analysis. The likelihood
function ensures that approximants are close to both the
data on the Taylor coefficients at μB ¼ 0 and the data at
purely imaginary μB, while a Bayesian prior makes sure
that spurious poles are excluded from the extrapolation.
Considering two different types of Padé approximants is a
nontrivial consistency check, mainly because the exact
form of the prior distribution will be different for the two
cases, as the number of interpolation point where the
function values will be restricted is different.
We note that while Bayesian methods—especially var-

iations of the maximum entropy method with different
entropy functionals—for the analytical continuation to real
time are quite commonly used in lattice QCD [19–26], as
far as we are aware, such methods have not been applied to
the analytic continuation problem in μB so far. The only
related example we are aware of is Ref. [27], where a
Bayesian method is used to extract high order derivatives of
the pressure around μB ¼ 0 from data at imaginary μB. One
must note however, that the mathematical problem in that
paper is that of numerical differentiation, which is distinct
from the analytic continuation problem discussed here.
This paper, therefore, is the first attempt of using this class
of mathematical techniques to the analytic continuation
problem in finite density QCD.
The above mentioned fragility of the Padé approxima-

tion method when applied to noisy data is the main reason
that most of the previous applications to finite density QCD
employ low order approximants. Padé approximants were
used in this context to analytically continue to real values of
μB the pseudocritical temperature values obtained at imagi-
nary chemical potential for various number of flavors and
colors [28–31]. The convergence of a Padé sequence was
seemingly not in the focus of these investigations, with the
exception of [28]. A related problem in finite density QCD,
where Padé approximants have also been considered, is the
calculation of the equation of state at finite chemical
potential. An early work that uses a high order Taylor
expansion in an effective model is Ref. [32]. Two recent
examples in lattice QCD are Refs. [33,34]. The low order
Padé approximants used in the above studies are not yet
expected to take advantage of the superior convergence
properties of the Padé series. This is in sharp contrast to the
case in statistical physics, where in Ising-like models the
Taylor coefficients are known exactly to high orders [35–
37]. However, even a low order Padé approximant repre-
sents a resummation of the Taylor series, which is exploited
when applied outside the radius of convergence of the
Taylor series. The main advantage of the Bayesian
approach presented here is the ability to go to considerably
higher orders, at the cost of what we believe are physically
reasonable extra assumptions.
The paper is organized as follows. In Sec. II we introduce

the mathematic tools used for our analysis. First we treat the

1E.g., if the noise is only coming from machine precision in
floating point arithmetic, the Froissart doublets can often be
removed by simply using multiple precision arithmetic for the
“naive” algorithm.
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novel Padé-type approximants in the absence of noise.
Since the traditional multipoint Padé approximants are
quite well known, they are relegated to Appendix A. Next,
we discuss the Bayesian analysis in the presence of noise in
a general manner that includes both the multipoint Padé and
the mixed Padé approximant case. In Sec. III we turn to
physical applications. We first demonstrate the effective-
ness of Padé approximants in a chiral effective model.
Finally, we perform a joint analysis of the continuum
extrapolated lattice data on the Taylor coefficients at μB¼0
and the crossover line at imaginary μB. Appendix B
summarizes the formulas relating our notational conven-
tions on the Taylor coefficients to those found elsewhere in
the literature.

II. NUMERICAL METHOD FOR ANALYTIC
CONTINUATION

A. Padé-type rational approximants
in the absence of noise

Using the notation of [18] the mathematical formulation
of analytic continuation is as follows. Assuming the
existence of a continuous real function f∶R → R, we
would like to know its value for t > 0 given that:

(i) at a number of interpolating points τi < 0, i ¼
1;…; l, the values fi ≔ fðτiÞ are known,

(ii) a number of coefficients ci, i ¼ 0;…; k in the Taylor
expansion

fðtÞ ¼ c0 þ c1tþ � � � þ cktk ð1Þ

around t ¼ 0 are known.
A widely used method to tackle the problem is to fit a

rational fraction2

½n=m�≡ Rn
mðtÞ≡ NnðtÞ

DmðtÞ
≔

P
n
i¼0 ait

iP
m
i¼0 bit

i;
ð2Þ

to the set of function values and/or available derivatives.
When only derivatives at t ¼ 0 are used, one obtains the
ordinary Padé approximant in which the coefficients
of both the denominator and the numerator are fully
determined by the Taylor coefficients by imposing the
approximation-through-order conditions3 Rn

mðtÞ ¼ fðtÞþ
Oðtmþnþ1Þ. This condition implies that the Taylor expan-
sion of the Padé approximant around t ¼ 0 agrees with the
Taylor expansion of the function up to and including the
order of the highest Taylor coefficient known.
When only the set of function values at the interpolating

