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The renormalized contribution of fermions to the curvature masses of vector and axial-vector mesons is
derived with two different methods at leading order in the loop expansion applied to the (2þ 1)-flavor
constituent quark-meson model. The corresponding contribution to the curvature masses of the scalar and
pseudoscalar mesons, already known in the literature, is rederived in a transparent way. The temperature
dependence of the curvature mass of various (axial-)vector modes obtained by decomposing the curvature
mass tensor is investigated along with the (axial-)vector–(pseudo)scalar mixing. All fermionic corrections
are expressed as simple integrals that involve at finite temperature only the Fermi-Dirac distribution
function modified by the Polyakov-loop degrees of freedom. The renormalization of the (axial-)vector
curvature mass allows us to lift a redundancy in the original Lagrangian of the globally symmetric extended
linear sigma model, in which terms already generated by the covariant derivative were reincluded with
different coupling constants.
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I. INTRODUCTION

The extension of the linear sigma model with vector and
axial-vector degrees of freedom has a long history (see e.g.,
[1–3]). In recent years, much effort was invested in the
study of the phenomenological applicability of various
formulations of the model. It turned out, for example,
that the gauged version of the model cannot reproduce
the correct decay width of the ρ and a1 mesons [4], and
therefore the interest shifted toward versions of the model
which are based on the global chiral symmetry: originally
constructed for two flavors in [5] the extended linear sigma
model (ELσM) was formulated for three flavors in [6].
The parametrization of the three-flavor ELσM in relation

with hadron vacuum spectroscopy was thoroughly inves-
tigated in [6]. Constituent quarks were incorporated in
the ELσM in [7] and their effect on the parametrization,
through the correction induced in the curvature masses of

the scalar and pseudoscalar mesons, was investigated along
with the chiral phase transition at finite temperature and
density. It is interesting to know how the model parameters
and the results obtained in [7] are influenced by coupling
the constituent quarks to the (axial-)vector mesons. The
effect of the (axial-)vector mesons on the chiral transition
was studied in [8] in the gauged version of the purely
mesonic linear sigma model with chiral Uð2ÞL ×Uð2ÞR
symmetry, by using a rather crude approximation for the
Lorentz tensor structure of the (axial-)vector curvature
mass matrix, which was assumed to have the vacuum
form even at finite temperature. Further investigations in
the above-mentioned directions require the calculation of
the mesonic and/or fermionic contribution to the (axial-)
vector curvature mass matrix and its proper mode decom-
position, as was done in many models dealing with the
description of hot and/or dense nuclear matter [9–11]. Such
a calculation within the linear sigma model would allow for
a comparison with in-medium properties of the (axial-)
vector mesons obtained with functional renormalization
group (FRG) techniques in [12–15].
The curvature masses of the scalar and pseudoscalar

mesons were derived in the Uð3ÞL ×Uð3ÞR symmetric
constituent quark model in [16]. The method used there
involved taking the second derivative with respect to the
fluctuating bosonic field of the ideal gas formula for the
partition function in which the quark masses depend on
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these bosonic fields. The result was subsequently used in a
plethora of publications, even when it does not apply, as
was the case of Eq. [17], which seemingly uses incorrectly
the result of [16] to study the effect of the temperature and
chemical potential on the vector and axial-vector masses.
The result derived in [16] for (pseudo)scalar mesons
cannot be directly applied for (axial-)vector mesons, simply
because it is not enough to consider only the boson
fluctuation-dependent fermion masses: due to their
Lorentz index the momentum and (axial-)vector fields
couple to form a Lorentz scalar in the fermion determinant
resulting from the fermionic functional integral. Due to
such terms, derivatives of the fermionic functional deter-
minant with respect to the (axial-)vector fields give addi-
tional contributions compared to the bosonic case.
Although the calculation of the leading order fermionic

contribution to the (axial-)vector curvature mass matrix can
be done by taking the second field derivative of the func-
tional determinant, it is much easier to take an equivalent
approach and compute the self-energy at vanishing momen-
tum with standard Feynman rules. The technical issues that
need to be addressed are the mode decomposition and
renormalization of the self-energy and the mixing between
the (axial-)vector and (pseudo)scalar mesons.
We also mention that while our focus here is on the

curvature mass, the pole mass and screening mass can also
be obtained from the analytic expression of the self-energy
calculated at nonzero momentum using the usual defini-
tions given in Eq. (6) of [18], where the relation between
the pole and curvature masses of the mesons was
investigated with FRG techniques within the two-flavor
quark-meson model. This difference depends on the
approximation used to solve the OðNÞ and quark-meson
models and it is typically larger for the sigma than the
pion [18–21].
The organization of the paper is as follows. In Sec. II an

approximation scheme is presented for a consistent com-
putation of the effective potential (pressure) in the ELσM
which is based on curvature masses that include the
fermionic correction at one-loop level. In Sec. III we
compute in the one-flavor case, Nf ¼ 1, the curvature
mass matrix of the mesons, with both methods mentioned
above. This allows for the introduction of the relevant
integrals used also in Sec. IV, where the self-energy of
all the mesons is calculated at vanishing momentum for
Nf ¼ 2þ 1 flavors. In this case a direct calculation of the
curvature masses from the functional determinant, although
completely straightforward, is made cumbersome by the
large number of fields and the dimension of the matrix
involved. This calculation is relegated to Appendix D.
Based on the mode decomposition of the (axial-)vector
self-energy, presented in detail in Appendix E, the curva-
ture masses of the physical modes are given in terms of
simple integrals. We also show in Sec. IV how to connect
the expressions of the (pseudo)scalar curvature masses

derived here with existing ones obtained with the alter-
native method of Ref. [16]. In Sec. V we discuss the
renormalization of the (axial-)vector curvature masses in
the isospin symmetric case. Dimensional regularization
was used in order to comply with the property of the
vacuum vector self-energy observed for some flavor
indices, which is related to current conservation, as dis-
cussed in Appendix B. The renormalization process
revealed that the Lagrangian of the ELσM can be written
more judiciously compared to the form used in the
literature, such that each term allowed by the chiral
symmetry is included only once, in accordance with the
generally accepted procedure. By looking from a new
perspective at the wave-function renormalization factor
related to the (axial-)vector–(pseudo)scalar mixing, we
discuss in Sec. VI how the self-energy corrections modify
its tree-level expression. Section VII contains numerical
results concerning the temperature evolution of the meson
masses obtained in a new vacuum parametrization of the
model which takes into account the one-loop fermionic
correction in the curvature mass of all the mesons.
Section VIII is devoted to conclusions and an outlook.
The appendixes not mentioned here contain some further
technical aspects used in the calculations.

II. LOCALIZED GAUSSIAN APPROXIMATION
IN THE YUKAWA MODEL

In order to motivate our interest in the curvature mass,
we present an improved calculational scheme for the
effective potential of the ELσM compared to that used
in [7]. This scheme, which we call the localized Gaussian
approximation, uses the curvature mass of the various
mesons. To keep the notation simple, we consider the
simplest chirally symmetric Yukawa model, defined by the
Lagrangian

LY ¼ 1

2
∂μφ∂μφ −UclðφÞ þ ψ̄ði=∂ − gSφÞψ ; ð1Þ

where ψ and φ are fermionic and bosonic fields and
UclðφÞ ¼ m2

0φ
2=2þ λφ4=24 is the classical potential. We

use Minkowski metric gμν ¼ diagð1;−1;−1;−1Þ and the
conventions of Ref. [22].
Integrating over the fermions in the partition function1

Z ¼
Z

DφDψ̄Dψei
R
x
LY ¼

Z
DφeiAðφÞ ð2Þ

leads to the action (
R
x ≡d4x)

1In the LσM this step is motivated by the fact that ψ represents
the constituent quark, that is, an effective degree of freedom not
necessarily corrected by the interaction with mesons.
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AðφÞ ¼
Z
x

�
1

2
∂μφ∂μφ −UclðφÞ

�
− iTr logðiS−1ð=∂;φÞÞ;

ð3Þ

where Tr≡ trD
R
d4x denotes the functional trace, with the

subscript “D” referring to the Dirac space, and

iS−1ðx; yÞ ¼ ½i=∂x − gSφðxÞ�δð4Þðx − yÞ ð4Þ

is the inverse fermion propagator.
Shifting the field with an x-independent background ϕ,

φðxÞ → ϕþ φðxÞ, the effective potential can be con-
structed along the lines of Ref. [23]. Several approxima-
tions of the effective potential are considered in the
literature. These are reviewed below.

A. Mean-field approximation

The bosonic fluctuating field is neglected altogether,
leading to

UMFðϕÞ ¼ UclðϕÞ þ itrD

Z
K
logðiS−1

f ðKÞÞ; ð5Þ

where iS−1
f ðKÞ ¼ =K −mf is the tree-level fermion inverse

propagator with mass mf ¼ gSϕ. Here we introduced the

notation
R
K ≡ R

d4K
ð2πÞ4 for the momentum integral with

4-momentum Kμ ¼ ðk0; kÞ. The field equation used in [7]
was derived in this approximation.

B. Ideal gas approximation

The bosonic fluctuating field is neglected in the fermion
determinant (Tr log) appearing in Eq. (3) and kept only
to quadratic order in the terms coming from the expansion
of Uclðϕþ φÞ. The Gaussian functional integral over φ
leads to

UIG
effðϕÞ ¼ UMFðϕÞ −

i
2

Z
K
logðiD−1ðK;ϕÞÞ; ð6Þ

where iD−1ðK;ϕÞ ¼ K2 − m̂2ðϕÞ is the tree-level boson
propagator with m̂2ðϕÞ¼d2UclðϕÞ=dϕ2 being the classical
curvature mass. This approximation was used in a non-
systematic way in [7] to include mesonic corrections in
the pressure.

C. Ring resummation or Gaussian approximation

The fermion determinant is expanded in powers of φ
and keeping in Eq. (3) the term quadratic in the fluctuating
mesonic field, the Gaussian functional integral over φ
results in

UGA
eff ðϕÞ¼UMFðϕÞ−

i
2

Z
K
logðiD−1ðK;ϕÞ−ΠðK;ϕÞÞ; ð7Þ

where the boson self-energy

ΠðK;ϕÞ ¼ ig2Str
Z
P
SfðPÞSfðK − PÞ; ð8Þ

represents the one-loop contribution of the fermions.
Expanding in Eq. (7) the logarithm one recognizes the
integrals of the ring resummation.
The ring resummation is widely used in the Nambu–

Jona-Lasinio model, where it goes by the name of random-
phase approximation [24]. In that context the integral in
Eq. (7) requires no renormalization and was evaluated
using cutoff regularization in [25,26]. To spare the trouble
of renormalizing this integral in a linear sigma model, one
can approximate the self-energy with its zero momentum
limit. In this localized approximation the dressed bosonic
inverse propagator appearing in Eq. (7) is of tree-level type,
just that the tree-level mass is replaced by the one-loop
curvature mass M̂2ðϕÞ≡ m̂2ðϕÞ þ ΠðK ¼ 0;ϕÞ. Since
with a homogeneous scalar background the curvature mass
does not depend on the momentum, the renormalization
of the integral becomes an easy task, as discussed in [27]
[see also Eq. (58) in Sec. V].
Note that one can define a curvature mass in each of the

above approximations by taking the second derivative of
the potential in Eq. (5), (6), or (7) with respect to the field ϕ.
The curvature mass we investigate in this paper contains the
fermionic contribution from the second field derivative of
the Tr log in Eq. (3). This represents the purely fermionic
one-loop contribution to the curvature mass which can be
derived in principle in the localized Gaussian approxima-
tion using the background field method.
In order to compute the pressure, we need to evaluate

the effective potential at the minimum. In the localized
approximation the extremum is determined as the solution
of the field equation

m2
0ϕþ λ

6
ϕ3 þ 1

2

�
λϕþ 2g3StrD

Z
P
S3
fðPÞ

�

×
Z
K

i

K2 − M̂2ðϕÞ − gStrD

Z
K
SfðKÞ ¼ 0: ð9Þ

We mention that the second term in the square brackets is
nothing but the fermionic correction to the three-point
vertex function evaluated at vanishing momentum. This
vertex function is obtained by expanding the fermionic
determinant in powers of the bosonic field

Tr logðiS−1
f − gφÞ

¼ Tr logðiS−1
f Þ −

X∞
n¼1

ð−igÞn
n

× trD

�Yn
i¼1

Z
d4xiφðxiÞSfðxi; xiþ1Þ

�
xnþ1¼x1

: ð10Þ
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The expansion gives a series of one-loop diagrams in
which the nth term has n external fields (see e.g., [28] or
Chap. 9.5 of [22]). Using the background field method, the
expansion of such a fermionic functional determinant was
considered recently in [29,30] in order to derive effective
couplings between constituent quarks, (axial-)vector mes-
ons, and the photon.
The second field derivative of the functional determi-

nant, taken at vanishing mesonic field, is nothing but the
one-loop self-energy associated with the bosonic field with
respect to which the derivative is taken, as the contribution
of diagrams not having exactly two external fields of this
type vanishes. Based on this observation one can obtain the
lowest order fermionic correction to the bosonic curvature
mass by computing the one-loop self-energy with standard
Feynman rules.

III. CURVATURE MASS IN THE Nf = 1 CASE

We generalize now Eq. (1) and consider the chirally
symmetric Lagrangian2 in which a fermionic field ψ
interacts through a Yukawa term to scalar (S), pseudoscalar
(P), vector (Vμ), and axial-vector (Aμ) fields

Lf¼ ψ̄ ½iγμ∂μ−gSðS− iγ5PÞ−gVγμðVμþγ5AμÞ�ψ : ð11Þ

The mesonic part of the Lagrangian is of the form

Lm¼
X
X¼S;P

�ð∂XÞ2
2

−
m2

0

2
X2

�
−
λ

4!
ðS2þP2Þ2

þ
X
Y¼V;A

�
−
1

4
FY
μνF

μν
Y þm2

0;V

2
YμYμ

�
þLint

m ðX;YμÞ; ð12Þ

with FY
μν ¼ ∂μYν − ∂νYμ. We shall return to the unspecified

interacting part in the Nf ¼ 2þ 1 case in relation to the
renormalization of the one-loop curvature masses.
By integrating over the fermions in the partition function,

done after the usual shifts SðxÞ → ϕþ SðxÞ (ϕ is indepen-
dent of x) introduced in order to deal with the spontaneous
symmetry breaking (SSB), one obtains a correction to
the classical mesonic action in the form of a functional
determinant. The expansion of the functional determinant
in powers of mesonic field derivatives, the so-called
derivative expansion [31,32], leads to an effective bosonic
action of the form

Z
d4xLeffðϕ;ξÞ¼

Z
d4x½Lmðϕ;ξÞ−Ufðϕ;ξÞþOðð∂ξÞ2Þ�;

ð13Þ

with the leading order term of the expansion being the
one-loop fermionic effective potential

Ufðϕ; ξðxÞÞ ¼ iTr logðiS−1
f ð=∂; ξÞÞ

¼ i
Z
K
log detDðiS−1

f ðK; ξðxÞÞÞ; ð14Þ

which depends on all the fluctuating mesonic fields
collectively denoted by ξðxÞ. We introduced

iS−1
f ðK;ξÞ¼=K−mf−gSðS− iγ5PÞ−gVð=Vþ=Aγ5Þ; ð15Þ

for the inverse fermion propagator, in which mf ¼ gSϕ is
the tree-level (classical) fermion mass. Hereafter the x
dependence of the mesonic fields will not be indicated.
The second derivative of Ufðϕ; ξÞ with respect to the

mesonic fields gives an additive correction to the classical
mesonic curvature mass obtained from Lm. Since later
we will investigate the Nf ¼ 2þ 1 case, where the fields
have flavor indices a ¼ 0;…8, we give the more general
formulas of these corrections

Δm̂2;ðXÞ
ab ≡ d2Ufðϕ; ξÞ

dXadXb

����
ξ¼0

; X ¼ S; P;

Δm̂2;ðYÞ
ab;μν ≡ −

d2Ufðϕ; ξÞ
dYμ

adYν
b

����
ξ¼0

; Y ¼ V; A: ð16Þ

In this section the flavor indices should be disregarded.
The sign difference between the above definitions is

due to the different signs of the corresponding classical
mass terms in Eq. (12). Accordingly, for the (pseudo)scalar
field one has an additive correction to the classical mass

squared m̂2;ðXÞ
ab ≡ − d2Lm

dXadXb
jξ¼0, while for the (axial-)vector

field the second derivative is a Lorentz tensor, and therefore

the correction to m̂2;ðYÞ
ab ≡ gνμ

4
d2Lm
dYμ

adYν
b
jξ¼0 depends on the

tensor structure of Δm̂2;ðYÞ
ab;μν and whether one works at zero

or nonzero temperature. For example, at T ¼ 0, where

Δm̂2;ðYÞ
ab;μν ∝ gμν, the fermionic correction to m̂2;ðYÞ

ab is
obtained by taking the trace in Eq. (16):

Δm̂2;ðYÞ
ab ≔

1

4
Δm̂2;ðYÞμ

ab;μ : ð17Þ

This is needed in a parametrization of the model that is
based on the one-loop curvature masses. For the curvature
mass at T ≠ 0 one needs the mode decomposition of the

tensor Δm̂2;ðYÞ
μν . This will be discussed in Sec. IV and

Appendix E in relation to the Nf ¼ 2þ 1 case.

