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We use the sign-reweighting method to simulate the QCD chiral transition at real baryon densities on
phenomenologically relevant lattices. This avoids the severe limitations of extrapolating from zero or
imaginary chemical potential and the overlap problem of traditional reweighting approaches, opening up a
new window to reliably study hot and dense strongly interacting matter from first principle lattice
simulations. We demonstrate that sign reweighting can reach up to a baryochemical potential-temperature
ratio of μB=T ¼ 2.7, covering most of the Relativistic Heavy Ion Collider Beam Energy Scan range.
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I. INTRODUCTION

The properties of strongly interacting matter at high
temperature and density play a role in a variety of issues,
such as the early history of the Universe and the scattering
of heavy ions. These issues are currently at the center of
intense theoretical and experimental investigations, and a
deeper understanding of hot and dense strongly interacting
matter would greatly help in furthering progress. In
particular, the chiral transition has garnered a lot of interest
[1–16], as the comparison of theoretical predictions with
results from heavy-ion experiments can potentially chal-
lenge our understanding of strong interactions based on
QCD. It is therefore important to obtain predictions for the
behavior of strongly interacting matter near the chiral
transition starting from first principles.
The most well-established method for first-principles

studies of QCD in the strongly coupled regime near the
transition is lattice QCD [17]. The lattice approach turns the
path integral of quantum field theory into a practical
numerical method by mapping it to a statistical-mechanics
system. This method can in principle be systematically

improved to reach arbitrary accuracy. Indeed, many aspects
of QCD thermodynamics have been clarified using this
method, such as the crossover nature of the transition and
the value of the transition temperature at zero baryon
density [4–6]. A timely challenge is then a lattice calcu-
lation of the properties of matter at finite density, such as
the location of the critical end point—predicted by effective
and functional approaches [7–10]. QCD at finite density is,
however, not amenable to first-principle lattice studies
using standard techniques, since in this case the
Boltzmann weights in the path integral representation are
complex and so not suitable for importance-sampling
algorithms. A variety of methods have been proposed over
the years to sidestep this complex action problem. None of
these methods is, however, completely satisfactory, as they
all suffer from systematic effects of some kind. Methods
based on using an imaginary chemical potential [14,18–35]
or a Taylor expansion around vanishing chemical potential
[11,36–48] involve a certain amount of modeling, as they
necessarily make assumptions about the functional depend-
ence of physical observables on the chemical potential, in
order to reconstruct them at real, finite chemical potential.
Despite its formal exactness, the overlap problem when
reweighting from zero chemical potential μB ¼ 0 [49–54]
makes it very difficult to quantify statistical and systematic
uncertainties. This is also true for the complex Langevin
approach [55–61] due to its convergence issues. Yet, other
speculative methods, such as dual variables [62,63] or
Lefshetz thimbles [64–68] have only been successfully
used to study toy models so far.
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Although technically manifesting as different, the
analytic continuation problem of the Taylor and imaginary
chemical potential methods and the overlap problem of
reweighting from μB ¼ 0 have the same origin: an
inability to directly sample the gauge configurations most
relevant to finite-density QCD, thus requiring an extrapo-
lation that hopefully captures the features of the theory of
interest. One would instead like to perform simulations in
a theory from which reconstruction of the desired theory is
the least affected by systematic effects, by (i) keeping
as close as possible to the most relevant configurations,
thus minimizing the overlap problem, and (ii) making the
complex-action problem, or sign problem, due to cancel-
lations among contributions, as mild as possible. A
method satisfying both requirements—“sign reweight-
ing”—has sporadically been mentioned in the literature
for quite some time [69–75]. Moreover, sign reweighting
is the optimal choice, with the weakest sign problem, out
of reweighting schemes based on simulating theories
where the Boltzmann weights differ from the desired
ones only by a function of the phase of the quark
determinant [69–71]. This approach is so far the closest
one can get to sampling the most relevant configurations
according to the original, sign-problem-ridden path inte-
gral and allows one to answer detailed questions about the
gauge configurations that determine the nature of dense
strongly interacting matter.
While optimal, the “sign-quenched” theory that one has