points are used, one obtains the so-called multipoint Padé

approximant, which is particularly useful in numerics in
its continuous fraction formulation because the coefficients
can be determined easily from recursion relations. For odd
number of points N ¼ 2kþ 1, k ≥ 0, one obtains the
approximant ½k=k�, while for even number of points
N ¼ 2k, k ≥ 1, one obtains the approximant ½kþ 1=k�.
More details can be found in Appendix A, where the
construction of the multipoint approximant CN is
summarized.
As mentioned in Ref. [38] (see p. 16), an obvious

modification of the multipoint Padé approximation can
be given if any number of successive derivatives exists at
the points where the value of the function is known.
Recently such a modification, called Padé-type rational
approximant with n ¼ m ¼ k was constructed in [18], with
k being the degree up to (and including) which the
expansion of the approximant matches the Taylor expan-
sion of the function. The denominator of this ½k=k�
approximant is fixed by function values at arbitrarily
chosen interpolating points and the coefficients of the
numerator are obtained by imposing the approximation-
through-order conditions.
It is easy to generalize the construction used in [18] to

obtain Padé-type approximants for which l ≠ k. With kþ 1
coefficients of the Taylor expansion (including the value of
the function at zero) one can construct many Padé-type
approximants of this type, one just has to satisfy the relation
nþm ¼ kþ l. In this case kþ 1 coefficients of the
numerator NnðtÞ are determined from the approximation-
through-order conditions, meaning that strictly speaking
Rn
m satisfies by construction n ≥ k, and the remaining nþ

m − k ¼ l coefficients are fixed by function values at l
number of interpolating points via fiDmðτiÞ ¼ NnðτiÞ;
i ¼ 1;…; l.
In what follows we shall use Padé-type approximants of

the form Rp
p and Rp

pþ1, with p ≥ 1, satisfying 2p ¼ kþ l
and 2pþ 1 ¼ kþ l, respectively. To construct for example
R3
4ðtÞ using c0, c1, and c2, one equates (1) with (2) and after

cross multiplication one matches the coefficients of t0, t1,
and t2. This gives a0 ¼ c0, a1 ¼ c1 þ b1c0, and a2 ¼
c2 þ b1c1 þ b2c0, which are common for all approximants
with n ≥ 2. Using these expressions for a0, a1, and a2 in
N3ðtÞ, one sees that the five conditions fiD4ðτiÞ ¼
N3ðτiÞ; i ¼ 1;…; 5 represents a system of linear equations
for the five unknown a3, b1, b2, b3, b4, which can be easily
solved numerically with some standard linear algebra
algorithm. As for the R1

2ðtÞ approximant, this is constructed
very similarly to the original Padé approximant, only the
condition on the third derivative (unknown in our case) is
replaced by R1

2ðτ1Þ ¼ f1, where τ1 is an interpolating point.

B. Bayesian approach

The Bayesian approach [39] that considers the data
sample fixed and the model parameters as random variables

2One can choose b0 ¼ 1 without loss of generality, having
nþmþ 1 independent coefficients.

3One equates the expansion of fðtÞ with Rn
mðtÞ, cross multiply

and then equates the coefficients of t on both sides of the
equation.
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gives a perspective on the curve fitting problem which is
particularly suited for a meta-analysis of data with noise.
We do not include Padé approximants of different order

in one large meta-analysis, rather we perform a separate
Bayesian analysis of the different order approximants, in
order to study their convergence properties as the order of
the approximation is increased. For an ½n=m� Padé approx-
imant, the model parameters are the coefficients a⃗ ¼
ða0; a1;…; anÞ and b⃗ ¼ ðb1; b2;…; bmÞ, with a total of nþ
mþ 1 coefficients to be determined. The posterior prob-
ability can be written as:

Pða⃗; b⃗jdataÞ ¼ 1

Z
Pðdataja⃗; b⃗ÞPpriorða⃗; b⃗Þ; ð3Þ

where assuming Gaussian errors around the correct model
parameters, the likelihood is given by:

Pðdataja⃗; b⃗Þ ¼ exp

�
−
1

2
χ2
�
;

χ2 ¼ χ2Taylor þ χ2ImμB
;

χ2Taylor ¼
XT
i¼1

�
ci −

∂iRn
mðμB;a⃗;b⃗Þ
∂ðμ2BÞi jμB¼0

�
2

σ2ci
;

χ2ImμB
¼

XL
j¼1

�
fj − Rn

mðiμIB;j; a⃗; b⃗Þ
�

2

σ2fj
; ð4Þ

with T being the number of derivatives known at μB ¼ 0
and L being the number of function values known for
μ2B < 0. Z is a normalization constant. The Taylor coef-
ficients at μB ¼ 0 are clearly correlated, but their correla-
tion matrix was not given in Ref. [2] so we ignore the
correlations. If the correlations between the Taylor coef-
ficients are known, including them in our method is
completely straightforward. The data at different values
of imaginary μB come from different Monte Carlo runs, and
are thus uncorrelated.
The variables that the Bayesian analysis code uses for the

construction of the Padé approximants are not the coef-
ficients of the polynomial themselves. For the multipoint
Padé approximants we use a number of interpolated values
at fixed node points in μ̂2B ≔ μ2B=T