2The one-loop curvature mass formulas derived here can be
easily modified when, in the absence of chiral symmetry, P and A
can have different Yukawa couplings than S and V, respectively.
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A. Brute force calculation

The determinant D≡ detDðiS−1
f ðK; ξÞÞ appearing in

Eq. (14) evaluates to

D ¼ ½g2SððSþ ϕÞ2 þ P2Þ − K2�2
þ ðK2 −m2

f þ g2VV
2 − 2gVK · VÞ2

þ ½ðg2VA2Þ2 þ 2g2V ½ðm2
f þ K2ÞA2 − 2ðK · AÞ2��

þ 2g2S½ðSþ ϕÞ2 þ P2 − ϕ2�½g2VðA2 − V2Þ þ 2gVK · V�
− ðK2 −m2

fÞ2: ð18Þ

Writing the determinant in this form facilitates the
derivation of the curvature masses, as the contribution to
the scalar and the pseudoscalar comes only from the first
term, while only the second and the third terms contribute
in the case of the vector and the axial vector, respectively.
Also, note that Dðξ ¼ 0Þ ¼ ðK2 −m2

fÞ2.
The second derivative of the determinant with respect to

a particular field denoted by φ is calculated using

d2 logD
dφdφ

����
ξ¼0

¼
�
1

D
d2D
dφdφ

−
1

D2

dD
dφ

dD
dφ

�����
ξ¼0

: ð19Þ

For φ ∈ fS; P; Vμg this is applied writing D ¼ D̃2 þ R,
where D̃2 is either the first or the second term on the
right-hand side (rhs) of Eq. (18), while the remnant R
does not contribute in Eq. (19). Introducing the notation
GfðKÞ ¼ 1=ðK2 −m2

fÞ one obtains

d2 logD
dSdS

����
ξ¼0

¼ −4g2S½Gf þ 2m2
fG

2
f�; ð20aÞ

d2 logD
dPdP

����
ξ¼0

¼ −4g2SGf; ð20bÞ

for the scalar and the pseudoscalar fields, and

d2 logD
dVμdVν

����
ξ¼0

¼ 4g2V ½gμνGf − 2KμKνG2
f�; ð21aÞ

for the vector field.
For the axial vector one applies Eq. (19) withD¼ D̃þR,

where D̃ is the third term on the rhs of Eq. (18), to obtain

d2 logD
dAμdAν

����
ξ¼0

¼ 4g2V ½ðm2
f þ K2Þgμν − 2KμKν�G2

f: ð21bÞ

For scalar and vector fields there are contributions from
both the first and the second derivative of D̃, while in the
case of the pseudoscalar and axial-vector fields only the
second derivative of D̃ contributes.

Using Eqs. (14), (16), (18), and (20) the fermion
corrections to the curvature masses of the scalar and
pseudoscalar fields are obtained as

Δm̂2;ðSÞ ¼ −4g2S

�
1þ 2m2

f
d

dm2
f

�
T ðmfÞ; ð22aÞ

Δm̂2;ðPÞ ¼ −4g2ST ðmfÞ; ð22bÞ

where the (vacuum) tadpole integral is

T ðmfÞ ¼
Z
K

i
K2 −m2

f

¼
Z
K
iGfðKÞ: ð23Þ

In the case of the vector and the axial-vector fields, one
evaluates the trace in Eq. (17), using Eqs. (16) and (21)
together with gμμ ¼ 4 and KμKνgνμ ¼ K2 ¼ m2

f þG−1
f , to

obtain

Δm̂2;ðVÞ ¼ −2g2V

�
1 −m2

f
d

dm2
f

�
T ðmfÞ; ð24aÞ

Δm̂2;ðAÞ ¼ −2g2V

�
1þ 3m2

f
d

dm2
f

�
T ðmfÞ: ð24bÞ

1. Integrals at finite temperature

The expressions in Eqs. (22) and (24a), which were
formally derived at vanishing temperature (T ¼ 0), can be
easily generalized to T ≠ 0, where the tadpole integral
consists of vacuum and matter parts:

T ðmfÞ ¼ T ð0ÞðmfÞ þ T ð1ÞðmfÞ: ð25Þ

The superscripts indicate the absence or the presence of
statistical factors in the respective integrands. In a covariant
calculation the vacuum part Tð0ÞðmfÞ is the integral in
Eq. (23), while in a noncovariant calculation it is

Tð0ÞðmfÞ ¼
Z

d3k
ð2πÞ3

1

2ðk2 þm2
fÞ1=2

; ð26Þ

as obtained with the usual conventions of the imaginary
time formalism [33], namely (μ is the chemical potential)

k0 → iνn þ μ and
Z
K
→ iT

X
n

Z
d3k
ð2πÞ3 ; ð27Þ

after doing the summation over the fermionic Matsubara
frequencies νn ¼ ð2nþ 1ÞπT. The matter part is

T ð1ÞðmfÞ ¼ −
1

4π2

Z
∞

0

dk
k2

EfðkÞ
½fþf ðkÞ þ f−f ðkÞ�; ð28Þ
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where f�f ðkÞ¼1=ðexpððEfðkÞ∓μÞ=TÞþ1Þ are the Fermi-
Dirac distribution functions for particles and antiparticles
and E2

fðkÞ ¼ k2 þm2
f with k ¼ jkj.

For the mass derivative of the matter part of the tadpole
integral (Euclidean bubble integral at vanishing momen-
tum) one uses dðf�f =EfÞ=dm2

f ¼ dðf�f =EfÞ=dk2 and an
integration by parts to obtain

−Bð1ÞðmfÞ≡ dT ð1ÞðmfÞ
dm2

f

¼ 1

8π2

Z
∞

0

dk
fþf ðkÞ þ f−f ðkÞ

EfðkÞ
:

ð29Þ

The fact that even at finite temperature the trace of the
second derivative appearing in Eq. (21a) is the only relevant
quantity determining the curvature mass of the vector
boson is due to current conservation. For the axial vector
this is not the case and one needs the mode decomposition
of the tensor in Eq. (21b). This is discussed in Appendix E.

B. Curvature mass from the self-energy

As mentioned at the end of Sec. II, the one-loop
curvature mass can also be obtained by computing the
corresponding zero momentum self-energy. For example,
for the self-energy of the vector field, the Feynman rules
applied with the conventions of [22] give

iΠðVÞ
μν ðQ ¼ 0Þ ¼ −ð−igVÞ2trD

Z
K
γμSfðKÞγνSfðKÞ: ð30Þ

Using Sf ¼ ið=K þmfÞGf, the Dirac trace

trD½γμð=K þmfÞγνð=K þmfÞ� ¼ 8KμKν − 4gμνG−1
f ðKÞ

ð31Þ

results in

ΠðVÞ
μν ðQ ¼ 0Þ ¼ −4g2V

�
gμνT ðmfÞ − 2i

Z
K
KμKνG2

fðKÞ
�
:

ð32Þ

Comparing Eq. (32) with the expression obtained by

using Eq. (21a) in Eq. (16) shows explicitly that Δm̂2;ðVÞ
μν ¼

ΠðVÞ
μν ðQ ¼ 0Þ. At zero temperature ΠðVÞ

μν ð0Þ ¼ 0 due to the
current conservation related to the Uð1ÞV global symmetry,
and therefore the one-loop curvature mass of the vector
boson is the classical one, m̂2;ðVÞ.
In order to obtain the curvature mass of the physical

modes at finite temperature, we need the standard decom-
position of the momentum-dependent self-energy tensor
reviewed in Appendix E. The self-energy is decomposed
into vacuum and matter parts. The former is evaluated
using a covariant calculation performed at T ¼ 0 in a

regularization scheme compatible with the consequence
of current conservation, namely that the self-energy is

4-transverse, QμΠðVÞ
μν ðQÞ ¼ 0, and ΠðVÞ

μν;vacðQ ¼ 0Þ ¼ 0.
Therefore, only the matter part contributes to the self-
energy components determining the curvature masses of
the 3-longitudinal and 3-transverse vector modes

M̂2;ðVÞ
l=t ¼ m̂2;ðVÞ þ ΠðVÞ

l=t : ð33Þ

The components are obtained as (see Chap. 1.8 of [34])

ΠðVÞ
l ¼ −lim

q→0
lim
q0→0

Q2

q2
ΠðVÞ;00ðQÞ ¼ ΠðVÞ;00

mat ð0; 0Þ;

ΠðVÞ
t ¼ 1

2
lim
q→0

lim
q0→0

ðΠðVÞ;μ
μ ðQÞ − ΠlðQÞÞ

¼ −
3

2
ΠðVÞ;11

mat ð0; 0Þ: ð34Þ

For the axial vector, which does not couple to a conserved
current, the tensor structure of the self-energy is more
complicated and it is discussed in Appendix E.
The interested reader can find in Appendix A a dis-

cussion on the matter part of the self-energy components.
For the vacuum part see the discussion in Sec. V and the
calculation presented in Appendix C.

IV. CURVATURE MASS FOR Nf = 2 + 1

The fermionic part of the chiral-invariant Lagrangian of
the extended linear sigma model, whose mesonic part can
be found in [7], has the form given in Eq. (11), only that
the fermionic field is the triplet of constituent quarks,
ψ ≡ ðu; d; sÞT, while the mesonic fields are nonets. For
the scalars S ¼ SaTa ¼ Saλa=2, a ¼ 0;…; 8 and similarly
for the other mesons (λa≠0 are the Gell-Mann matrices

and λ0 ¼
ffiffi
2
3

q
1).

The integration over the fermionic field in the partition
function results in a functional determinant involving a
N × N matrix, where N ¼ 3 × 4 × Nc with Nc being the
number of colors. This matrix structure makes tedious a
brute force calculation of the curvature mass similar to the
one shown in Sec. III A, even in the case of a trivial color
dependence [see Eq. (D1)]. Therefore, we proceed as in
Sec. III B by calculating the self-energy at vanishing
momentum and relegate to Appendix D the sketch of a
direct calculation.

A. Curvature mass from the self-energy

For simplicity, we consider the case when only the scalar
fields, namely S0, S3, and S8, have expectation values,
denoted by ϕ0, ϕ3, and ϕ8. It proves convenient to work in
the N-S (nonstrange-strange) basis, which for a generic
quantity Q is related to the (0,8) basis by
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�
QN

QS

�
¼ R

�
Q0

Q8

�
;

R ¼ R−1 ¼ 1ffiffiffi
3

p
� ffiffiffi

2
p

1

1 −
ffiffiffi
2

p
�
: ð35Þ

Applying the above relation to the matrices λ0 and λ8,
one obtains λN ¼ diagð1; 1; 0Þ and λS ¼

ffiffiffi
2

p
diagð0; 0; 1Þ,

which give the antisymmetric structure constants f45N ¼
f67N ¼ 1=2 and f45S ¼ f67S ¼ −1=

ffiffiffi
2

p
. With the shift

Si → ϕi þ Si; i ¼ N; 3; S, one obtains, using also
λ3 ¼ diagð1;−1; 0Þ, the tree-level inverse fermion propa-
gator matrix in flavor space as iS̄−1

0 ¼ diagðiS−1
u ; iS−1

d ;
iS−1

s Þ, with components iS−1
f ðKÞ ¼ =K −mf, where the

tree-level fermion masses are

mu;d ¼ gSðϕN � ϕ3Þ=2; ms ¼ gSϕS=
ffiffiffi
2

p
: ð36Þ

The one-loop self-energy of a generic field Xa, with a
being a flavor index, can be written as

ΠðXÞ
ab ðQÞ¼ iNcsXc2X

Z
K
tr

�
ΓX

λa
2
S̄0ðKÞΓ0

X
λb
2
S̄0ðLÞ

�
; ð37Þ

where Nc is the number of colors, L ¼ K −Q, sX ¼ 1 for
X ¼ V; A, and sX ¼ −1 for X ¼ S; P. The propagator
matrix S̄0 ¼ diagðSu;Sd;SsÞ has as elements the tree-level
propagators of the constituent quarks. Furthermore, ΓX
contains Dirac matrices that carries a Lorentz index when
X ∈ fV; Ag, in which case the prime on Γ0

X indicates that its
Lorentz index is different from that of ΓX. The matrices are
explicitly given in Table I, along with the constant cX
proportional to the Yukawa coupling. The trace is to be
taken in Dirac and flavor spaces. We assumed a trivial color
dependence and we postpone to Sec. IV B the discussion of
a more complicated one.
The flavor space trace in Eq. (37) can be easily

performed. Since in the N-S basis the λa matrices have,
with the exceptions of a ¼ S, two nonzero matrix elements,
one generally obtains two terms which can cancel each
other for some flavor combinations. The nonzero contri-
butions are listed in Table II. In the case of the first three
entries, the factor of 2 is the consequence of the identity

trD½ΓXSfðKÞΓ0
YSf0 ðRÞ�

¼ rXrY trD½ΓXSf0 ð−RÞΓ0
YSfð−KÞ�; ð38Þ

which is applied inside the integral in Eq. (37) with Y ¼ X,
followed by the shift K → −K. This identity can be proven

using the cyclicity of the trace and that, given the charge
conjugation operator C ¼ iγ2γ0, the matrices ΓX of Table I
satisfy CΓXC−1 ¼ rXΓT

X, where rX ¼ 1 for X ∈ fS; P; Ag
and rX ¼ −1 for X ¼ V.
We see from Table II that after the trace in flavor space is

performed, depending on the indices ab, the self-energy
(37) can be expressed either in terms of integrals involving
two different propagators

IXðQ;mf;mf0 Þ¼
−i
4

Z
K
trD½ΓXSfðKÞΓ0

XSf0 ðK−QÞ�; ð39Þ

or using integrals of the types already encountered in the
one-flavor case [see Eq. (30)], obtained from Eq. (39) as

IXðQ;mfÞ ¼ lim
mf0→mf

IXðQ;mf;mf0 Þ: ð40Þ

Being interested in the curvature mass, we evaluate

the zero momentum self-energy, ΠðXÞ
ab ≡ ΠðXÞ

ab ðQ ¼ 0Þ,
expressing it in terms of the integrals

IXðm1; m2Þ≡ IXðQ ¼ 0;m1; m2Þ;
IXðmÞ≡ IXðQ ¼ 0;mÞ: ð41Þ

These are calculated in Appendix C, where, using partial
fractioning and simple algebraic manipulations, they are
reduced to a combination of simple integrals.
In the case of (pseudo)scalars the result is summarized

in Table III, where we indicate the quark masses, labeled
by f and f0, to be used in the formula of the one-loop
self-energy for a given choice of the flavor indices a and b.