to simulate in the sign-reweighting approach is unfortu-
nately not a local field theory, so the standard algorithms
of lattice QCD do not apply. This leads to more costly
numerics and has prevented so far the use of sign
reweighting in large scale simulations on fine lattices.
The state of the art so far was the study on toy lattices
of Ref. [75]. After further optimization, here we demon-
strate that sign reweighting has become viable for phe-
nomenologically relevant lattices. We perform simulations
of the sign-quenched theory with 2-stout improved stag-
gered fermions at Nτ ¼ 6—a lattice action that is often
used (at zero or imaginary chemical potential) as the first
point of the continuum extrapolation for thermodynamic
quantities [4,24,30,76–82]. We therefore obtain results
directly (up to reweighting by a sign) at a finite real
chemical potential, up to a baryochemical potential-
temperature ratio of μ̂B ¼ μB

T ¼ 2.7, which is near the upper
end of the chemical potential range of the Relativistic
Heavy Ion Collider (RHIC) Beam Energy Scan [83–85]
and is already in a region of the phase diagram where
analytic continuation methods stop being predictive.
Beyond previous results on toy lattices, this is the first
result in the literature obtained at real baryon density
without any of the unknown systematic uncertainties, such
as those coming from the overlap problem and analytic
continuation. To aid further studies of this kind, we
also provide a way to estimate the severity of the sign

problem—the main bottleneck for sign-reweighting
studies—based on susceptibility measurements at μB ¼ 0.

II. OVERLAP PROBLEM AND SIGN
REWEIGHTING

A generic reweighting method reconstructs expectation
values in a desired target theory, with microscopic variables
U, path integral weights wtðUÞ, and partition function
Zt ¼

R
DUwtðUÞ, using simulations in a theory with real

and positive path integral weights wsðUÞ and partition
function Zs ¼

R
DUwsðUÞ, via the formula

hOit ¼
hwt
ws
Oi

s

hwt
ws
i
s

; hOix ¼
1

Zx

Z
DUwxðUÞOðUÞ; ð1Þ

where x may stand for t or s. When the target theory is
lattice QCD at finite chemical potential, the target weights
wtðUÞ have wildly fluctuating phases; this is the infamous
sign problem of lattice QCD. In addition to this problem,
generic reweighting methods also suffer from an overlap
problem: the probability distribution of the reweighting
factor wt=ws has generally a long tail, which cannot be
sampled efficiently in standard Monte Carlo simulations.
It is actually the overlap problem, rather than the sign
problem, that constitutes the immediate bottleneck in
QCD when one tries to extend reweighting results to
finer lattices [86].
A way to address the overlap problem is to simulate an

ensemble where wt=ws takes values from a compact space,
such as the phase-quenched [87,88] or sign-quenched
[69–75] ensembles. We pursue the second approach, with
a weaker sign problem. First, note that the partition
function of lattice QCD is real due to charge conjugation
invariance, and at finite temperature T and finite real quark
chemical potential μ, one can write

ZðT; μÞ ¼
Z

DU Re det MðU; μÞe−SgðUÞ; ð2Þ

where Sg is the gauge action, det M denotes the fermionic
determinant, including all quark types with their respective
mass terms, as well as rooting in the case of staggered
fermions, and the integral is over all link variables U.
Replacing the determinant with its real part is not permitted
for arbitrary expectation values, but it is allowed for
observables satisfyingOðU�Þ ¼ OðUÞ, as well as for those
obtained as derivatives of Z with respect to real parameters,
such as the chemical potential or the quark mass. As most
important observables in bulk thermodynamics are of
this kind, one can use Eq. (2) as the starting point for a
reweighting scheme. Denoting by ε the sign of
Re det MðU; μÞ, one has
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ZðT;μÞ¼hεiSQT;μZSQðT;μÞ;