2. For the case of Padé-
type approximants we use a smaller number of interpolated
values at node points and a number of derivatives at
μB ¼ 0. These are of course in a one-to-one correspon-
dence with the polynomial coefficients, once the restriction
b0 ¼ 1 has been made in Eq. (2). Details of the imple-
mentation will be discussed in Sec. III B.
An important part of our procedure is that we do not

work with the space of all Padé approximants of order
½n=m�, rather, the allowed approximants are restricted by
the prior, which always contains a factor that excludes

spurious poles both in the interpolated and the extrapolated
range. Due to this factor of the prior, the method is only
applicable when no physical poles are expected in the
aforementioned ranges.
The prior also contains a further factor—the exact form

of which for the two different Padé approximants will be
discussed in Sec. III B—which prevents extra oscillations
of the interpolants in the μ2B < 0 range, which are not
warranted by the data. This is enforced by using a prior
distribution of the interpolated values at the node points at
fixed μ2B=T

2 range. We have checked that our results are not
sensitive to the choice of the node points. This is also
expected on mathematical grounds, since unlike polyno-
mial interpolants, rational interpolants are not extremely
sensitive to the choice of the node points used for the
interpolation [40].
Putting all the above information together, the prior can

be given as an implicit condition on the model parameters a⃗
and b⃗ in the following form

Ppriorða⃗; b⃗Þ

∝
� Q

i
FðjRn

mðiμIB;i; a⃗; b⃗Þ− T̄cðμ̂2B;iÞj;wiÞ; ∄ pole ∈ I ;

0; ∃pole ∈ I ;

ð5Þ

where Fðx; wÞ is either exp ð−x2=ð2w2ÞÞ or θðw − xÞ
(Heaviside step function), corresponding, respectively, to
Method 1 and Method 2 used in Sec. III B 1 and I
represents a range of μ̂2B for which the absence of poles
of the Padé approximants is required (we use I ¼ ½−π2;
60π2�). The index “i” goes over the interpolating (node)
points, which are different from the data points j ¼ 1;…; L
used in (4). In Method 1 the temperature values Rn

mðiμIB;i;
a⃗; b⃗Þ≡ T i

c at the node points are generated with a normal
distribution whose standard deviation wi is chosen to be
substantially larger than the error σfj of the lattice data, in
which case the result of the analytic continuation is not
sensitive to the actual value of wi. In Method 2 the
temperature values at the node points are generated using
importance sampling and the θ-function is only needed for a
technical reason, as explained at the end of Sec. III B 1. The
node points, as well as wi ≡ wT i

c
and T̄cðμ̂2B;iÞ, are given in

Fig. 3. T̄cðμ̂2B;iÞ is obtained by interpolating the mean value
of the lattice data points available at imaginary μB.
Our numerical results will be based on the posterior

distribution. For a fixed value of μB=T, we study the
posterior distribution of the crossover temperature Tc ¼
Rn
mðμ̂2BÞ and chemical potential μB ¼

ffiffiffiffiffi
μ̂2B

p
Tc. The center

point will in both cases be the median, while the asym-
metric error bars represent the central 68% of the posterior
distribution of both quantities. We will call these percentile
based errors. We shall see that the asymmetry of the
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posterior distribution increases as μ̂2B increases in the
extrapolation range (real values of μB) and is the largest
for the [2/2] Padé approximant. In practice, the integration
over the prior distribution is carried out with simple
Monte Carlo algorithms. The statistics needed is such that
the posterior distribution of the studied observables does
not change anymore, which we explicitly checked to be the
case in our analysis.

III. ANALYTIC CONTINUATION OF TcðμIBÞ
A. Convergence of Padé approximants

in a chiral effective model

Before applying themethoddescribed inSec. II to the actual
QCDdata, we study the analytic continuationwithin the chiral
limit of the two flavor (Nf ¼ 2) constituent quark-meson
(CQM) model. We show that in this model both the diagonal
and the subdiagonal sequences constructed from TcðμIBÞ
exhibit apparent convergence to the exact TcðμBÞ curve.
We also show that the Padé approximant knows nothing
about the location of the tricritical point (TCP), as this
information is not encoded in TcðμBÞ. Finally, we investigate
the effect of the error on the analytical continuation.