The correction to the tree-level curvature mass m̂2;ðS=PÞ
ab is of

the form

M̂2;ðS=PÞ
ab ¼ m̂2;ðS=PÞ

ab þ Δm̂2;ðS=PÞ
ab þ δm̂2;ðS=PÞ

ab ;

Δm̂2;ðS=PÞ
ab ≡ ΠðS=PÞ

ab;vac; δm̂2;ðS=PÞ
ab ≡ ΠðS=PÞ

ab;mat; ð42Þ
where the vacuum part needs renormalization and the

matter part is finite and determined by T ð1Þ
f (and its mass

derivative, for some flavor indices). In some flavor cases
Eq. (42) does not represent the physical curvature
mass of the (pseudo)scalars, due to their mixing with

TABLE I. Dirac matrices and couplings to be used in the
self-energy formula (37).

X; cX;ΓX S, −igS, 1 P, −gS, γ5 V, −igV , γμ A, −igV , γμγ5

TABLE II. Nonvanishing contributions to the self-energy (37)
from the flavor space trace, tr½λaS̄0λbS̄0�, for ϕ3 ≠ 0 and their
reduction in the isospin symmetric case, where l denotes the light
quarks with equal masses ml ≡mu ¼ md.

ab ϕ3 ≠ 0 ϕ3 ¼ 0

11,22 2SuSd 2SlSl
44,55 2SuSs 2SlSs
66,77 2SdSs 2SlSs
SS 2SsSs 2SsSs
33,NN SuSu þ SdSd 2SlSl
3N, N3 SuSu − SdSd 0
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(axial) vectors. This issue is addressed in Sec. VI, where we
will see that the mixing affects all the pseudoscalars, but
only the scalars with flavor indices 4–7.
In the case of the (axial) vectors, the evaluation of the self-

energy requires some care. The self-energy is split into
vacuum and matter parts, as indicated in Table III. For some
flavor indices, namely a ¼ 3, N, S for ϕ3 ≠ 0 and addi-
tionally a ¼ 1, 2 for ϕ3 ¼ 0, the vacuum part of the vector
self-energy requires, as in the Nf ¼ 1 case, a covariant
calculation in a regularization scheme that complies with the

requirement ΠðVÞ;μν
vac ðQ ¼ 0Þ ¼ 0, which is familiar from

QED. This requirement is investigated in Appendix B, where
we relate it to a symmetry of the classical Lagrangian, which
is manifest for a specific field background.
For simplicity, we use dimensional regularization to

calculate the (axial-)vector self-energy, irrespective of the
flavor index.Thevacuum integral determining the self-energy
can be reduced to tadpole integrals [see Eq. (C12)]. Its finite
and divergent pieces are given in Eqs. (C9) and (C10). For the
matter part we only need to consider purely temporal (00) and
spatial (ij) components, asmixed (0i) components vanish due
to symmetric integration. The matter part of the relevant
integrals, given in Eqs. (C16) and (C17), contains also an
integral whose mass derivative is proportional to the tadpole,
dUð1Þ

f

dm2
f
¼ − 3

2
T ð1Þ

f [see Eq. (A5)]. In the equal mass limit this

relation considerably simplifies the result.
A further complication with the (axial) vectors is related

to the fact that one needs to consider the mode decom-
position of the dressed propagator. This is done in
Appendix E, using the usual set of tensors that includes
three- and four-dimensional projectors. As shown there,
each mode has its own one-loop curvature mass, deter-
mined by the Lorentz components of the self-energy tensor
in the Q → 0 limit.

Using the form of the self-energy given in Table III in the
expression (E11) that gives the contribution to a given
mode p ∈ ft; l;Lg, one sees that the curvature mass has the
structure

M̂2;ðV=AÞ
i;p ¼ m̂2;ðV=AÞ

i þ Δm̂2;ðV=AÞ
i þ δpm̂

2;ðV=AÞ
i ; ð43Þ

where i refers either to flavor indices (e.g., ab ¼ 44) or to
the particle (e.g., K1). Δm̂2

i is the contribution of the

vacuum part ∝ IV=Avac , which in view of Eq. (E11) is the same
for all modes. δpm̂2

i is the mode-dependent contribution of

the matter part, and it is determined by ∝ IV=A;00mat for the “l”
mode and ∝ IV=A;11mat for the “t” and “L”modes, as discussed
around Eqs. (E17) and (E19).
The t and l modes are, respectively, 3-transverse and

3-longitudinal, while the L mode is 4-longitudinal. We will
see in Sec. VI that the L mode (43) influences the physical
curvature mass of the (pseudo)scalars.
For the flavor indices appearing in the last three rows of

Table III (and also for ab ¼ 11, 22 for ϕ3 ¼ 0, when
mu ¼ md) one has only a matter fermionic contribution to
the vector curvature mass and only in the case of the l
mode. This is because the single mass integral is such that
IVvacðmfÞ ¼ IV;11mat ðmfÞ ¼ 0, as shown in Appendix C. In
the isospin symmetric case the matter contributions to the
curvature mass of the modes are [note that due to the
absence of mixing ωN ≡ ωð782Þ and ωS ≡ ϕð1020Þ]

δtm̂2
i ¼ δLm̂2

i ¼ 0; i ¼ ρ;ωN;ωS;

δlm̂2
ρ=ωN

¼ CVI
V;00
mat ðmlÞ; δlm̂2

ωS
¼ CVI

V;00
mat ðmsÞ;

δt;Lm̂2
K⋆ ¼ −ΠðVÞ;11

44;mat ¼ −CVI
V;11
mat ðml;msÞ;

δlm̂2
K⋆ ¼ ΠðVÞ;00

44;mat ¼ CVI
V;00
mat ðml;msÞ ð44Þ

TABLE III. Fermionic contribution to the zero momentum one-loop self-energy of the scalar (S), pseudoscalar
(P), vector (V), and axial-vector (A) fields in the ϕ3 ≠ 0 case. We indicate by f and f0 the quark type whose mass has
to be taken into account in the formula of the self-energy having flavor indices ab. The matter part of the tadpole
integral T ðmÞ is given in Eq. (28) and the finite piece of the vacuum part in Eq. (56). The vacuum integral IV=Avac is
given in Appendix C, together with the 00 and 11 components of the matter integral IV=A;μνmat . The constants are
CS=V ¼ 2Ncg2S=V , tS ¼ 1, tP ¼ 0, and su=d ¼ �1.

ab f f0 −ΠðS=PÞ
ab =CS ΠðV=AÞ;μν

ab =CV

11, 22 d u
mfT ðmfÞ ∓ mf0T ðmf0 Þ

mf ∓ mf0
gμνIV=Avac ðmf;mf0 Þ þ IV=A;μνmat ðmf;mf0 Þ44, 55 s u

66, 77 d s

SS s –
�
1þ 2tS=Pm2

f
d

dm2
f

�
T ðmfÞ gμνIV=Avac ðmfÞ þ IV=A;μνmat ðmfÞ

33, NN u d
1

2

X
i¼f;f0

�
1þ 2tS=Pm2

i
d

dm2
i

�
T ðmiÞ

1

2

X
i¼f;f0

�
gμνIV=Avac ðmiÞ þ IV=A;μνmat ðmiÞ

	

3N, N3 u d
1

2

X
i¼f;f0

si

�
1þ 2tS=Pm2

i
d

dm2
i

�
T ðmiÞ

1

2

X
i¼f;f0

si
�
gμνIV=Avac ðmiÞ þ IV=A;μνmat ðmiÞ
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for the vectors and

δt;Lm̂2
a1=f1N

¼ −ΠðAÞ;11
11;mat ¼ −CVI

A;11
mat ðmlÞ;

δlm̂2
a1=f1N

¼ ΠðAÞ;00
11;mat ¼ CVI

A;00
mat ðmlÞ;

δt;Lm̂2
K1

¼ −ΠðAÞ;11
44;mat ¼ −CVI

A;11
mat ðml;msÞ;

δlm̂2
K1

¼ ΠðAÞ;00
44;mat ¼ CVI

A;00
mat ðml;msÞ ð45Þ

for the axial vectors, where CV ¼ 2Ncg2V and for the f1S
meson the contributions are as for f1N with ml replaced
by ms. The integrals are explicitly given in Appendix C.
The vacuum contributions need renormalization and

their finite part is given for ϕ3 ¼ 0 in Eqs. (67) and (68).

B. Connection to previous calculations

The fermionic correction to the (pseudo)scalar curvature
masses was calculated first in Ref. [16] in the isospin
symmetric case (ϕ3 ¼ 0). The Polyakov-loop degrees of
freedom were incorporated in Ref. [35]. Bringing the
expression in Eq. (B12) of [16] and in Eq. (25) of [35]
in a form containing the tadpole and the bubble integral at
vanishing momentum is not mandatory, but it reveals the
structure behind the obtained result for the curvature mass.
Also, integration by parts shows that the result can be given
in terms of a single function: the Fermi-Dirac distribution
or the modified Fermi-Dirac distribution (48), when
Polyakov-loop degrees of freedom Φ and Φ̄ are included.
This simple observation makes superfluous the introduc-
tion of B�

f and C�
f , used also in [7] following [35], and

allows for a slight simplification of the formulas used so far
in the literature.
Using the method of Ref. [16] we show below how to

obtain the expressions of the (pseudo)scalar curvature
masses given in Table III. The method assumes that we
can use in the ideal gas contribution of the three quarks
the grand potential quark masses that depend on the
fluctuating mesonic fields, as in Eq. (14) of the Nf ¼ 1

case. The method works because for gV ¼ 0 and K ¼ 0 the
eigenvalues of the mass matrix in Eq. (D1) correspond to
the u, d, and s quark sectors. In case of the (axial) vectors,
it is not enough to concentrate on the mass matrix, as
explained in Sec. I. Taking (axial-)vector field derivatives
of the eigenvalues of the mass matrix, as in Ref. [17],
results in a curvature mass tensor which breaks Lorentz
covariance, as it is not proportional to gμν at T ¼ 0.
Concentrating on the matter part of the grand potential,

we start from its expression given in the ideal gas
approximation in Eq. (27) of [7]:

Ωð0ÞT
q̄q ðT; μqÞ ¼ −2T

X
f¼u;d;s

Z
d3p
ð2πÞ3 ½ln g

þ
f ðpÞ þ ln g−f ðpÞ�;

ð46Þ

where

g�f ðpÞ ¼ 1þ 3ðΦ� þΦ∓e−βE
�
f ðpÞÞe−βE�

f ðpÞ þ e−3βE
�
f ðpÞ;

ð47Þ

with Φþ¼ Φ̄, Φ−¼Φ, E�
f ðpÞ¼EfðpÞ∓μf, and E2

fðpÞ ¼
p2 þM2

f. Here Mf are the eigenvalues of the matrix in
Eq. (D1), which depend not only on the scalar background,
but also on the fluctuating (pseudo)scalar fields, generically
denoted by φa, with a being the flavor index. After taking
the second derivative with respect to φa, the fluctuating
field is set to zero, in which case Mfðφa ¼ 0Þ ¼ mf.
The modified Fermi-Dirac distribution functions

F�
f ðpÞ ¼

Φ�e−βE
�
f ðpÞ þ 2Φ∓e−2βE

�
f ðpÞ þ e−3βE

�
f ðpÞ

g�f ðpÞ
ð48Þ

are introduced by an integration by parts

T
Z

d3p
ð2πÞ3 ln g

�
f ðpÞ ¼

1

2π2

Z
∞

0

dpp4
F�
f ðpÞ

EfðpÞ
: ð49Þ

Then one uses that the dependence on φa is throughM2
f,

which only appears in the combination p2 þM2
f,

∂
∂φa

F�
f ðpÞ

EfðpÞ
¼ 1

2p
∂
∂p

�
F�
f ðpÞ

EfðpÞ
� ∂M2

f

∂φa
: ð50Þ

The above relation and integration by parts results in

∂2Ωð0ÞT
q̄q ðT; μqÞ
∂φa∂φb

����
φ¼0

¼ −6
X
f

� ∂2M2
f

∂φa∂φb
T ð1Þ

f

−
∂M2

f

∂φa

∂M2
f

∂φb
Bð1Þ
f

�
φ¼0

; ð51Þ

where the integral T ð1Þ
f ≡ T ð1ÞðmfÞ and its mass derivative,

defined in Eqs. (28) and (29), now contain the modified
Fermi-Dirac distribution functions (48).
Using Table III of [16] for the derivatives of the masses

[Table II of [7] to also get the wave-function renormaliza-
tion factors due to the shift of the (axial-)vector fields] one
recovers the result obtained in [7] in the isospin symmetric
case, where one has mu;d ¼ ml ¼ gSϕN=2. For example,
in the ab ¼ 11 scalar sector, which is not affected by the
mixing, one has (Ms does not contribute)

X
f¼u;d

∂2M2
f

∂S1∂S1
����
φ¼0

¼ g2S;
X
f¼u;d

∂M2
f

∂S1
∂M2

f

∂S1
����
φ¼0

¼ 2g2Sm
2
l ;

ð52Þ
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so that the matter contribution of the fermions to the
curvature mass obtained from Eq. (51) has the form

δm2
a0 ¼ −6g2S

h
T ð1Þ

l − 2m2
lB

ð1Þ
l

i
; ð53Þ

in accordance with Table III in view of (29).
The above simple calculation shows that in the presence

of Polyakov degrees of freedom the fermionic contribution
to the curvature mass can be given in terms of the modified
Fermi-Dirac distribution functions (48). Based on this, one
can safely replace in our previous matter integrals f�f ðpÞ
with F�

f ðpÞ.