ZSQðT;μÞ¼
Z

DU jRe detMðU;μÞje−SgðUÞ;

hOiSQT;μ¼
1

ZSQðT;μÞ
Z

DUOðUÞjRe detMðU;μÞje−SgðUÞ:

ð3Þ

Here, SQ stands for sign quenched, and ZSQ defines the
“sign-quenched ensemble.” The desired expectation values
are then obtained by setting ws ¼ jRe det MðU; μÞje−SgðUÞ,
wt ¼ Re det MðU; μÞe−SgðUÞ, and wt=ws ¼ ε in Eq. (1).
Since ε ¼ �1, reweighting boils down to a sign factor, and
one avoids the problem of inaccurate sampling of the tails
of the probability distribution of the reweighting factor (i.e.,
the overlap problem), since the tails are absent by con-
struction. The only problem left is the sign problem, which
is under control as long as hεiSQT;μ is safely not zero within
errors. In this case, sign reweighting gives reliable results,
and unlike any other of the commonly used methods for μB,
error bars (for a fixed lattice setup) are statistical only.

III. SEVERITY OF THE SIGN PROBLEM

A key step in addressing the feasibility of our approach
is estimating the severity of the sign problem. The
sign-reweighting approach is closely related to the better
known phase-reweighting approach [87,88], where in
Eq. (1) we have wt ¼ detMðU; μÞe−SgðUÞ and ws ¼
j detMðU; μÞje−SgðUÞ, which defines the phase-quenched
ensemble PQ. In the sign-quenched ensemble, the severity
of the sign problem is measured by the average phase
factor heiθiPQT;μ ¼ hcos θiPQT;μ, while in the sign quenched (SQ)
ensemble, it is measured by hεiSQT;μ ¼ hcos θiPQ=
hj cos θjiPQ. Clearly, hcos θiPQT;μ ≤ hεiSQT;μ, so the sign problem
is generally weaker in the SQ case. Moreover, the proba-
bility distribution of the phases θ ¼ arg det M in the phase-
quenched theory, PPQðθÞ, controls the strength of the sign
problem in both ensembles. A simple quantitative estimate
can then be obtained with the following two-step approxi-
mation: (i) in a leading order cumulant expansion, PPQðθÞ is
assumed to be a wrapped Gaussian distribution, and (ii) the
chemical potential dependence of its width is approximated
by the leading order Taylor expansion, σðμÞ2 ≈ hθ2iLO ¼
− 4

9
χud11ðLTÞ3μ̂2B [36], where χud11 ¼ 1

T2

∂2p
∂μu∂μd jμu¼μd¼0 is the

disconnected part of the light quark susceptibility, obtained
in μ ¼ 0 simulations. In this approximation, both cases can

be calculated analytically, with hcos θiPQT;μ ≈ e−
σ2ðμÞ
2 in the

phase-quenched case, while in the sign-quenched case the
expression for hεiSQT;μ is more involved. It is worth noting
the different asymptotics of the two cases. The small-μ
(i.e., small-σ) asymptotics are notably very different, with

hcos θiPQT;μ ∼ 1 − σ2ðμÞ
2

analytic in μ̂B, while in the sign-

quenched case hεiSQT;μ is not analytic,

hεiSQT;μ ∼
μ̂B→0

1 −
�
4

π

�5
2

�
σ2ðμÞ
2

�3
2

e
− π2

8σ2ðμÞ; ð4Þ

approaching 1 faster than any polynomial (see the
Supplemental Material [89] for a derivation). The large-μ
or large volume asymptotics are, on the other hand, quite
similar; in the large-σ limit, a wrapped Gaussian tends to the
uniform distribution, and so at large chemical potential or
volume, one arrives at

hεiSQT;μ
hcos θiPQT;μ

∼
μ̂B orV→∞

�Z
π

−π
dθj cos θj

�
−1

¼ π

2
; ð5Þ

which asymptotically translates to a factor of ðπ
2
Þ2 ≈ 2.5

fewer statistics needed for a sign-quenched as compared to a
phase-quenched simulation.
We compare our Gaussian model with simulation results