1. Convergence in the absence of noise

In Ref. [41], using leading order large-N techniques
resulting in an ideal gas approximation for the constituent
quarks, the coefficients of the Landau-Ginzburg type effec-

tive potential Veff ¼ m2
eff
2
Φ2 þ λeff

4
Φ4 þ � � � for the chiral

order parameterΦwere determined in the chiral limit to be4:

m2
eff ¼ m2 þ

�
λ

72
þ g2

12
Nc

�
T2 þ g2Nc

36π2
μ2B; ð6aÞ

λeff ¼
λ

6
−
g4Nc

8π2

�
Ψ
�
1

2
þ i

μ̂B
6π

�
þΨ

�
1

2
− i

μ̂B
6π

�

þ2þ 2 ln
4πT
M0

�
: ð6bÞ

In the expressions above ΨðxÞ is the digamma function,
μ̂B ¼ μB=T, Nc is the number of colors, g ¼ mq=Φ0 (with
mq ¼ mN=3 and Φ0 ¼ fπ=2) is the Yukawa coupling
between the pion and sigma mesons and the constituent
quarks, andm2 and λ are the renormalizedmass and the self-
coupling in theOðNÞ symmetricmesonic sector of the CQM
model, which at the value M0 ¼ 886 MeV of the re-
normalization scale take the values m2 ¼ −326054 MeV2

and λ ¼ 400.

For μB ≥ 0 the model exhibits a second order chiral
phase transition line in the μB − T plane, which is obtained
from the condition m2

eff ¼ 0. This line of second order
points ends in a tricritical point with coordinates deter-
mined by m2

eff ¼ λeff ¼ 0. For μB > μTCPB the chiral phase
transition is of first order and m2

eff ¼ 0 gives the location of
the first spinodal down to T ¼ 0. The merit of the
expressions in (6a) and (6b) is that the line of second
order phase transitions, which is actually an ellipse in the
μB − T plane, can be determined analytically together with
the location of the TCP. This makes the analytic continu-
ation very simple, as we just have to change μ̂2B → −μ̂2B in
the expression

Tcðμ̂2BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−72m2

λþ 6g2Ncð1þ μ̂2B=ð3π2ÞÞ

s
; ð7Þ

obtained from (6), to go from real to imaginary chemical
potentials.
We can sample Tc at imaginary values of μ̂B and fit

multipoint Padé approximants to the sampled data (see
Appendix A). Then, we can evaluate the Padé approximant
at real values of μ̂B and compare the value of analytic
continued Tc with the exact values obtained from (7). This
comparison is presented in Fig. 1, where the inset shows the
percentage difference between CNðμ̂2BÞ and Tcðμ̂2BÞ using
the same interpolating points as those shown in Fig. 3 in
the case of the QCD data. The main figure shows that the
diagonal sequence converges from above, while the

 0
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FIG. 1. Apparent convergence of the multipoint Padé approx-
imants CN (solid lines) determined from Tc values at μIB in the
CQMmodel in comparison to the Taylor expansion of order N−1
around μB ¼ 0 (dashed lines). In the main plot the parametric
curves for the Padé approximants are obtained as ð

ffiffiffiffiffi
μ̂2B

p
CNðμ̂2BÞ;

CNðμ̂2BÞÞ. The bivaluedness of the subdiagonal approximants (and
the curves of the odd-order Taylor expansion) reflects that μB ≔ffiffiffiffiffi

μ̂2B
p

CNðμ̂2BÞ has a maximum. The inset shows the percentage
difference between the approximated and exact values of Tc, with
the vertical dotted line indicating the radius of converges of the
Taylor expansion.

4These expressions corresponds to Eqs. (13) and (14) of [41],
just that we used the relation ∂

∂n ðLinð−ezÞ þ Linð−e−zÞjn¼0 ¼
−γ − lnð2πÞ − ½Ψðð1þ iz=πÞ=2Þ þ Ψðð1 − iz=πÞ=2Þ�=2, which
can be proven by comparing the high temperature expansion
used there with the one given in [42].
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subdiagonal sequence converges from below to the line
m2

eff ¼ 0, which for μB < μTCBB is the line of critical points
and for μB > μTCBB is the first spinodal. Given that the
sampling range is μ̂2B ∈ ð−7.35; 0�, the accuracy of the
½3=4� Padé approximant around the location of the TCP is
remarkable, even though Tcðμ̂2BÞ is a rather simple function,
as it represents an ellipse. This is even more so when one
compares to the radius of convergence of the Taylor
expansion around μB ¼ 0 which is μ̂2B ≈ 44.2, as given
by the pole in (7). We only refer to the TCP because μB (or
μ̂2B) is rather large there; the Padé approximant does not
know about the existence of the TCP, as this is encoded in
the quartic part of the tree-level potential and the second
derivative of hq̄qi=Φ (q is the constituent quark field) with
respect to Φ, which jointly determine λeff .