V. RENORMALIZATION OF THE
CURVATURE MASS

For simplicity, we discuss the renormalization of the
fermionic correction to the curvature masses only in the
isospin symmetric case (ϕ3 ¼ 0) where ml ≡mu ¼ md.
Then, according to Table II, the contribution in the last row
of Table III vanishes, while for 1 − 3; N flavor indices one
has to use the equal mass formula of the a ¼ S case with the
replacement ms → ml.
Since the renormalization of the (pseudo)scalar curvature

masses poses no problem and was already done in the
literature, using dimensional regularization [36–38] or
cutoff regularization [7], we will only sketch an alternative
method, which can be used in a localized approximation,
that is, when the self-energy is evaluated at vanishing
momentum.
The divergence(s) of a vacuum integral can be separated

by expanding a localized propagator around the auxiliary
function G0ðKÞ ¼ 1=ðK2 −M2

0Þ, where M0 plays the role
of a renormalization scale. For the tadpole integral, iterating
once the identity Gf ¼ G0 þ ðm2

f −M2
0ÞG0Gf, one obtains

upon integration

T ð0ÞðmfÞ ¼ D2 þm2
fD0 þ T ð0Þ

F ðmfÞ; ð54Þ

where the first and second terms are the overall divergence
and the subdivergence given in terms of

D2 ¼ T ð0ÞðM0Þ −M2
0D0; D0 ¼

dT ð0ÞðM0Þ
dM2

0

; ð55Þ

and the last term in Eq. (54) is finite,

T ð0Þ
F ðmfÞ ¼ iðm2

f −M2
0Þ2

Z
K
G2

0ðKÞGfðKÞ

¼ 1

16π2

�
M2

0 −m2
f þm2

f ln
m2

f

M2
0

�
: ð56Þ

With the above renormalization procedure the finite
part of the tadpole is independent of whether covariant

or noncovariant calculation, cutoff, or dimensional regu-
larization is used [provided the cutoff is sent to infinity
in Eq. (56)]. In a noncovariant calculation, Eq. (56)
is obtained from Eq. (26) by writing EfðkÞ ¼
ðk2 þM2

0 þ Δm2
fÞ1=2, with Δm2

f ¼ m2
f −M2

0, and sub-
tracting from the vacuum piece of the tadpole the first
two terms obtained by expanding 1=EfðkÞ in powers of
Δm2

f. Subtracting also the OððΔm2
fÞ2Þ term when renorm-

alizing the integral,

Lð0ÞðmfÞ ¼
Z

d3k
ð2πÞ3 EfðkÞ; ð57Þ

which determines the one-loop fermionic contribution to
the effective potential, Eq. (5) [and, with the replacement
m2

f → M̂2, also the contribution of the ring integrals with
localized self-energy, Eq. (7)], results in the following finite
vacuum part:

Lð0Þ
F ðmfÞ ¼ −

1

64π2

�
Δm2

fð2m2
f þ Δm2

fÞ − 2m4
f ln

m2
f

M2
0

�
;

ð58Þ

which satisfies dLð0Þ
F ðmfÞ=dm2

f ¼ T ð0Þ
F ðmfÞ, that is,

the relation also holding between the unrenormalized
integrals (57) and (26).
Now we turn our attention to the renormalization of the

(axial-)vector curvature masses (43). The relevant terms of
the ELσM Lagrangian introduced in Eq. (2) of Ref. [6] are
those proportional to the coupling hi, i ¼ 1, 2, 3 and the
term containing the covariant derivative. In dimensional
regularization, used here with d ¼ 4 − 2ϵ, no overall
divergence is encountered, and thus the mass term of the
(axial) vectors ∝ m2

1 is not needed. The tree-level mass
squared of the vector and axial-vector fields depend on the
strange and nonstrange scalar condensates ϕN and ϕS, as a
result of the coupling of these fields to the scalars, which
acquire an expectation value. We have to ensure that the
subdivergence of the vacuum contribution to the curvature
mass in Eq. (43) is removed by the environment-dependent
terms (that is, proportional with ϕN and ϕS) present in the
tree-level mass formulas.
Using Eqs. (C9) and (C10) in the expressions of Table III

with mu;d ¼ ml, we see that the vacuum piece of the vector
curvature mass is divergent only for flavor indices 4–7,
corresponding to the K⋆ meson,

Δm̂2
K⋆;div ¼ g2VNc

ðms −mlÞ2
16π2ϵ

; ð59Þ

while for the axial vectors divergence is present in all the
flavor sectors
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Δm̂2
a1;div

¼ Δm̂2;ðAÞ
NN;div ¼ g2VNc

4m2
l

16π2ϵ
;

Δm̂2;ðAÞ
SS;div ¼ g2VNc

4m2
s

16π2ϵ
;

Δm̂2
K1:div

¼ g2VNc
ðms þmlÞ2

16π2ϵ
; ð60Þ

where the a1 (K1) meson corresponds to the 1–3 (4–7)
flavor indices.
The above subdivergence structure means that in the

tree-level mass formulas given in [6] in Eqs. (27)–(34), we
have to look for terms which are only present for K⋆ and
the axial vectors. There is indeed such a term, the one
proportional with g21, and by using the mass formulas (36)

of the quarks and also ðml �msÞ2 ¼ g2Sðϕ
2
N
4
� ϕNϕSffiffi

2
p þ ϕ2

S
2
Þ,

we see that the environment-dependent part in the tree-level
mass formulas matches the form of the subdivergence,
which therefore can be removed. The only problem is
that, since g1 is squared, absorbing the subdivergence in
the counterterm of g1 would result in an awkward
renormalization, as the term quadratic in the counterterm
should be dropped.
A close inspection of the structure of the terms in

Eqs. (27)–(34) of [6] shows that one can achieve renorm-
alization by assigning counterterms to the couplings hi,
i ¼ 1, 2, 3 instead of g1. Namely, splitting the bare coupling
into a renormalized one and counterterms, hi ¼ hiR þ δhi,
one sees that the subdivergences can be eliminated with the
counterterms:

δh1 ¼ 0 and δh2 ¼ −δh3 ¼ −
Ncg2Sg

2
V

16π2ϵ
:

The fact that renormalization can be achieved without
referring to the counterterm of g1 raises the question of why
g21 is present at all in the tree-level mass formulas. A closer
look into the origin of the terms proportional to h2, h3, and
g21 in the mass formulas reveals that some terms included in
the Lagrangian through the terms proportional to h2 and h3
are also generated by the covariant derivative term which
contains g21. Namely, using the covariant derivative of [6],

DμM ¼ ∂μM − ig1ðLμM −MRμÞ − ieAμ
e½T3;M�; ð61Þ

where M ¼ Sþ iP as in [7], the coefficient of the Oðg21Þ
term in Tr½ðDμMÞ†ðDμMÞ� is

TrðL · LMM† þ R · RM†MÞ − Tr½2LμMRμM†�: ð62Þ

The above two traces were added to the Lagrangian
with coefficients h2 and h3, respectively. Therefore, using
L†
μ ¼ Lμ and the shorthand jLμMj2 ≡ ðLμMÞ†ðLμMÞ, the

piece of Lagrangian used in [6] is in fact

δLh̃2;3
¼ h̃2TrðjLμMj2 þ jRμMj2Þ þ 2h̃3Tr½LμMRμM†�;

ð63Þ

where the relations between the parameters are

h2 ¼ h̃2 − g21 and h3 ¼ h̃3 þ g21; ð64Þ

from which h2 þ h3 ¼ h̃2 þ h̃3. Applying these
relations, g21 can be eliminated from the tree-level mass
formulas of the (axial) vectors in which h2;3 is replaced
by h̃2;3.
To avoid duplication of terms in the Lagrangian, it is a

better practice to use a covariant derivative containing only
the electromagnetic field,

D̄μM ¼ ∂μM − ieAμ
e½T3;M�; ð65Þ

and write the Lagrangian that contains the mass terms of the
(axial) vectors and their interaction with the (pseudo)scalars
in the form

δL ¼ Tr½ðD̄μMÞ†ðD̄μMÞ�

þ 1

2
½m2

1 þ h1trðM†MÞ�trðL · Lþ R · RÞ þ δLh̃2;3

þ g1Tr½iðM†Lμ − RμM†ÞðD̄μMÞ þ H:c:�; ð66Þ

although this form is less compact than the one in [6].
After all these considerations, we give for completeness

the vacuum curvature masses containing the renormalized
one-loop level contribution of the fermions. The vector
curvature masses are

M̂2
ρ;vac ¼ M̂2

ωN;vac ¼ m̂2
ρ ¼ m̂2

ωN;

M̂2
ωS;vac ¼ m̂2

ωS;

M̂2
K⋆;vac ¼ m̂2

K⋆ þ 2Ncg2VI
V
vac;Fðml;msÞ; ð67Þ

while the axial-vector ones are

M̂2
a1=f1N;vac

¼ m̂2
a1=f1N

þ 2Ncg2VI
A
vac;FðmlÞ;

M̂2
f1S;vac ¼ m̂2

f1S
þ 2Ncg2VI

A
vac;FðmsÞ;

M̂2
K1;vac ¼ m̂2

K1
þ 2Ncg2VI

A
vac;Fðml;msÞ; ð68Þ

where the classical curvature masses

m̂2
ρ=a1

¼ m2
1 þ

H�
2

ϕ2
N þ h1R

2
ϕ2
S;

m̂2
K⋆=K1

¼ m2
1 þ

H1

4
ϕ2
N � h3Rffiffiffi

2
p ϕNϕS þ

H2

2
ϕ2
S;

m̂2
ωS=f1S

¼ m2
1 þ

h1R
2

ϕ2
N þ H̄�ϕ2

S ð69Þ
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are written, omitting the symmetry breaking terms
considered in [6], using the constants H� ¼ h1R þ
h2R � hR3, H1 ¼ 2h1R þ h2R, H2 ¼ h1R þ h2R, and
H̄� ¼ �h3R þ h2R þ h1R=2.

VI. S−V AND P−A MIXING

These types of mixings come from the last line of
Eq. (66) after performing the trace and shifting the scalar
fields with their background values. Doing also a symmet-
rization using integration by parts in the classical action,
one obtains, in Fourier space and at quadratic order in the
fluctuating fields, the last four mixing (crossed) terms in
Eq. (9) of [6] (up to an unnecessary factor of i in the V − S
mixing terms and the wrong sign of the last two terms):

δLquad
g1 ¼ −

g1
2
iKμ½dijkðÃμ

i P̄j − P̃iĀjÞ
þ fijkðṼμ

i S̄j þ S̃iV̄
μ
j Þ�ϕk; i; j; k ¼ 0;…; 8;

ð70Þ

where X̃ ≡ X̃ðKÞ and X̄ ≡ X̃ð−KÞ.
Due to the values of fijk, the S − V mixing occurs only

in the 4–5 and 6–7 flavor sectors and is of the form
Sa=b − Vb=a with ab ¼ 45 and ab ¼ 67, respectively.
The P − A mixing occurs in all flavor sectors and has
the form Pa − Aa for a ≠ 3, N, S. The P − A mixing in the
3 − N − S flavor sectors simplifies in the isospin symmetric
case (ϕ3 ¼ 0), but, nevertheless, it involves an additional
N − S mixing in the pseudoscalar sector.
At the classical level, the usual way to eliminate the

mixing term is by shifting (in direct space) the (axial-)
vector field by the derivative of the (pseudo)scalar field
with an appropriately chosen wave-function renormaliza-
tion constant as prefactor [1,2,6].
Here we adopt a different strategy and show that the

wave-function renormalization constant is recovered when
one identifies the contribution of the physical modes to the
partition function evaluated in the ideal gas approximation,
discussed in Sec. II. In this approximation the bosonic
fluctuations are neglected in the fermionic determinant
obtained by integrating out the fermions in the partition
function and, keeping only quadratic terms in the mesonic
Lagrangian, the Gaussian functional integral is done over
the (axial-)vector and (pseudo)scalar fields. Then, we apply
the same method at finite T in the Gaussian approximation,
that is, when the quadratic part of the mesonic Lagrangians
is corrected by the field expansion of the fermionic
determinant. Considering self-energies at vanishing
momentum, we find that the form of the wave-function
renormalization constant, resulting from the mixing of the
(pseudo)scalar with the nonpropagating 4-longitudinal
(axial-)vector mode, is unchanged at T ≠ 0, only that it
involves one-loop curvature masses instead of the tree-level
ones that appear in the ideal gas approximation.

A. Classical level mixing

1. S−V mixing

We start with the mixing in the 4–5 flavor sectors. Using
Eq. (70) and Eq. (9) of Ref. [6] one obtains

δLSV
45 ¼ 1

2

�
ðS̃4; Ṽμ

5ÞM45
μν

�
S̄4
V̄ν
5

�
þ ðS̃5; Ṽμ

4ÞM45�
μν

�
S̄5
V̄ν
4

��
;

ð71Þ

where the 5 × 5 matrix is

M45
μν ¼

� iD−1
4 ðKÞ −ic45Kν

ic45Kμ iD−1
μν;5ðKÞ

�
; ð72Þ

with c45 ¼ g1f45kϕk ¼ g1ðϕ3 þ ϕN −
ffiffiffi
2

p
ϕSÞ=2. The tree-

level inverse propagators are (m̂2
K⋆� ≡ m̂2;ðVÞ

44 )

iD−1
4 ðKÞ≡ iD−1

5 ðKÞ ¼ K2 − m̂2;ðSÞ
44 ;

iD−1
μν;4ðKÞ≡ iD−1

μν;5ðKÞ ¼ m̂2
K⋆�PLμν þ ðm̂2

K⋆� − K2ÞPTμν;
ð73Þ

where we used the usual 4-longitudinal and 4-transverse

projectors PL=Tμν [see Eq. (E2)] and that m̂2;ðS=VÞ
44 ¼ m̂2;ðS=VÞ

55 .
Doing in the partition function the Gaussian integral over

the fields appearing in Eq. (71) one obtains

lnZð2Þ
VS;45 ¼ −

1

2

Z
K
ln detM45

μν −
1

2

Z
K
ln detM45�

μν : ð74Þ

The calculation is simplified by the identity

det

�
A B

C D

�
¼ detðAÞ detðD − CA−1BÞ; ð75Þ

which gives in the present case

detM45
μν ¼ detM45�

μν ¼ iD−1
4 ðKÞ

× detðiD−1
μν;4ðKÞ þ ic245D4ðKÞK2PLμνÞ: ð76Þ

Using Eq. (73) we have the projector decomposition of the
remaining 4 × 4matrix, hence computing its determinant is
an easy task. Given that PμTμ ¼ 3PμLμ ¼ 3, one obtains

detM45
μν ¼ C2

45ðK2 − m̂2
K⋆�

0

ÞðK2 − m̂2
K⋆�Þ3; ð77Þ

where C2
45 ¼ m̂2

K⋆� − c245. The physical mass squared

m̂2
K⋆�

0

¼ Z2
K⋆�

0

m̂2;ðSÞ
44 with Z2

K⋆�
0

¼ m̂2
K⋆�

C2
45

ð78Þ
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of the scalar mode arises as a result of its mixing with the
nonpropagating 4-longitudinal vector mode. ZK⋆�

0
is the

wave-function renormalization constant.
The momentum-independent prefactor C2

45 in Eq. (77)
reflects the existence of the nonpropagating 4-longitudinal
vector mode. When dimensional regularization is used to
perform the momentum integral in Eq. (74), the logarithm
of the partition function receives contributions only from
the propagating modes, represented by the two brackets in
Eq. (77), i.e., there is no contribution from lnC2

45, which
depends on the scalar backgrounds.
A similar calculation in the 6–7 flavor sector gives

detM67
μν ¼ C2

67ðK2 − m̂2
K⋆0

0

ÞðK2 − m̂2
K⋆0Þ3; ð79Þ

where C2
67 ¼ m̂2

K⋆0 − c267, with m̂2
K⋆0 ≡ m̂2;ðVÞ

66 and

c67 ¼ g1f67kϕk ¼ g1ð−ϕ3 þ ϕN −
ffiffiffi
2

p
ϕSÞ=2. The physical

scalar mass squared is

m̂2
K⋆0

0

¼ Z2
K⋆0

0

m̂2;ðSÞ
66 ; Z2

K⋆0
0

¼ m̂2
K⋆0=C2

67: ð80Þ

We mention that in the isospin symmetric case,
ϕ3 ¼ 0, one has C2

67 ¼ C2
45 and m̂2

K⋆0 ¼ m̂2
K⋆� , hence

ZK⋆�
0

¼ ZK⋆0
0
≡ ZK⋆

0
, as given in [6] in the last line

of Eq. (14).