for both the sign-reweighting and phase-reweighting
approach in Fig. 1. Error bars on the model come solely
from the statistical errors of χud11 at μB ¼ 0. Our model
describes reasonably well our simulation data at small μ in
both cases, deviating less than 1σ from the actual measured
strength of the sign problem up to μ̂B ¼ 2. While deviations
are visible at larger μ, even at the upper end of our μ̂B range,
the deviation is at most 25%, and Eq. (5) approximates
well the relative severity of the sign problem in the two
ensembles at μ̂B > 1.5.
In summary, this shows that we can estimate the

severity of the sign problem using μB ¼ 0 simulations
only, making the planning of such reweighting studies
practical. Furthermore, we have also demonstrated—using
simulations at real chemical potential—that at an aspect
ratio of LT ≈ 2.7 the sign problem is manageable up to
μ̂B ¼ 2.7. Covering the range of the RHIC Beam Energy
Scan is therefore feasible.

IV. SIMULATION SETUP

We simulated the sign-quenched ensemble using 2þ 1
flavors of rooted staggered fermions. We used a tree-level
Symanzik improved gauge action, and two steps of stout
smearing [95] with ρ ¼ 0.15 on the gauge links fed into the
fermion determinant, with physical quark masses, using the
kaon decay constant fK for scale setting (see Ref. [96] for
details). We studied 163 × 6 lattices at various temperatures
T and light-quark chemical potential μu ¼ μd ¼ μl ¼ μ ¼
μB=3 with a zero strange quark chemical potential μs ¼ 0,
corresponding to a strangeness chemical potential [42,97]
μS ¼ μB=3. We performed a scan in chemical potential at
fixed T ¼ 140 MeV and a scan in temperature at fixed
μ̂B ¼ 1.5. Simulations were performed by modifying the
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RHMC algorithm at μB ¼ 0 by including an extra accept/

reject step that takes into account the factor jRe det MðμÞj
det Mð0Þ . The

determinant was calculated with the reduced matrix for-
malism [49] and dense linear algebra, with no stochastic
estimators involved. See the Supplemental Material [89] for
a complete description of the simulation algorithm.

V. OBSERVABLES

We now proceed to display physics results. The light-
quark chiral condensate was obtained via the formula

hψ̄ψiT;μ ¼
1

ZðT; μÞ
∂ZðT; μÞ
∂mud

¼ T
V

1

hεiSQT;μ

�
ε

∂
∂mud

ln jRe det Mj
�

SQ

T;μ
; ð6Þ

with the determinant detM ¼ detMðU;mud;ms; μÞ calcu-
lated in the reduced matrix formalism at different light-
quark masses and fed into a symmetric difference,
dfðmÞ
dm ≈ fðmþΔmÞ−fðm−ΔmÞ

2Δm , choosing Δm small enough to
make the systematic error from the finite difference
negligible compared to the statistical error. The renormal-
ized condensate was obtained with the prescription

hψ̄ψiRðT; μÞ ¼ −
mud

f4π
½hψ̄ψiT;μ − hψ̄ψi0;0�: ð7Þ

We also calculated the light quark density

χl1≡∂ðp=T4Þ
∂ðμ=TÞ ¼ 1

VT3

1

ZðT;μÞ
∂ZðT;μÞ

∂μ̂
¼ 1

VT3hεiSQT;μ

�
ε
∂
∂μ̂ ln jRe detMj

�
SQ

T;μ
; ð8Þ

evaluating the derivative analytically using the reduced
matrix formalism (see the Supplemental Material [89]).