2. Effect of the error

Next, we investigate what happens when analytic con-
tinuation is performed in the presence of noise. As a
reference point we start by generating Ti

c configurations
with a normal distribution characterized by mean calculated
from (7) and standard deviation corresponding to the
relative error wTi

c
=Ti

c ¼ 1% and investigate to what extent
should we decrease the relative error in order to get close to
the curves obtained in Fig. 1 in the absence of noise. Note
that wTi

c
is by a factor of two larger than the average error of

the QCD data at imaginary chemical potential.
We determine the coefficients of the multipoint Padé

approximant for each generated configuration, evaluate the
approximant for positive μ̂2B and, using the Bayesian
method presented in Sec. II B, calculate χ2 including or
omitting information on the Taylor coefficients, and then
study the posterior distribution of these values. The method
is applied to the QCD data in the next subsection, where it
is referred to as Method 1. The control points used to
calculate χ2 have μ̂2B corresponding to the QCD data at
imaginary chemical potential and Tc obtained from (7). We
use a unique relative error of Tc at all interpolating and
control points, whose value is indicated in the key of Fig. 2
(wTi

c
used to generate Ti

c instances is twice the indicated
value). When Taylor coefficients c1 and c2 are also used in
the calculation of χ2, their values c1 ¼ −1.575 and c2 ¼
0.0267 is determined from the Taylor expansion of (7), as
for the reference value of their error, indicated in the key of
Fig. 2, we use the error of the QCD data obtained from
Ref. [2], namely σ0c1 ¼ 0.626 and σ0c2 ¼ 0.627. The sam-
pling points in the range μ̂2B ∈ ð−7.35; 0� are those used
previously to obtain Fig. 1. We also investigate the effect of
changing the sampling range for fixed value of the error by
increasing the lower bound of the interval by the factor
indicated in the keys of Fig. 2. In the modified range the
interpolating points are equidistant from each other.
Worth noticing in Fig. 2 is that in the presence of noise the

bands for TcðμBÞ can deviate above some value of μB from

the curves of Fig. 1 by more than the estimated statistical
error. This reflects the ill-posedness of the analytic con-
tinuation problem. However, even with the largest error
used, the Padé sequence converges up to μB ≈ 600 MeV.
For the mathematically curious, we also show the effect of
increasing the range of the interpolation points. As expected,
convergence is accelerated by the increase of the sampling
range. This is of course not directly relevant for QCD, as the
Roberge-Weiss transition puts a limit on the available range
for the interpolation points.

B. Analytic continuation of QCD data

We apply he method presented in Sec. II to the
continuation of the critical line of the QCD in the T −
μB plane. Our main focus is the study of the convergence of
Padé series of the form ½p=p� and ½p=pþ 1� constructed:
(1) based only on interpolating points (multipoint Padé

approximants), or
(2) using interpolating points and the expansion fðtÞ ≈

c0 þ c1tþ c2t2 around t ¼ 0, as explained in
Sec. III A (Padé-type approximant).

We use the continuum extrapolated values of Tc recently
determined on the lattice at μB ¼ 0 and seven imaginary
values of μ̂B ¼ μB=T, namely

μ̂BðjÞ ¼ i
jπ
8
; j ¼ 0; 2; 3; 4; 5; 6; 6.5; 7; ð8Þ

given in Table II of [3] and the Taylor coefficients κ2 and κ4,
appearing in the parametrization

TcðμBÞ¼Tcð0Þ½1−κ2ðμB=Tcð0ÞÞ2−κ4ðμB=Tcð0ÞÞ4�; ð9Þ
also extrapolated to the continuum limit in [2].
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FIG. 2. Result of a mock analysis showing the effect of the error
of the data and of the sampling range on the quality of the analytic
continuation obtained via multipoint Padé approximants of
various order and by including or omitting information (the
latter is denoted by “no ci” in the key) on the error of the Taylor
coefficients in the evaluation of χ2. For additional information see
the main text.
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With the notation of Sec. II, the (assumed) function fðtÞ,
which corresponds to Tcðμ̂2BÞ, is known at seven points
τj ¼ μ̂2BðjÞ < 0, corresponding to j ≠ 0 in the list given in
(8), and we also know c0 ¼ Tcðμ̂Bðj ¼ 0ÞÞ, as well as c1
and c2 in terms of κ2 and κ4. The values of κ2, κ4 and Tcð0Þ
reported in [2] give through the explicit relations given in
Appendix B c1 ¼ −1.878 and c2 ¼ 0.0451 with errors
σc1 ¼ 0.626 and σc2 ¼ 0.627.