2. P−A mixing

We start with the Pa − Aa, a ¼ 1, 2 mixing, given by

δLPA
1&2 ¼

1

2

�
ðP̃1; Ã

μ
1ÞN11

μν

�
P̄1

Āν
1

�
þ ðP̃2; Ã

μ
2ÞN22

μν

�
P̄2

Āν
2

��
;

where the 5 × 5 matrices are

N11
μν ¼ N22

μν ¼
�
iD−1

1 ðKÞ ic11Kν

−ic11Kμ iD−1
μν;1ðKÞ

�
; ð81Þ

with c11 ¼ g1ð
ffiffiffi
2

p
ϕ0 þ ϕ8Þ=

ffiffiffi
3

p ¼ g1ϕN and inverse
propagators of the form given in Eq. (73), with masses

m̂2;ðPÞ
11 ¼ m̂2;ðPÞ

22 and m̂2
a�
1

≡ m̂2;ðAÞ
11 ¼ m̂2;ðAÞ

22 , respectively.

The functional integral over Aa, Pa, a ¼ 1, 2 and steps
paralleling those leading to Eq. (77) give (C2

11¼ m̂2
a�
1

−c211):

detN11
μν ¼ C2

11ðK2 − m̂2
π�ÞðK2 − m̂2

a�
1

Þ3; ð82Þ

with the physical mass of the pseudoscalar mode and the
associated wave-function renormalization constant:

m̂2
π� ¼ Z2

π�m̂
2;ðPÞ
11 and Z2

π� ¼ m̂2
a�
1

=C2
11: ð83Þ

A similar calculation involving fields with flavor indices
a ¼ 4, 5 and a ¼ 6, 7 gives a determinant as in Eq. (82),
with some obvious replacements:

C2
44 ¼ m̂2

K�
1

− c244; m̂2
K� ¼ Z2

K�m̂
2;ðPÞ
44 ; Z2

K� ¼
m̂2

K�
1

C2
44

;

C2
66 ¼ m̂2

K0
1

− c266; m̂2
K0 ¼ Z2

K0m̂
2;ðPÞ
66 ; Z2

K0 ¼
m̂2

K0
1

C2
66

;

ð84Þ

where c44=66¼g1ð�ϕ3þϕNþ
ffiffiffi
2

p
ϕSÞ=2. Again, for ϕ3¼0,

one has a single wave-function renormalization constant,
ZK , given in Eq. (13) of [6].
Now we turn our attention to the mixing in the 3 − N − S

sectors, given by (½P;Aμ�ab ¼ P̃aĀ
μ
b − Ãμ

bP̄a)

δLPA
3NS ¼

i
2
Kμ½c11½P; Aμ�33 þ g1ϕ3ð½P;Aμ�3N þ ½P;Aμ�N3Þ

þ cNN½P;Aμ�NN þ cSS½P;Aμ�SS�; ð85Þ

where cNN ¼ c11 ¼ g1ϕN and cSS ¼ g1
ffiffiffi
2

p
ϕS.

For ϕ3 ≠ 0 the complete quadratic Lagrangian involves a
15 × 15 matrix. In this case, the appearance of the wave-
function renormalization constant is nontrivial and will be
presented elsewhere [39]. Here we consider the isospin
symmetric case (ϕ3 ¼ 0), in which the ðP3; A

μ
3Þ fields

decouple. Their treatment is completely analogous to that
of the ðP1; A

μ
1Þ sector, giving

detN33
μν ¼ C2

33ðK2 − m̂2
π0
ÞðK2 − m̂2

a0
1

Þ3; ð86Þ

where m̂2
a0
1

≡ m̂2;ðAÞ
33 and

C2
33¼ m̂2

a0
1

−c211; m̂2
π0
¼Z2

π0
m̂2;ðPÞ

33 ; Z2
π0
¼
m̂2

a0
1

C2
33

; ð87Þ

with m̂2;ðP=AÞ
33 ¼ m̂2;ðP=AÞ

11 when ϕ3 ¼ 0, and thus Zπ0 ¼ Zπ� .
The remaining P − A mixing in the N − S sectors is

described by the 10 × 10 matrix

NNS
μν ¼

�
NNN
μν M

M NSS
μν

�
; M ¼

�
m2;ðPÞ

NS 0

0 0

�
; ð88Þ

where NNN
μν and NSS

μν are 5 × 5 matrices of the form given in
Eq. (81), but with appropriate masses in the diagonal
elements and constants cNN=SS in the off-diagonal ones.
The functional integral over the strange and nonstrange

fields present in (85) results in
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detNNS
μν ¼C2

NNC
2
SSðK2−m̂2

f1N
Þ3ðK2−m̂2

f1S
Þ3

× ½ðK2Þ2−ðm̂2
ηNþm̂2

ηSÞK2þm̂2
ηNm̂

2
ηS−ðm̂2

ηNSÞ2�;
ð89Þ

where m̂2
f1a

¼ m̂2;ðAÞ
aa and C2

aa ¼ m̂2
f1a

− c2aa, a ¼ N, S. The
classical pseudoscalar curvature masses used in Eq. (89)
contain the wave-function renormalization constants:

m̂2
ηN ¼ Z2

Nm̂
2;ðPÞ
NN ; Z2

N ¼ m̂2
f1N

=C2
NN;

m̂2
ηS ¼ Z2

Sm̂
2;ðPÞ
SS ; Z2

S ¼ m̂2
f1S

=C2
SS;

m̂2
ηNS ¼ ZNZSm̂

2;ðPÞ
NS : ð90Þ

In the second line of Eq. (89), one recognizes the elements
of the mass squared matrix of the mixing PN − PS sector. In
terms of the physical eigenvalues of this matrix, namely

m̂2
η0=η ¼

1

2

h
m̂2

ηN þ m̂2
ηS �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm̂2

ηN − m̂2
ηSÞ2 − 4ðm̂2

ηNSÞ2
q i

;

ð91Þ

one obtains the final result,

detNNS
μν ¼

Y
a¼N;S

C2
aaðK2 − m̂2

f1a
Þ3ðK2 − m̂2

ηÞðK2 − m̂2
η0 Þ:

ð92Þ

This contains the contribution of the propagating 4-transverse
vector and physical pseudoscalar modes.

B. Mixing in the Gaussian approximation

We consider only the isospin symmetric case, ϕ3 ¼ 0,
in the localized approximation, in which the self-energies
have vanishingmomentum. In this case there is no correction
to the off-diagonal elements of the 5 × 5 matrices (also
having Lorentz indices) considered in the previous subsec-
tion, while the diagonal elements are replaced by
iD−1ðKÞ → iG−1

locðKÞ ¼ K2 − M̂2, with M̂2 ¼ m̂2 þ Πð0Þ
and iD−1

μν ðKÞ → iG−1
μν;locðKÞ ¼ iD−1

μν ðKÞ þ Πμνð0Þ.
For the flavor indices involved in the mixing, vector and

axial-vector self-energies have the same decomposition,
given in Eq. (E10). Basically what happens at T ≠ 0 is that
in the inverse propagator the 4-transverse part encountered
previously splits into 3-transverse and 3-longitudinal parts,
with projectors Ptμν and Plμν, so that

iG−1
μν;locðKÞ ¼ M̂2

LP
L
μνðKÞ þ

X
p¼l;t

ðM̂2
p − K2ÞPpμνðKÞ; ð93Þ

where M̂2
l=t=L ¼ m̂2 þ Πl=t=Lð0Þ. The components Πl=t=Lð0Þ

are given in terms of the Lorentz components of the

self-energy Πμνð0Þ in Appendix E, where details on the
tensor decomposition can also be found.
Comparing Eq. (93) to Eq. (73) and using that detðLPL þ

lPl þ tPtÞ ¼ −Llt2 one immediately sees how to modify
our previous results, obtained in the ideal gas approxima-
tion: instead of three 4-transverse (axial-)vector modes one
has the contribution of two 3-transverse modes and one
3-longitudinal mode with one-loop curvature masses M̂2

l;t,
while the mixing between the 4-longitudinal (axial-)vector
mode and the scalar mode involves the respective one-loop
curvature masses M̂2

L and M̂2, all with appropriate flavor
indices.
Taking as an example the V4=5 − S5=4 mixing, one starts

from Eq. (77), writes the classical curvature masses with
flavor indices, instead of physical meson indices, and
corrects them with the appropriate self-energy. In terms
of physical modes, one has

detM45
μν ¼ C2

45ðK2 − M̂2;ðSÞ
44 Þ

Y
p¼l;t

ðK2 − M̂2;ðVÞ
55;p Þdp ; ð94Þ

where dt ¼ 2dl ¼ 2, C2
45 ¼ M̂2;ðVÞ

55;L − c245, and

M̂2;ðSÞ
44 ¼ Z2

S;44M̂
2;ðSÞ
44 with Z2

S;44 ¼
M̂2;ðVÞ

55;L

C2
45

; ð95Þ

with M̂2;ðSÞ
44 ¼ m̂2;ðSÞ

44 þ ΠðSÞ
44 ð0Þ and M̂2;ðVÞ

55;p ¼ m2;ðVÞ
55 þ

ΠðVÞ;55
p ð0Þ, p ¼ L; t; l.
All our previous formulas can be modified similarly:

m̂2;ðS=PÞ
aa → M̂2;ðS=PÞ

aa , while m̂2;ðV=AÞ
aa → M̂2;ðV=AÞ

aa;L in the C2
ab=aa

and Z2 constants, and m̂2;ðV=AÞ
aa → M̂2;ðV=AÞ

aa;l=t in the former
contribution of the propagating (axial-)vector modes.

At T ¼ 0 one has M̂2;ðV=AÞ
aa;t=l=L ¼ M̂2;ðV=AÞ

aa;vac .

VII. NUMERICAL RESULTS

In this section we put to work the formulas derived so far
and present in the isospin symmetric case (ϕ3 ¼ 0) the
temperature dependence of the one-loop curvature masses
obtained for nonvanishing (axial-)vector Yukawa coupling.
In order to achieve this, we minimally extend the para-
metrization used in Ref. [7] and solve the model using the
field equations derived there in the mean-field approxima-
tion [see Eq. (40) there]. In that article the model param-
eters were determined based on one-loop curvature masses
for (pseudo)scalar mesons and tree-level ones for (axial-)
vector mesons. A parametrization and solution of the model
in the proposed localized Gaussian approximation will be
presented elsewhere.
Including the Yukawa coupling gV among the fitting

parameters, we determined the ELσM parameters using the
χ2 minimization described in Ref. [7]. We used the same
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physical quantities as in that article, but replaced the
tree-level (axial-)vector curvature mass formulas with the
vacuum one-loop level ones. The renormalization scale was
fixed to the value used in Ref. [7], while for the Polyakov-
loop potential we used the parameters given in Table IVand
Fig. 1 of that article. The parameters corresponding to the
lowest χ2 value were found from a fit started in 105 random
initial points of the 15-dimensional parameter space,
representing the parameters of the ELσM Lagrangian.
Their values are given in Table IV and can be compared
to those appearing in Table IV of Ref. [7]. Both parameter
sets are compatible with the constraints among m2

0, λ1,
and λ2 required by the spontaneous symmetry breaking,
which were derived in Chap. 44.13 of Ref. [40] from the
classical potential.
In Fig. 1 we compare the T dependence of the (pseudo)

scalar masses obtained with a parametrization that takes
into account the one-loop contribution of the quarks in the
vacuum masses of all the mesons (gV ≠ 0) to the previous
result of Ref. [7] (gV ¼ 0). In the inset we plot the wave-
function renormalization constants that correspond to
the two cases and are computed with the formulas of
Secs. VI B and VI A, respectively. Given that the field
equations are the same in both cases and that the parameter
values are not much different, we see similar behaviors as
the temperature increases. The temperature evolution of the
scalar condensates and of the Polyakov-loop expectation
values is almost identical to that shown in Fig. 1 of Ref. [7],
as can be explicitly seen here in Fig. 2.
The mass of the pseudoscalars is more affected by the

change in the parametrization than the mass of the scalars,
especially around the pseudocritical temperature Tc and
above it. This is expected because all the pseudoscalar
mesons mixes with an axial-vector meson with matching
quantum numbers, while from the vector mesons only the
mass ofK⋆ is directly affected by the mixing with the scalar

mesonK⋆
0 . Interestingly, the decrease of the η and η

0 masses
around Tc is more prominent for the parametrization with
gV ≠ 0. For both parametrizations the a0 meson becomes
degenerate with the η meson at large T. Such a pattern was
observed also within the FRG formalism, but only when

TABLE IV. Parameter values in the ELσM for our best fit
characterized by χ2=Nd:o:f:¼12.96=15≈0.87, where Nd:o:f: ¼ 15
is the number of degrees of freedom. The corresponding
pseudocritical temperature determined from the inflection point
of ϕN is Tc ≈ 175 MeV. h1; h2, and h3 are the parameters of the
Lagrangian given in Eq. (2) of Ref. [6]. κ̃ is the renormalization
scale in the MS scheme which appears in Eqs. (C9) and (C10),
while M0 is the scale used in Ref. [7].

Parameter Value Parameter Value

ϕN [GeV] 0.1427 g1 5.9252
ϕS [GeV] 0.1405 g2 2.0483
m2

0 [GeV2] −1.0874E−2 h1 35.5174
m2

1 [GeV2] 1.5428E−3 h2 −12.0902
λ1 −2.0423 h3 4.2493
λ2 24.22 gS 4.5726
c1 [GeV] 1.1607 gV 5.2818
δS [GeV2] 0.2399 κ̃ ¼ M0 [GeV] 0.3511
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FIG. 1. Temperature dependence of the (pseudo)scalar one-
loop curvature masses obtained in the isospin symmetric case
with a parametrization of the model that includes fermionic
corrections also in the (axial-)vector masses (solid lines),
compared to the case when the parametrization uses tree-level
(axial-)vector masses (dashed curves, taken from Ref. [7]). The
underlying field equations are in both cases the mean-field ones
given in Eq. (40) of Ref. [7]. fH=L0 denotes the eigenstates of the
scalar mixing sector with higher/lower mass, respectively. The
inset shows the T dependence of the wave-function renormaliza-
tion constants.
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FIG. 2. Temperature dependence of the scalar condensates and
their derivatives and of the Polyakov-loop expectation values
compared to the case shown also in Fig. 1 of [7], where the vector
Yukawa coupling is zero, gV ¼ 0. The values of the normalization
constants used for the sake of presentations are cN ¼ −0.028
and cS ¼ −0.18, while the position of the global maximum of
_ϕN ¼ dϕN=dT gives Tc ¼ 175.238 and 174.566 MeV for the
solid and dashed curves, respectively.
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one goes beyond the local potential approximation [41].
We also mention that if the model is solved at nonzero
temperatures with unchanged parameter values but with all
the Z factors set to 1, then a0 degenerates with η0.
The drop of the η0 mass around Tc seen in Fig. 1, which

is observed experimentally in [42], is accompanied in our
case by a drop of the η mass. This behavior is related only
to the decrease of the ϕN;S condensates, as in [41], and not
to the restoration of the Uð1ÞA symmetry, which in our case
would require a temperature-dependent ’t Hooft coupling
c1. The effect of such a coefficient that decreases exponen-
tially with T2 was studied in [43] within the (2þ 1)-flavor
Polyakov-loop quark-meson model. In [44] mesonic fluc-
tuations were incorporated into the axial anomaly in the
Nf ¼ 2þ 1 flavor linear sigma model using the FRG
method in the local potential approximation. The chiral-
condensate-dependent anomaly coefficient is subject to its
own flow equation, and it was shown that under certain
circumstances the thermal evolution of the condensate
could induce a reduction of the axial anomaly. However,
a careful parametrization of the model done later in [45]
showed that the anomaly actually increases around Tc.
While in that paper mη increases monotonically with the
temperature, mη0 has a nonmonotonic thermal evolution,
showing a slight decrease above Tc, before becoming equal
with ma0 at high T. A direct link between the restoration of
Uð1ÞA symmetry and the drop in themη0 ðTÞ, without a drop
in mηðTÞ, was reported in [46]. A recent model-independent
analysis done in [47] suggests that the axial symmetry is
restored when the chiral partners become degenerate.
In Fig. 3 we show the temperature dependence of the

one-loop curvature mass of various (axial-)vector modes.