1. Numerical implementation of the Bayesian approach

In order to use the method presented in Sec. III A, we
need to generate fTi

cg instances at chosen interpolating
points (also values of c1 and c2 in the case of the Padé-type
approximant) and then evaluate χ2, defined in (4), using the
actual lattice data as control points. The interpolating points
μ̂2B;i used for the two types of Padé approximants mentioned
above are indicated in Fig. 3. The idea behind our choice
was that each interpolating point of any of the used
approximant fall in between two nearby lattice data points
and be more or less equally distributed in the sampling
range. The actual choice of the interpolating points is not
important, however, in order to maximize the sampling
range, one interpolating point is chosen close to the lattice
data point with μ̂2Bðj ¼ 7Þ and, since we are interested in

analytic continuation through μB ¼ 0, we also choose
μ̂2Bðj ¼ 0Þ ¼ 0 as an interpolating point.
We use two methods to generate input for the Padé

approximants. In the first method (Method 1) we simply
generate Ti

c from normal distribution with mean obtained
by interpolating the mean of the lattice data and with the
standard deviation (SD) indicated in Fig. 3. In this case c1
and c2, used in the Padé-type approximant, are generated
from a normal distribution with mean and SD given by
Eqs. (B2) and (B3), respectively. As a result, c1 and c2 are
taken into account in the calculation of χ2 only when using
the multipoint Padé approximant. According to our prior,
we only accept those configurations for which the corre-
sponding Padé approximant is free of spurious poles in
the wide range μ̂2B ∈ ½−π2; 60π2�. When using this method
we calculate Tc at some value of μ̂2B as Tc ¼ Rn

mðμ̂2BÞ and the
value of the real chemical potential as μB ¼

ffiffiffiffiffi
μ̂2B

p
Tc and

determine their percentile based error using theweight e−χ
2=2.

The secondmethod (Method 2) for generating input for the
Padé approximants is the importance sampling using the
Metropolis algorithmwith “action” χ2=2. The proposed value
of Ti

c in the Markov chain is generated using a normal
distribution for the noise with vanishing mean and SD of
Oð1Þ MeV. In the case of the Padé-type approximant we
use normal distribution with standard deviation σci ; i ¼ 1, 2
to generate the noise for the Taylor coefficients ci.
Configurations for which the corresponding Padé approx-
imant has spurious poles in the range given above are
excluded by assigning to them the value χ2 ¼ ∞. For
the remaining configurations χ2 is calculated using all the
available lattice data according to the formulas in (4). The
averageandpercentile based error ofTc ¼ Rn

mðμ̂2BÞ andμB for
the Padé approximants were calculated in the standard way
with the configurationsprovidedby theMetropolis algorithm.
There are some peculiarities when doing importance

sampling in this context. These are related to the spurious
poles of the Padé approximants, which appear as “walls” of
infinite action in the Metropolis update. Configurations with
spurious poles are not guaranteed to be isolated points in the
space of all configurations, rather, there can be regions in
configurations space where all approximants have a pole.
One can easily stumble on an accepted configuration that is
surrounded in most directions by configurations with a pole,
thereby trapping the algorithm. To avoid this problem it is a
good idea to mark out a temperature range sampled by the
algorithmduring the randomwalkandassign infinitevalue for
the action if a proposed Ti

c lies outside this range. I.e., even in
the case ofMethod2 a prior, like that inFig. 3 is used.Another
reason to introduce this band is to exclude the Padé approx-
imants from having features in the interpolated range not
present in thedata, even if suchanapproximanthasnopoleand
fits the data points acceptably. This is also a possibility, since
Padé approximants are rather flexible. In practice a two times
wider band than the one shown in Fig. 3 proved sufficient.
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FIG. 3. Choice of the interpolating (node) points, whose
position is indicated by the vertical dotted line, in comparison
to the actual lattice data. The labels indicate the use of the
interpolating point in the multipoint Padé approximant (bottom)
and the Padé-type approximant (top) of a given order, charac-
terized by the number of independent parameters N. At the value
of μ̂2B corresponding to the lattice data points we show the mean
and the error of the Tc computed from the multipoint Padé
approximants generated with importance sampling (for the sake
of the presentation the abscissa is shifted). The band indicates the
standard deviation of the normal distribution used inMethod 1 to
generate fTi

cg instances, i.e., it indicates the prior distribution,
excluding the factor that removes the spurious poles. The values
T̄cðμ̂2B;iÞ at the node points μ̂2B;i used in the expression (5) of the
prior are from the dotted curve in the band, which interpolates the
mean values of the lattice data.
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Another observation is that in some cases it was very
hard to thermalize the system by updating the value of Tc
only at one interpolating point at a time. It proved more
useful to propose in the Metropolis algorithm an updated
array of Tc values, as this procedure also substantially
reduced the autocorrelation time.