In the case of ρ and ω vector mesons only the mass of the
3-longitudinal mode acquires fermionic correction, and the
mass of the other modes remains the tree-level one. In
the case of all (axial-)vector mesons this is the mode whose
mass increases with increasing temperature deep in the
symmetric phase, similarly to the mass of the (pseudo)
scalar mesons. Compared to the Nf ¼ 2 version of the
model studied with FRG techniques in [12,14,15], where
all the chiral partners degenerate basically at the same
temperature, the light vector and axial-vector chiral part-
ners ρ and a1 degenerate at slightly higher temperatures
than the (pseudo)scalar ones, fL0 and π. The chiral partners
K⋆ and K1 having both light and strange quark content
degenerates at a higher temperature than those containing
only light quarks, as the strange condensate is still large
around the temperature where the nonstrange condensate
ϕN melts (see Fig. 2). The purely strange chiral partners
ωS and f1S degenerate at even higher temperatures, where
ϕS also melts. The degeneracy of the chiral partners
is displayed also by the masses of 4-longitudinal and 3-
transverse modes. The mass gap between the 3-longitudinal
and 3-transverse modes increases with T as a result of the
violation of the Lorentz symmetry.

VIII. CONCLUSIONS AND OUTLOOK

We investigated the one-loop fermionic contribution
to the curvature masses of (pseudo)scalar and (axial-)vector
mesons in the framework of a Uð3ÞL ×Uð3ÞR linear sigma
model with a Yukawa type interaction between mesons and
constituent quarks. These corrections were calculated by
evaluating the self-energy of the mesons at zero external
momentum. It was showed explicitly that this is equivalent
to the direct calculation of the second field derivative of the
fermionic functional determinant. The one-loop curvature
masses of the (pseudo)scalars agree with those derived in
Ref. [16] with an alternative method that uses fluctuation-
dependent quark masses. We pointed out that this alter-
native method cannot be used for the (axial-)vector mesons
due to the presence of the momentum-dependent Lorentz
scalars VμQμ and AμQμ in the fermion determinant.
The renormalization of the curvature masses was

discussed in detail. The divergencelessness of the vector
current, which occurs on a specific scalar background
for certain flavor indices (e.g., for a ≠ 4–7 in the isospin
symmetric case), has the consequence that the corre-
sponding vector self-energy is 4-transverse and vanishes
at zero momentum. To comply with this property a
suitable regularization scheme is needed. To keep the
discussion uniform, dimensional regularization was
used in the renormalization of both the vector and the
(axial-)vector self-energies for all flavor indices.
Additionally, the renormalization revealed that a chiral-
invariant term appeared twice in the ELσM Lagrangian
[5,6]. This can be cured with the appropriate redefinition
of some couplings.
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The occurrence of the S − V and P − A mixing already
showed the importance of the mode decomposition of the
(axial-)vector self-energy, which was investigated in detail
at both T ¼ 0 and T ≠ 0, as the 4-longitudinal mode of the
(axial-)vectors mixes with the (pseudo)scalars. As a result,
in the case of the Gaussian approximation, the one-loop
curvature mass of the (pseudo)scalar mesons is modified by
a wave-function renormalization constant determined in
terms of the one-loop curvature mass of the 4-longitudinal
(axial-)vector mode. In a simpler approximation we
recovered the already known versions of these constants
appearing in [6].
The vacuum parametrization of the model was redone

based on curvature masses that include one-loop fermionic
contributions for all the mesons. The temperature depend-
ence of all these masses was investigated. The (axial-)
vector tensor splits up into 3-transverse modes (which turns
out to have the same contribution as the 4-longitudinal one)
and a 3-longitudinal mode. In the isospin symmetric case
the mass of 3-transverse modes of the vector mesons ρ, ω
(or ωN), and ϕ (or ωS) coincides with the corresponding
tree-level mass, while for the other particles the mass of the
3-transverse modes is slightly different from the tree-level
mass. For all (axial-)vector particles the mass of the
3-longitudinal mode significantly deviates from the tree-
level one. It increases with increasing temperature, sim-
ilarly to the (pseudo)scalar curvature mass, while the mass
of the 3-transverse components decreases with increasing
temperature. The particle masses of the two modes become
degenerate separately as the chiral symmetry restores with
increasing temperature and the mass gap increases between
them as a reflection of Lorentz symmetry violation.
As a side benefit of the new parametrization of the

model, the value of the vector meson Yukawa coupling gV
was determined. This value influences the equation of state
used to describe properties of the compact star, where it has
a prominent role in determining the maximal value of the
compact star mass of the M-R curves (see e.g., Ref. [48]).
The curvature masses of the various (axial-)vector modes

determined here can be used not only in the localized
Gaussian approximation proposed in Sec. II, but also in the
localized version of the two-particle irreducible formalism
in which in [8] the gauged version of the purely mesonic
model was solved at two-loop level for Nf ¼ 2. In the latter
context the mode decomposition of self-energy presented
here would allow for an improved approximation, as there
the complexity of the numerical problem was reduced by
using even at finite temperature a curvature mass tensor of a
vacuum form, that is, proportional to gμν.
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APPENDIX A: THE COMPONENTS
OF ΠðVÞ;μν

mat FOR Nf = 1

It is instructive to examine the matter part of the vector
self-energy at vanishing momentum (32). The 0i matrix
element vanishes by symmetric integration, while the
temporal and spatial components are different due to the
breaking of the Lorentz symmetry by the heat bath.
Using k20 ¼ k2 þm2

f þ G−1
f for the 00 component and

Z
d3kkikjfðk2Þ ¼

δij
3

Z
d3kk2fðk2Þ ðA1Þ

for the ij component, one obtains [T ð1Þ
f ≡ T ð1ÞðmfÞ]

ΠðVÞ;00
mat ¼ 4g2V

�
T ð1Þ

f þ 2m2
f

dT ð1Þ
f

dm2
f

þ 2
dUð1ÞðmfÞ

dm2
f

�
; ðA2Þ

ΠðVÞ;ij
mat ¼ 4g2Vδ

ij

�
T ð1Þ

f þ 2

3

dUð1ÞðmfÞ
dm2

f

�
: ðA3Þ

Here we used the matter part of the integral UðmfÞ ¼
i
R
K k2GfðKÞ, which—having only an extra factor of

k2 ≡ k2 compared to the tadpole defined in Eq. (23)—is
given [see Eqs. (27) and (28)] by

Uð1ÞðmfÞ ¼ −
1

4π2

Z
∞

0

dk
k4

EfðkÞ
½fþf ðkÞ þ f−f ðkÞ�: ðA4Þ

With a partial integration, as in Eq. (29), one obtains

dUð1ÞðmfÞ
dm2

f

¼ −
3

2
T ð1ÞðmfÞ: ðA5Þ

As a result of Eq. (A5) we see from Eq. (A3) that

ΠðVÞ;11
mat ¼ 0, and therefore trLΠ

ðVÞ
mat ¼ ΠðVÞ;00

mat − 3ΠðVÞ;11
mat ¼

ΠðVÞ;00
mat , and thus from Eq. (A2) one obtains

trLΠ
ðVÞ
mat ¼ ΠðVÞ;00

mat ¼ −8g2V

�
1 −m2

f
d

dm2
f

�
T ð1Þ

f : ðA6Þ

This expression agrees (up to a convention related sign) to
that obtained from Eq. (5.51) of Ref. [33] by taking there
k → 0 at k0 ¼ 0 (the limits do not commute).
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APPENDIX B: VACUUM PROPERTY OF ΠðVÞμν
ab ðQÞ

FOR CERTAIN FLAVOR INDICES

The vector fields Va
μ, a ¼ 0;…; 8 couple in the

Nf ¼ 2þ 1 version of the Lagrangian (11) to the vector

current3 JðVÞμa ¼ ψ̄γμTaψ , where Ta ¼ λa=2. Using the
Euler-Lagrange equations one finds

∂μJ
ðVÞμ
a ¼ iψ̄ ½M;Ta�ψ ; ðB1Þ

where

M ¼ ½gSðSa − iγ5PaÞ þ gVγμðVa
μ þ γ5Aa

μÞ�Ta: ðB2Þ

The divergence of the current (B1) has the same form as in
QCD [49], where M is the current quark matrix.
Interestingly, when evaluated on the background of the

mesonic fields, that is, with

M̄ ¼ gS
2

X
b¼0;3;8

ϕbλb ¼
gS
2

X
b¼3;N;S

ϕbλb; ðB3Þ

the divergence of the vector current vanishes for certain
flavor indices, namely

∂μJ
ðVÞμ
a jM̄ ¼



0; for a ¼ 3;N; S when ϕ3 ≠ 0;

0; for a ¼ 1; 2; 3;N; S when ϕ3 ¼ 0;

ðB4Þ

as one can check using the values of the antisymmetric
structure constant.
We show below that at quantum level the divergence-

lessness of the current has the consequence that the vacuum
part of the one-loop self-energy defined in Eq. (37) satisfies

QμΠ
ðVÞμν
ab;vacðQÞ ¼ 0 ⇒ ΠðVÞμν

ab;vacðQ ¼ 0Þ ¼ 0; ðB5Þ

in the cases listed in Eq. (B4), where from Table II we know
that the self-energy is nonzero only when b ¼ a (for the
implication above see p. 233 of Ref. [50]).
Considering the meson fields as classical external fields,

we start by relating the expectation value of the current
and its divergence with the fermion propagator matrix
(see p. 66 in [51])

hJðVÞμa ðxÞi ¼ −lim
y→x

trðγμTaS̄ðx; yÞÞ; ðB6aÞ

h∂μJ
ðVÞμ
a ðxÞi ¼ −lim

y→x
trð½MðxÞ; Ta�S̄ðx; yÞÞ: ðB6bÞ

The trace in Eq. (B6a) is to be taken in color, flavor, and
Dirac spaces. In the SSB case, when the fields are shifted
with their expectation values, the full propagator obeys

ði=∂x − M̄ −MðxÞÞS̄ðx; yÞ ¼ iδð4Þðx − yÞ; ðB7Þ

with MðxÞ given in Eq. (B2) and M̄ in Eq. (B3).
Next, we expand the full propagator about the tree-

level propagator introduced in Sec. IV, which obeys
ði=∂x − M̄ÞS̄0ðx; yÞ ¼ iδð4Þðx − yÞ. To do so, we write the
formal solution of Eq. (B7) as S̄ ¼ i=ðA −MÞ, where
A ¼ iS̄−1

0 , and use

1

A −M
¼ 1

A
ðA −M þMÞ 1

A −M
¼ 1

A
þ 1

A
M

1

A −M

¼ 1

A
þ 1

A
M

1

A
þ � � � : ðB8Þ

This gives at one-loop level

S̄ðx; yÞ ≃ S̄0ðx; yÞ − i
Z
z
S̄0ðx; zÞMðzÞS̄0ðz; yÞ: ðB9Þ

Taking the derivative of Eq. (B6a) and using Eq. (B9)
we obtain

∂μhJðVÞμa ðxÞi≃ i∂μ
xtr

Z
y
γμ
λa
2
S̄0ðx;yÞMðyÞS̄0ðy;xÞ; ðB10Þ

where the contribution of S̄0ðx; yÞ from Eq. (B9) vanishes
due to translational invariance.
It would be tempting to say that the left-hand side of

Eq. (B10) vanishes as result of Eq. (B4), but the usual proof
using the invariance of the functional integral with respect
to the vector Uð3ÞV transformation does not go through
because we neglected the mesonic fields in Eq. (B1) and the
current vanishes only on a specific scalar background.
What is easy to prove, however, is that Eq. (B6b) vanishes
at linear order in MðxÞ, i.e., the order at which Eq. (B10)
was derived. Indeed, using the first term in Eq. (B9), one
has in the cases listed in Eq. (B4)

∂μhJðVÞμa ðxÞi ¼ h∂μJ
ðVÞμ
a ðxÞi

≃ −trð½MðxÞ; Ta�S̄0ðx; xÞÞ ¼ 0; ðB11Þ

because S̄0 ¼ ucλc, c ¼ 0, 3, 8, with u3 ¼ 0 for ϕ3 ¼ 0,
and the structure constant is such that trFð½λb; λa�λcÞuc ¼
4ifbacuc ¼ 0 for c ¼ 0, 3, 8, b ¼ 0;…; 8 and a taking
the values given in Eq. (B4) (instead of N and S one can
use 0 and 8).
Since for the flavor indices4 of Eq. (B4) only the vector

term in MðxÞ contributes in Eq. (B10), we obtain using
Eq. (B11)

3Note that we call JðVÞμa the vector current by abuse of
terminology and by analogy with QCD, as in the context of
the linear sigma model the true vector current also contains
mesonic fields. 4For other flavor indices the scalar term can also contribute.
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056013-18



0¼ igV∂μ
x

Z
y
tr

�
γμ
λa
2
S̄0ðx;yÞγν

λb
2
S̄0ðy;xÞ

�
Vν
bðyÞ: ðB12Þ

Going to momentum space and using the definition (37) of
the self-energy, one easily obtains Eq. (B5), which holds in
the cases listed in Eq. (B4).

APPENDIX C: INTEGRALS DETERMINING
THE SELF-ENERGY FOR Nf = 2 + 1

Here we calculate the integrals (41) relevant for the
expression of the curvature mass.
In the case of a (pseudo)scalar field one has ΓS ¼ 1

(ΓP ¼ γ5) and the Dirac trace gives (G−1
f ðKÞ ¼ K2 −m2

f)

trD½ΓXSfΓXSf0 � ¼ −4ðmfmf0 � K2ÞGfGf0 ; ðC1Þ
with a plus sign for the scalar. One adds and subtracts in the
numerators produced by partial fraction decomposition the
mass squared of the corresponding denominators to obtain

IS=Pðmf;mf0 Þ ¼ �mfT ðmfÞ ∓ mf0T ðmf
0Þ

mf ∓ mf0
: ðC2Þ

For equal masses the limit in Eq. (40) gives [T f ≡ T ðmfÞ]

ISðmfÞ ¼
�
1þ 2m2

f
d

dm2
f

�
T f; IPðmfÞ ¼ −T f; ðC3Þ

Using Eqs. (37) and (39) and Tables I and II one obtains, for

example, ΠðS=PÞ
11 ðQ ¼ 0Þ ¼∓2Ncg2SI

S=Pðmu;mdÞ.
For (axial-)vector fields we start with the momentum-

dependent integral in Eq. (39), as this is needed in
some relations derived in Appendix F. With ΓV ¼ γμ and
ΓA ¼ γμγ5 the Dirac trace gives (P ¼ K −Q)

IV=A;μνðQ;mf;mf0 Þ

¼ i
Z
K
GfðKÞGf0 ðPÞ

× ½ð�mfmf0 − K · PÞgμν þ KμPν þ KνPμ�; ðC4Þ
with the upper sign for the vector. Next we consider
separately the vacuum and the matter parts of this integral.

1. Vacuum part

In a covariant calculation at T ¼ 0, Feynman paramet-
rization and dimensional regularization give (d ¼ 4 − 2ϵ)

IV=A;μνvac ðQ;mf;mf0 Þ

¼ Γð2 − d
2
Þ

ð4πÞd=2 κ4−d
Z

1

0

dxΔd
2
−2

× ½ðM2ðxÞ ∓ mfmf0 Þgμν þ 2xð1 − xÞQ2PμνT ðQÞ�:
ðC5Þ

Here κ is the renormalization scale, PμνT ðQÞ is the 4-
transverse projector (E2), and Δ ¼ M2ðxÞ − xð1 − xÞQ2

with M2ðxÞ ¼ ð1 − xÞm2
f þ xm2

f0 . We see that

lim
mf0→mf

ðM2ðxÞ ∓ mfmf0 Þ ¼


0; for Vð−Þ;
2m2

f; for AðþÞ; ðC6Þ

and therefore

QμI
V;μν
vac ðQ;mfÞ ¼ 0 and IV;μνvac ðmfÞ ¼ 0: ðC7Þ

At vanishing momentum, where

IV=A;μνvac ðQ ¼ 0;m1; m2Þ ¼ gμνIV=Avac ðm1; m2Þ; ðC8Þ
we split the integral into divergent and finite parts:

IV=Avac ðm1; m2Þ ¼ IV=Avac;Dðm1; m2Þ þ IV=Avac;Fðm1; m2Þ;

IV=Avac;Dðm1; m2Þ ¼
1

32π2ϵ
ðm1 ∓ m2Þ2;

IV=Avac;Fðm1; m2Þ ¼
1

64π2

�
m2

1 þm2
2 ∓ 4m1m2

− 4
f∓ðm1; m2Þ − f∓ðm2; m1Þ

m2
1 −m2

2

�
; ðC9Þ

where f∓ðx; yÞ ¼ x3ðx ∓ 2yÞ lnðx=κ̃Þ and the divergence
was given in the MS scheme (κ̃2 ¼ 4πe−γκ2). To obtain the
finite part, the x integral in Eq. (C5) was evaluated toOðϵÞ,
as the prefactor contains 1=ϵ.
For equal masses one has, in accordance with Eq. (C7),

IVvac;FðmÞ ¼ IVvac;DðmÞ ¼ 0:

IAvac;FðmÞ ¼ −
m2

8π2
ln
m2

κ̃2
;

IAvac;DðmÞ ¼ m2

8π2ϵ
: ðC10Þ

It is easy to see that IV=Avac ðm1; m2Þ can be given in terms
of tadpole integrals. Indeed, setting Q ¼ 0 in Eq. (C4) one
uses the identity

Z
ddK KμKνfðK2Þ ¼ gμν

d

Z
ddK K2fðK2Þ ðC11Þ

and partial fractioning to obtain

IV=Avac ðm1; m2Þ ¼
1

d
m1T

ð0Þ
ϵ ðm1Þ ∓ m2T

ð0Þ
ϵ ðm2Þ

m1 ∓ m2

−
d − 1

d
m1T

ð0Þ
ϵ ðm1Þ �m2T

ð0Þ
ϵ ðm2Þ

m1 �m2

;

ðC12Þ

and for equal masses
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IV=Avac ðmÞ ¼ −
d − 2

d

�
1þ 2zV=A

d − 2
m2

d
dm2

�
T ð0Þ

ϵ ðmÞ; ðC13Þ

with zV ¼ −1 and zA ¼ d − 1. Here we defined

T ð0Þ
ϵ ðmÞ ¼ κ4−d

Z
ddK
ð2πÞd

i
K2 −m2

¼ Γð2 − d
2
Þ

ð4πÞd=2
κ4−d

ðm2Þ1−d
2

;

ðC14Þ

which can be split into divergent and finite parts as

T ð0Þ
ϵ ðmÞ ¼ T ð0Þ

ϵ;DðmÞ þ T ð0Þ
ϵ;FðmÞ;

T ð0Þ
ϵ;DðmÞ ¼ m2

16π2

�
1

ϵ
− 1

�
;

T ð0Þ
ϵ;FðmÞ ¼ m2

16π2
ln
m2

κ̃2
: ðC15Þ

Using Eq. (C14) or (C15) in Eqs. (C12) and (C13), one
recovers Eqs. (C9) and (C10).

2. Matter part

We evaluate the integral in Eq. (C4) for Q ¼ 0. The 0i
component of the integral vanishes, while for the 00
component we use k20 ¼ K2 þ k2 to write

IV=A;00mat ðmf;mf0 Þ ¼ i
Z
K

K2 þ 2k2 �mfmf0

ðK2 −m2
fÞðK2 −m2

f0 Þ
����
mat

¼ mfT
ð1Þ
f ∓ mf0T

ð1Þ
f0

mf ∓ mf0
þ 2

Uð1Þ
f − Uð1Þ

f0

m2
f −m2

f0
:

ðC16Þ

Here we used partial fractioning, as described below
Eq. (C1), and then Eq. (27) to write the result in terms
of the integrals given in Eqs. (28) and (A4).
The ij component of the integral is proportional with δij,

and thus it is enough to give the 11 component. Setting
Q ¼ 0 in Eq. (C4), we use Eq. (A1), followed by partial
fractioning, as in Eq. (C16), to obtain

IV=A;11mat ðmf;mf0 Þ ¼
mfT

ð1Þ
f �mf0T

ð1Þ
f0

mf �mf0
þ 2

3

Uð1Þ
f − Uð1Þ

f0

m2
f −m2

f0
:

ðC17Þ

Using Eq. (A5), the equal mass limit of Eqs. (C16) and
(C17) is

IV;00mat ðmfÞ ¼ −2
h
T ð1Þ

f þm2
fB

ð1Þ
f

i
; IV;11mat ðmfÞ ¼ 0;

IA;00mat ðmfÞ ¼ −2T ð1Þ
f ; IA;11mat ðmfÞ ¼ −2m2

fB
ð1Þ
f ; ðC18Þ

with Bð1Þ
f ¼ Bð1ÞðmfÞ being the matter part of the Euclidian

bubble integral at zero momentum given in Eq. (29).

APPENDIX D: BRUTE FORCE CALCULATION
OF THE CURVATURE MASS

IN THE Nf = 2 + 1 CASE

After shifting the scalar fields with their expectation
values, the integration over the fermionic fields in the
Euclidean partition function gives (see Chap. 2.5 of [33])
the expression on the right-hand side of Eq. (14) with

S−1
E;fðK; ξÞ ¼ −diagðk0u; k0d; k0sÞ ⊗ 14×4 þ 13×3 ⊗ γ0γ⃗ · k⃗

þ diagðmu;md;msÞ ⊗ γ0

þ gS½S ⊗ γ0 − iP ⊗ γ0γ5�
þ gV ½V ⊗ γ0γμ þ A ⊗ γ0γμγ5�; ðD1Þ

where ξ ¼ fSa; Pa; V
μ
a; A

μ
aja ¼ 1;…; 7;N; Sg denotes the

set of fields contained in the nonets, ⊗ is the Kronecker
product, mf, f ¼ u; d; s, is the constituent quark mass
given in Eq. (36), while k0f ¼ iνn þ μf, with νn the
Matsubara frequency and μf the chemical potential.
We calculate the determinant of S−1

E;fðK; ξÞ with the
symbolic program MAPLE keeping only those (pseudo)
scalar or (axial-)vector fields which are used for differ-
entiation in Eq. (16) and setting to zero the remaining set of
fields, denoted as ξ0 ¼ ξnfXag. This simplified determi-
nant is evaluated in Dirac and flavor spaces and denoted as
DðXaÞ ≔ det½S−1

E;fðK; ξÞ�jξ0¼0. We found that it can have two
forms: for the mixing sector involving the fields X3, XN,
and XS the three quark sectors completely factorize, while
for fields with other flavor indices there is a mixing
between two quark sectors.
The contribution of the scalar (X ¼ S) and pseudoscalar

(X ¼ P) mixing sectors can be written with X� ¼ ðXN �
X3Þ=

ffiffiffi
2

p
in the following factorized form:

DðXN;S;3Þ ¼
Y
i¼�;S

�
g2S
2
X2
i þ cðXÞgSmiXi −G−1

i ðKÞ
�
2

; ðD2Þ

where cðSÞ ¼ ffiffiffi
2

p
, cðPÞ ¼ 0 and G−1

i ¼ K2 −m2
i with

mþ ¼ mu, m− ¼ md and mS ¼ ms. Inside the square
brackets there is no summation over i.
For the Vμ

� ¼ ðVμ
N � Vμ

3Þ=
ffiffiffi
2

p
vector fields one has

DðVN;S;3Þ ¼
Y
i¼�;S

�
g2V
2
V2
i þ

ffiffiffi
2

p
gVVi · K þ G−1

i ðKÞ
�
2

; ðD3Þ

where V2
i ¼ Vi · Vi ¼ Vμ

i Vi;μ, while for the axial vectors

Aμ
� ¼ ðAμ

N � Aμ
3Þ=

ffiffiffi
2

p
the factorized form is
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DðAN;S;3Þ ¼
Y
i¼�;S

�
g4V
4
ðA2

i Þ2 þG−2
i ðKÞ

þ g2VðA2
i ðK2 þm2

i Þ − 2ðAi · KÞ2Þ
�
: ðD4Þ

When there is no complete factorization of quark sectors,
the contribution for scalar (X ¼ S, upper sign) and pseu-
doscalar (X ¼ P, lower sign) is

DðXaÞ ¼
�
g4S
16

X4
a −

g2S
2
X2
aðK2 �mfmf0 Þ

þ G−1
f ðKÞG−1

f0 ðKÞ
�
2

G−2
f00 ðKÞ; ðD5Þ

while for vector (X ¼ V, upper sign) and axial vector
(X ¼ A, lower sign)

DðXaÞ ¼
�
g4V
16

ðX2
aÞ2 þG−1

f ðKÞG−1
f0 ðKÞ

þ g2V
2
ðX2

aðK2 ∓ mfmf0 Þ − 2ðXa · KÞ2Þ
�
2

G−2
f00 ðKÞ;

ðD6Þ

where ðf; f0; f00Þ ¼ ðu; d; sÞ for a ¼ 1; 2, ðf; f0; f00Þ ¼
ðu; s; dÞ for a ¼ 4, 5, and ðf; f0; f00Þ ¼ ðd; s; uÞ for
a ¼ 6, 7.
Now, one just has to use the expressions (D2)–(D6) of

the determinant in the effective potential (14) to obtain the
fermionic contribution to the curvature mass, according to
its definition (16). Simple derivation with respect to the
remaining fields leads to the Q ¼ 0 limit of the integral
(39), evaluated in Appendix C. For example, the determi-
nant DðXaÞ given in Eq. (D6) leads through Eq. (19) to

Δm2;ðXÞμν
ab ¼ 2Ncg2VI

X;μνðmf;mf0 Þ, in accordance with the
formula given in Table III for the first three flavor indices.
We multiplied by the number of colors, Nc, as the
determinant was calculated only in Dirac and flavor spaces.

APPENDIX E: DECOMPOSITION OF THE
SELF-ENERGY TENSOR

In this Appendix we consider at zero and finite temper-
ature the decomposition into physical modes of the one-
loop fermionic contribution to the momentum-dependent
self-energy tensor of massive vector and axial-vector
bosons, generically denoted by ΠμνðQÞ. Special interest
is devoted to the curvature mass of the modes, obtained
from the self-energy in the limit Q → 0, which at T ≠ 0
represents the limit q0 → 0, followed by q → 0.

1. T = 0 case

The vacuum self-energy Πμν
vacðQÞ can be decomposed as

Πμν
vacðQÞ ¼ Πvac;LðQÞPμνL ðQÞ þ Πvac;TðQÞPμνT ðQÞ; ðE1Þ

with the 4-longitudinal and 4-transverse projectors

PμνL ðQÞ ¼ QμQν

Q2
and PμνT ðQÞ ¼ gμν − PμνL ðQÞ; ðE2Þ

satisfying

PL=T · PL=T ¼ PL=T; PT=L · PL=T ¼ 0; PμTμ ¼ 3PμLμ ¼ 3:

ðE3Þ

Writing the tree-level inverse propagator as iD−1
μν ðQÞ ¼

m̂2PLμν þ ðm̂2 −Q2ÞPTμν, where m̂2 is the tree-level curva-
ture mass, one obtains from the Dyson equation iG−1

μν ðQÞ ¼
iD−1

μν ðQÞ þ Πvac
μν ðQÞ the propagator

GμνðQÞ ¼ iPμνT
−Q2 þ m̂2 þ Πvac;TðQÞ þ

iPμνL
m̂2 þ Πvac;LðQÞ :

ðE4Þ

It is evident that the curvature masses of the propagating (T)
and nonpropagating (L) modes are

M̂2
vac;L=T ¼ m̂2 þ Πvac;L=Tð0Þ: ðE5Þ

In the Nf ¼ 1 case, due to the fermion number (current)
conservation, the vector boson self-energy not only is
transverse, that is, QμΠμνðQÞ ¼ 0, but also satisfies
ΠμνðQ ¼ 0Þ≡ 0, and therefore Πvac;L=Tð0Þ≡ 0, just like
in the case of the photon polarization tensor in the QED.
In the Nf ¼ 2þ 1 case the above relations hold due to
Eq. (B12) for the vector boson self-energy with flavor
indices listed in Eq. (B4). These indices correspond to the
last three entries of Table II (also for the first entry in the
ϕ3 ¼ 0 case), when the integrals involve fermion propa-
gators with identical masses. For the first three entries
of the table (except for the first one in the ϕ3 ¼ 0 case)
the vector polarization tensor is alike the axial-vector
one, that is, QμΠμνðQÞ ≠ 0 and ΠμνðQ ¼ 0Þ ≠ 0, so
that, using Πμ

μ;vacðQÞ ¼ 3Πvac;TðQÞ þ Πvac;LðQÞ and
Πμν

vacðQ ¼ 0Þ ∝ gμν, one obtains

Πvac;Tð0Þ ¼ Πvac;Lð0Þ ¼ Π00
vacð0Þ ¼ −Π11

vacð0Þ: ðE6Þ

Therefore, one can write unambiguously

M̂2
vac ¼ m̂2 þ Πvacð0Þ; with Πvacð0Þ ¼

1

4
Πμ

μ;vacð0Þ:
ðE7Þ
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2. T ≠ 0 case

In a Lorentz-covariant formulation one has to take into
account besides Q2 a second Lorentz-invariant quantity,
ω ≔ Q · u, where uμ is the 4-velocity of the thermal bath,
which satisfies u2 ¼ 1. The self-energy depends on two
scalars, ω and q ≔ ððQ · uÞ2 −Q2Þ1=2, which are inter-
preted as the Lorentz-invariant energy and modulus of the
3-momentum [52]. In the rest frame of the thermal bath,
also used here in what follows, one has uμ ¼ ð1; 0Þ, and
therefore ω ¼ q0 and q ¼ jqj.
A basis for the decomposition of self-energy has

to be constructed from the four rank-2 tensors gμν,
QμQν, uμuν, and Qμuν þQνuμ. The physically motivated
basis [53] consists of PμνL , given in Eq. (E2), and the three
tensors