2. Results for the analytic continuation

The first thing worth checking is the distribution of Tc

calculated from the Padé approximants at μ̂2B values corre-
sponding to the actual lattice data points. For the majority of
the approximants and lattice data points, the distribution is
very close to a normal one with standard deviation com-
patible with that of the lattice data. The latter can be seen in
Fig. 3 in the case of the multipoint Padé approximant,
meaning that the selection of the Tc instances based on χ2

works as expected. However, different low order approx-
imants seem to select, within the error, different ranges in the
distribution ofTc (and ciwhen the Padé-type approximant is
used). This is most visible in the case of the [2/2] approx-
imant where the points posses a structure unseen in the
lattice data. The multipoint Padé approximant [1/1] is the
most constrained by the likelihood, the error of Tc being
smaller than the lattice one, while the [3/4] approximant is
the least constrained, matching closely the lattice error at all
lattice points, and showing awider range of the computed c1
and c2 coefficients. This loss of constraint is also reflected by
the χ2 histogram whose pick moves to higher values when
the number of parameters of the approximant increases.
Now we turn our attention to the extrapolation. Since both

Method 1 and Method 2 used to generate input for both the
multipoint Padé and Padé-type approximants resulted in very
similar results for the analytically continuedTcðμBÞ curve,we
only present those obtained with Method 2 (importance
sampling) in the case of the Padé-type approximant con-
structed using the first and second derivative of TcðμBÞ at
μB ¼ 0. The fact that withMethod 1 the analytic continuation
does not depend on the approximant used, means that it
makes no difference whether we take into account the Taylor
coefficients only in the approximant or only in the calculation
of χ2. We remind that when importance sampling is used the
Taylor coefficients are taken into account in the calculation of
χ2 irrespective of the type of approximant, since otherwise the
range in which c1 and c2 varies during the random walk
would not be constrained.
Our main result on the analytic continuation is presented

in Fig. 4 in comparison with a simple parametrization of the
crossover line based on the Taylor coefficient κ2. One sees
that with the exception of the [2/2] type, the Padé
approximants tend to give smaller Tc with increasing μB.
Also, the behavior of the diagonal an subdiagonal sequen-
ces follow different patterns, similar to that observed in the
model study in Fig. 1. Apparently, the Padé sequences
converge, as, although [3/3] and [3/4] have overlapping
error bars of similar size, the latter moves toward the band

laid out by the [2/3] approximant. It remains to be seen if
this pattern survives the possible addition of new lattice
data points, which will further constrain the fit, and/or an
increase in the precision of the lattice data.

IV. CONCLUSIONS AND OUTLOOK

We presented a method for the numerical analytic
continuation of data available at imaginary chemical poten-
tial that uses also the Taylor coefficients of an expansion
around μB ¼ 0. Using lattice data that became available
recently, we have investigated the continuation to real μB of
the crossover line with a sequence of Padé approximants,
looking for apparent convergence as the number of inde-
pendent coefficients increases. Such an analysis would have
been less conclusive using the smaller data set available at
imaginary μB in [31] and without taking into account the
lattice data for the Taylor coefficients.
Our largest order Padé approximants is very close to the

simplest quadratic curve obtained with just the κ2 coefficient.
This means that if the observed apparent convergence is
genuine, such a quadratic approximation might be applicable
in a rather large range of μB. We would like to stress that, as
discussed in the case of an effective model in Sec. III A, our
results on the analytic continuation tell nothing on the
possible existence and location of the critical end point
(CEP). It is also not possible to clearly determine the value
of μB up to which the analytic continuation could be trusted.
The Taylor and imaginary chemical potential methods

are usually considered to be competitors in the study of
finite density QCD. This is somewhat unfortunate, as the
two methods tend to provide complimentary information.
With the Taylor method, lower order coefficients tend to be
more precise, while data at imaginary μB tends to restrict
higher order coefficients better, without giving a very
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precise value for the lower orders. For the case of baryon
number fluctuations, this can clearly be seen by comparing
Fig. 3 of Ref. [27], where the signal for χB6 and χB8 is better,
with Fig. 1 of Ref. [43], where χB4 is much more precise.
This means that joint analysis of such data might be a good
idea also for the equation of state, where there are some
indications—both from an explicit calculation on coarser
lattices [44–46] and phenomenological arguments [47–49]
—that the radius of convergence for temperatures close to
the crossover is of the order μB=T ≈ 2, making a Taylor
ansatz unusable beyond that point. This makes it mandatory
to try different ansatze, or resummations of the Taylor
expansion, and one possible choice could be the Padé
approximation method used here.
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APPENDIX A: THE MULTIPOINT PADÉ
APPROXIMATION METHOD

Following Refs. [38,50], we briefly summarize the
construction of the multipoint Padé approximant used to
analytically continue functions known only at a finite
number of points of the complex plane. In our case the
continuation is done along the real axis, from negative to
positive values.
When one knows the function at N points fi ¼ fðziÞ;

i ¼ 0…N − 1, the rational function approximating fðzÞ
is most conveniently given as a truncated continued fraction

CNðzÞ ¼
A0

1þ
A1ðz − z0Þ

1þ � � �AN−1ðz − zN−2Þ
1

; ðA1Þ

where we used the notation 1
1þ x≡ 1

1þx. The task is to
determine the N coefficients Ai from the conditions
CNðziÞ ¼ fi, i ¼ 0…N − 1. Note that only N − 1 values
of zi appear in (A1), zN−1 appears in the condition
CNðzN−1Þ ¼ fN−1. The coefficients can be obtained effi-
ciently as Ai ¼ giðziÞ, i ¼ 0…N − 1, with the functions
giðzÞ defined by the recursion

gpðzÞ ¼
gp−1ðzp−1Þ − gp−1ðzÞ
ðz − zp−1Þgp−1ðzÞ

; 1 ≤ p ≤ N − 1; ðA2Þ

with initial condition g0ðzÞ ¼ fðzÞ, which means g0ðziÞ ¼
fi, when the function is known only in some discrete
points. Working out explicitly the condition Ai ¼ giðziÞ for
a few values of i, one sees that one needs to construct an
upper triangular matrix ti;j using the recursion ti;j ¼
ðti−1;i−1=ti−1;j − 1Þ=ðzj − zi−1Þ, for j ¼ 1;…; N − 1 and
i ¼ 1;…; j, starting from its first row t0;j ¼ fj,
j ¼ 0;…; N − 1. The diagonal elements are the coeffi-
cients of CN : Ai ¼ ti;i. The relation of CN with the Padé
sequence is as follows: if N ≥ 1 is odd, then CN ¼ ½p=p�
with p ¼ ðN − 1Þ=2, while whenN ≥ 1 is even, thenCN ¼
½p=pþ 1� with p ¼ −1þ N=2.
Writing CNðzÞ in the form CNðzÞ ¼ NðzÞ=DðzÞ, the

numerator and denominator (at a given value of z) can be
easily determined from the coefficients of the truncated
continued fraction via the following three-term recurrence
relation

Xnþ1 ¼ Xn þ ðz − znÞAnþ1Xn−1; ðA3Þ

where for the numerator (X ¼ N) one has X1 ¼ 0, X0 ¼ A0

and for the denominator (X ¼ D) one has X1 ¼ X0 ¼ 1,
and the iteration goes from n ¼ 0 up to and including
n ¼ N − 2. The coefficients ai (bi) of the numerator
(denominator) can be easily obtained by calling the above
recursion (A3) at a finite number of points z and solving a
system of linear equations.

APPENDIX B: RELATING c1;2 WITH κ2;4

In order to relate the coefficients c1 and c2 of the Taylor
expansion TcðtÞ ¼ c0 þ c1tþ c2t2, with t ¼ μ̂2B, with the
coefficients κ2 and κ4 used by the HotQCD Collaboration,
the expansion (9) has to be rewritten in terms of μ̂2B∶

TcðμBÞ
Tcð0Þ

¼ 1 − κ2
T2
cðμBÞ
T2
cð0Þ

μ̂2B − κ4
T4
cðμBÞ
T4
cð0Þ

μ̂4B: ðB1Þ

Then, using that T2
cðμBÞ=T2

cð0Þ ≈ 1–2κ2μ̂
2
B and T4

cðμBÞ=
T4
cð0Þ ¼ 1þOðμ̂2BÞ, we obtain

c1 ¼ −κ2Tcð0Þ and c2 ¼ ðκ4 − 2κ22ÞTcð0Þ: ðB2Þ
Ignoring the covariance between κ2 and κ4, which is not
known to us, the error associated to these Taylor coef-
ficients are

σc1 ¼ ½T2
cð0Þσ2κ2 þ κ22σ

2
Tcð0Þ�

1
2;

σc2 ¼ ½T2
cð0Þðσ2κ4 þ 16κ22σ

2
κ2Þ þ ðκ24 þ 4κ42Þσ2Tcð0Þ�

1
2: ðB3Þ

In c1 and c2 and their errors we use the data of the HotQCD
Collaboration also for Tcð0Þ.
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J. Low Temp. Phys. 29, 179 (1977).

APPARENT CONVERGENCE OF PADÉ APPROXIMANTS FOR … PHYS. REV. D 103, 034511 (2021)

034511-11

https://doi.org/10.1016/j.physletb.2004.01.008
https://doi.org/10.1016/j.nuclphysb.2015.05.014
https://doi.org/10.1103/PhysRevD.101.074502
https://doi.org/10.1103/PhysRevD.101.074502
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.101.074511
https://doi.org/10.1103/PhysRevD.101.074511
https://doi.org/10.1016/j.nuclphysa.2020.121986
https://doi.org/10.1016/j.nuclphysa.2020.121834
https://doi.org/10.1016/j.nuclphysa.2020.121834
https://arXiv.org/abs/1909.04639
https://doi.org/10.1103/PhysRevLett.125.191602
https://doi.org/10.1007/BF00655090