Pμνl ¼ uμTu
ν
T

u2T
¼ −

Q2

q2
uμTu

ν
T;

Pμνt ¼ gμν − PμνL − Pμνl ¼ −gμi
�
δij −

qiqj
q2

�
gjν;

Cμν ¼ QμuνT þQνuμTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ · uÞ2 −Q2

p ; ðE8Þ

where uTμ ¼ uμ − ðQ · uÞQμ=Q2. Pt=l are three-dimensional
transverse/longitudinal projectors (they are both four-
dimensional transverse, Pl þ Pt ¼ PT), while Cμν is not a
projector. Further relations of interest, in addition to those
in Eq. (E3), are

Pl=t · Pl=t ¼ Pl=t; Pl=t · Pt=l ¼ 0;

Pt=L · PL=t ¼ Pl=L · PL=l ¼ Pt · C ¼ C · Pt ¼ 0;

Pl · C · Pl ¼ PL · C · PL ¼ 0; C2 ¼ −PL − Pl;

C · PL ¼ Pl · C; PL · C ¼ C · Pl;

C · PL þ PL · C ¼ Pl · Cþ C · Pl ¼ C;

dl ≔ Pμlμ ¼ 1; dt ≔ Pμtμ ¼ 2; Cμ
μ ¼ 0:

ðE9Þ

In the above basis the general self-energy tensor reads

ΠμνðQÞ ¼
X
p¼t;l;L

ΠpðQÞPμνp ðQÞ þ ΠCðQÞCμνðQÞ; ðE10Þ

with tensor components given by (dt ¼ 2dl=L ¼ 2)

Πp ¼
1

dp
trðΠ · PpÞ; ΠC ¼ −

1

2
trðΠ · CÞ: ðE11Þ

The expression of the dressed propagator Gμν can be
obtained with the method described in Chap. 5.2.2 of
Ref. [54]. Using a similar decomposition for Gμν as in

Eq. (E10) and the Dyson equation iG−1
μν ðQÞ ¼ iD−1

μν ðQÞ þ
ΠμνðQÞ in the identity G−1

μνGνα ¼ gαμ, one obtains by
exploiting Eqs. (E3) and (E9)

GμνðQÞ ¼ iPμνt
−Q2 þ m̂2 þ ΠtðQÞ þ

iPμνl ðm̂2 þ ΠLðQÞÞ
δðQÞ

þ ið−Q2 þ m̂2 þ ΠLðQÞÞPμνL
δðQÞ −

iΠCðQÞCμν

δðQÞ ;

ðE12Þ

with δðQÞ ¼ ðm̂2 þ ΠLðQÞÞð−Q2 þ m̂2 þ ΠlðQÞÞ þ Π2
C.

We will see below thatΠCð0; 0Þ≡ 0, and hence the squared
curvature masses of the remaining modes simplify to

M̂2
l=t=L ¼ m̂2 þ Πl=t=Lð0; 0Þ; ðE13Þ

where m̂2 is the classical curvature mass squared and

Πpð0; 0Þ ¼ Πvacð0Þ þ Πmat
p ð0; 0Þ; p ¼ l; t;L; ðE14Þ

with the vacuum part Πvacð0Þ defined in Eq. (E7) and Πmat
p

being the matter part.
The tensor components Πmat

l=t=L=CðQÞ can be given in
terms of the Lorentz components of the self-energy tensor.
Specifically for q0 ¼ 0, using the explicit expression of the
projectors, one obtains from Eq. (E10)

Πmat
l ð0; qÞ ¼ Πmat

00 ð0; qÞ;
Πmat

L ð0; qÞ ¼ −
qiqj
q2

Πmat
ij ð0; qÞ;

Πmat
C ð0; qÞ ¼ qi

jqjΠ
mat
0i ð0; qÞ; ðE15Þ

while taking the trace in Eq. (E10) gives

Πmat
t ðQÞ ¼ 1

2
½Πμ

μ;matðQÞ − Πmat
l ðQÞ − Πmat

L ðQÞ�: ðE16Þ

The vector boson self-energy is 4-transverse
(QμΠμνðQÞ ¼ 0) in the Nf ¼ 1 case and also in the
Nf ¼ 2þ 1 case, for those flavor indices for which the
bubble integral involves propagators of equal masses (for
ϕ3 ≠ 0, the last three lines of Table II). In these cases
ΠLðQÞ ¼ ΠCðQÞ≡ 0 and the 00 component of Eq. (E10)

gives Πmat
00 ðQÞ ¼ − q2

Q2 Πmat
l ðQÞ. From this relation or the

first entry of Eq. (E15) and from Eq. (E16) one has

Πmat
l ð0; 0Þ ¼ Πmat

00 ð0; 0Þ; Πmat
t ð0; 0Þ ¼ −

3

2
Πmat

11 ð0; 0Þ:
ðE17Þ

For the axial-vector bosons and, in the Nf ¼ 2þ 1 case,
for the vector boson self-energy involving bubble integrals
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with different fermion masses (for ϕ3 ≠ 0, the first three
lines of Table II), the direct calculation presented in
Appendix F shows that

Πmat
0i ð0; qÞ≡ 0; ðE18aÞ

lim
q→0

qiqj
q2

Πmat
ij ð0; qÞ ¼ Πmat

11 ð0; 0Þ: ðE18bÞ

As a result Πmat
C ð0; qÞ ¼ 0 and, therefore,

Πmat
t=L ð0; 0Þ ¼ −Πmat

11 ð0; 0Þ; Πmat
l ð0; 0Þ ¼ Πmat

00 ð0; 0Þ:
ðE19Þ

APPENDIX F: PROOF OF SOME
PROPERTIES OF Πmat

μν ðQÞ
The one-loop (axial-)vector boson self-energy (37) can

be given (see Table II) in terms of the integral defined in
Eq. (39), containing different fermion masses mf and mf0 ,
or (a linear combination of) its equal mass limit (40).
In order to prove Eq. (E18), it is enough to consider the
integral in Eq. (C4), obtained from Eq. (39) by doing
the Dirac trace. The following calculation refers to the
matter part, as indicated by the separation of the k0 integral,
which becomes a Matsubara sum in the imaginary time
formalism.

1. Proof of Eq. (E18a)

Setting q0 ¼ 0 in Eq. (C4), one has

IV=A;0ið0; q;mf;mf0 Þ ¼ i
Z

∞

−∞
dk0

Z
k

k0ð2ki − qiÞGfðKÞ
k20 − E2

k−q;f0
;

ðF1Þ

with Ek;f ¼ ðk2 þm2
fÞ1=2 and G−1

f ¼ K2 −m2
f. The inte-

gral is obviously zero, as the integrand is odd in k0.

2. Proof of Eq. (E18b)

On the one hand, it follows again from Eq. (C4) by
q0 ¼ 0 substitution that

qiqj
q2

IV=A;ijð0; q;mf;mf0 Þ

¼ −i
Z

∞

−∞
dk0

Z
k

�mfmf0 − K2 þ k · q − 2ðk · qÞ2=q2
ðk20 − E2

k;fÞðk20 − E2
k−q;f0 Þ

:

ðF2Þ

Changing to spherical coordinates in the k integral and
using k · q ¼ kq cosϑ≡ kqx the q → 0 limit gives −2k2x2
in the numerator. Doing the angular integral leads to

lim
q→0

qiqj
q2

IV=A;ijð0; q;mf;mf0 Þ

¼ 4iπ
Z

∞

−∞
dk0

Z
∞

0

dk
∓ mfmf0 þ K2 þ k2=3

ðk20 − E2
k;fÞðk20 − E2

k;f0 Þ
: ðF3Þ

On the other hand, using the identity Eq. (A1) in
Eq. (C4) gives

IV=A;11ð0;0;mf;mf0 Þ¼ i
Z
K

∓mfmf0 þK2þk2=3

ðk20−E2
k;fÞðk20−E2

k;f0 Þ
: ðF4Þ

Changing to spherical coordinates in the k integral, the
angular integral readily gives 4π, as the integrand is
independent of the angles. The resulting formula agrees
with the rhs of Eq. (F3), from which Eq. (E18b) follows.

[1] S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531
(1969).

[2] R. D. Pisarski, arXiv:hep-ph/9503330.
[3] D. Parganlija, Ph.D. thesis, Goethe-Universität Frankfurt,

2011, http://publikationen.ub.uni-frankfurt.de/frontdoor/
index/index/year/2012/docId/24989.

[4] D. Parganlija, F. Giacosa, and D. H. Rischke, AIP Conf.
Proc. 1030, 160 (2008).

[5] D. Parganlija, F. Giacosa, and D. H. Rischke, Phys. Rev. D
82, 054024 (2010).

[6] D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa, and D. H.
Rischke, Phys. Rev. D 87, 014011 (2013).

[7] P. Kovács, Z. Szép, and G. Wolf, Phys. Rev. D 93, 114014
(2016).

[8] S. Struber and D. H. Rischke, Phys. Rev. D 77, 085004
(2008).

[9] M. Herrmann, B. L. Friman, and W. Norenberg, Nucl. Phys.
A560, 411 (1993).

[10] H. Shiomi and T. Hatsuda, Phys. Lett. B 334, 281 (1994).
[11] A. Mishra, J. C. Parikh, and W. Greiner, J. Phys. G 28, 151

(2002).
[12] J. Eser, M. Grahl, and D. H. Rischke, Phys. Rev. D 92,

096008 (2015).
[13] F. Rennecke, Phys. Rev. D 92, 076012 (2015).
[14] C. Jung, F. Rennecke, R. A. Tripolt, L. von Smekal, and J.

Wambach, Phys. Rev. D 95, 036020 (2017).
[15] C. Jung and L. von Smekal, Phys. Rev. D 100, 116009

(2019).

ONE-LOOP CONSTITUENT QUARK CONTRIBUTIONS TO THE … PHYS. REV. D 104, 056013 (2021)

056013-23

https://doi.org/10.1103/RevModPhys.41.531
https://doi.org/10.1103/RevModPhys.41.531
https://arXiv.org/abs/hep-ph/9503330
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2012/docId/24989
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2012/docId/24989
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2012/docId/24989
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2012/docId/24989
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2012/docId/24989
https://doi.org/10.1063/1.2973492
https://doi.org/10.1063/1.2973492
https://doi.org/10.1103/PhysRevD.82.054024
https://doi.org/10.1103/PhysRevD.82.054024
https://doi.org/10.1103/PhysRevD.87.014011
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.77.085004
https://doi.org/10.1103/PhysRevD.77.085004
https://doi.org/10.1016/0375-9474(93)90105-7
https://doi.org/10.1016/0375-9474(93)90105-7
https://doi.org/10.1016/0370-2693(94)90688-2
https://doi.org/10.1088/0954-3899/28/1/311
https://doi.org/10.1088/0954-3899/28/1/311
https://doi.org/10.1103/PhysRevD.92.096008
https://doi.org/10.1103/PhysRevD.92.096008
https://doi.org/10.1103/PhysRevD.92.076012
https://doi.org/10.1103/PhysRevD.95.036020
https://doi.org/10.1103/PhysRevD.100.116009
https://doi.org/10.1103/PhysRevD.100.116009


[16] B. J. Schaefer and M. Wagner, Phys. Rev. D 79, 014018
(2009).

[17] A. N. Tawfik and A. M. Diab, Phys. Rev. C 91, 015204
(2015).

[18] A. J. Helmboldt, J. M. Pawlowski, and N. Strodthoff, Phys.
Rev. D 91, 054010 (2015).

[19] J. M. Pawlowski, N. Strodthoff, and N. Wink, Phys. Rev. D
98, 074008 (2018).

[20] G. Markó, U. Reinosa, and Z. Szép, Phys. Rev. D 96,
036002 (2017).

[21] G. Markó and Z. Szép, Phys. Rev. D 100, 056017 (2019).
[22] M. E. Peskin and D. V. Schroeder, An Introduction to

Quantum Field Theory (Westview Press, New York, 1995).
[23] R. Jackiw, Phys. Rev. D 9, 1686 (1974).
[24] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[25] K. Yamazaki and T. Matsui, Nucl. Phys. A913, 19 (2013).
[26] J. M. Torres-Rincon and J. Aichelin, Phys. Rev. C 96,

045205 (2017).
[27] G. Markó, U. Reinosa, and Z. Szép, Phys. Rev. D 92,

125035 (2015).
[28] T. Eguchi, Phys. Rev. D 14, 2755 (1976).
[29] F. L. Braghin, Phys. Rev. D 97, 014022 (2018); 101,

039902(E) (2020).
[30] F. L. Braghin, J. Phys. G 47, 115102 (2020).
[31] I. J. R. Aitchison and C. M. Fraser, Phys. Rev. D 31, 2605

(1985).
[32] L. H. Chan, Phys. Rev. Lett. 54, 1222 (1985); 56, 404(E)

(1986).
[33] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory:

Principles and Applications (Cambridge University Press,
Cambridge, England, 2006).

[34] A. K. Das, Finite Temperature Field Theory (World
Scientific, Singapore, 1997).

[35] U. S. Gupta and V. K. Tiwari, Phys. Rev. D 81, 054019
(2010).

[36] B. J. Schaefer and M. Wagner, Phys. Rev. D 85, 034027
(2012).

[37] V. K. Tiwari, Phys. Rev. D 88, 074017 (2013).
[38] S. Chatterjee and K. A. Mohan, Phys. Rev. D 85, 074018

(2012).
[39] N. Weickgenannt, P. Kovacs, D. Rischke, and G. Wolf (to be

published).
[40] J. Zinn-Justin, Quantum Field Theory and Critical Phe-

nomena, 3rd ed. (Clarendon Press, Oxford, 1996).
[41] F. Rennecke and B. J. Schaefer, Phys. Rev. D 96, 016009

(2017).
[42] R. Vertesi, T. Csorgo, and J. Sziklai, Phys. Rev. C 83,

054903 (2011).
[43] S. K. Rai and V. K. Tiwari, Eur. Phys. J. Plus 135, 844

(2020).
[44] G. Fejős, Phys. Rev. D 92, 036011 (2015).
[45] G. Fejős and A. Hosaka, Phys. Rev. D 94, 036005

(2016).
[46] D. Horvatić, D. Kekez, and D. Klabučar, Phys. Rev. D 99,

014007 (2019).
[47] A. Gómez Nicola and J. Ruiz de Elvira, Phys. Rev. D 98,

014020 (2018).
[48] K. Masuda, T. Hatsuda, and T. Takatsuka, Prog. Theor. Exp.

Phys. (2013) 073D01.
[49] S. Scherer and M. R. Schindler, A Primer for Chiral

Perturbation Theory (Springer, Berlin, 2012).
[50] D. Lurie, Particles and Fields (John Wiley & Sons,

New York, 1968).
[51] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, New York, 1971).
[52] H. A. Weldon, Phys. Rev. D 26, 1394 (1982).
[53] W. Buchmuller, T. Helbig, and D. Walliser, Nucl. Phys.

B407, 387 (1993).
[54] M. Le Bellac, Thermal Field Theory (Cambridge University

Press, Cambridge, England, 1996).
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