VI. TEMPERATURE SCAN

Our results for a temperature scan between 130 and
165MeVat real chemical potential μ̂B ¼ 1.5, zero chemical
potential, and imaginary chemical potential μ̂B ¼ 1.5i are
shown in Fig. 2. The most important quantitative question
one can address with such a temperature scan is the strength
of the crossover transition. Methods based on analytic
continuation cannot address this particular issue efficiently.
It was in fact demonstrated by numerical simulations that
for imaginary chemical potentials the strength of the
transition is to a good approximation constant [14,34].
However, the extrapolation of such a behavior to real
chemical potentials is inherently dangerous. It is usually
assumed that the transition at physical masses and μB ¼ 0
is close to the O(4) scaling regime in the continuum theory
[2,98–101] (or O(2) with staggered fermions on the lattice
[102]), while close to the critical end point, one expects to
see Z2 scaling. One then cannot assess at what point one
enters the Z2 region using gauge configurations that are
only sensitive to O(4) [or O(2)] criticality, and extrapola-
tions from such configurations are very likely to miss a
transition to the other regime—even if it exists. Our results,
however, show that the transition is not getting any stronger
up to μ̂B ¼ 1.5, as convincingly demonstrated by the
collapse plot in the inset of Fig. 2. In fact, data at
μ̂B ¼ 0; 1.5; 1.5i are all reasonably well described by
one and the same function of Tð1þ κμ̂2BÞ.

VII. CHEMICAL POTENTIAL SCAN

Our results for the chemical potential scan at a fixed
temperature of T ¼ 140 MeV are shown in Fig. 3. We have
performed simulations at μ̂B ¼ 1, 1.5, 2, 2.2, 2.5, 2.7. The
point at μ̂B ¼ 2.2 corresponds roughly to the chiral tran-
sition, as at this point the chiral condensate is close to its
value at the μB ¼ 0 crossover.
The sign-quenched results are compared with the ana-

lytic continuation from imaginary chemical potential
results, obtained by extrapolating suitable fits to the

FIG. 1. The strength of the sign problem as a function of μB=T at T ¼ 140 MeV (left) and as a function of T at μB=T ¼ 1.5. A value
close to 1 shows a mild sign problem. A small value indicates a severe sign problem. Data for sign reweighting (black) and phase
reweighting (orange) are from direct simulations. Predictions of the Gaussian model are also shown.
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imaginary-μB data from negative to positive μ̂2B. We consid-
ered two types of fits: (i) As the simplest Ansatz, we fitted the
datawith a cubic polynomial in μ̂2B in the range μ̂

2
B ∈ ½−10; 0�.

(ii)As an alternative,we also used suitableAnsätze for hψ̄ψiR
condensate and χl1=μ̂l based on the fugacity expansion
p=T4 ¼ P

n An coshðnμ̂Þ, fitting the data in the entire imagi-
nary-potential range μ̂2B ∈ ½−ð6πÞ2; 0� using, respectively,
seven and six fitting parameters. Fit results are also shown
in Fig. 3; only statistical errors are displayed. While sign
reweighting and analytic continuation give compatible
results, at the upper half of the μB range, the errors from
sign reweighting are an order of magnitude smaller. In fact,
sign reweighting can penetrate the region μ̂B > 2 where the
extrapolation of many quantities is not yet possible [14,46].

VIII. CONCLUSIONS

We have demonstrated that sign reweighting has become
a viable approach to finite-density lattice QCD. This is the
first lattice study performed with a phenomenologically

relevant lattice action (2-stout improved staggered fer-
mions, six time slices, aspect ratio LT ≈ 2.7) that
does not require analytic continuation, unlike the Taylor
expansion and imaginary μB methods, and is free from the
overlap problem of more traditional reweighting
approaches. We also presented a way to estimate the
severity of the sign problem from μB ¼ 0 simulations,
making the method practical; the computational cost for a
given μB and a given lattice action is now easily predictable.
Note that the phase- and sign-reweighting approaches

only guarantee the absence of heavy tailed distributions
when calculating the ratio of the partition functions (or the
pressure difference) of the target and simulated theories.
We leave the study of the probability distributions of other
observables to future work.
Our temperature scan at μB=T ¼ 1.5 shows no sign of the

transition getting stronger. Furthermore, while the results of
the μB scan at T ¼ 140 MeV are compatible with those
obtained from extrapolation from imaginary μB, the errors of
the sign-reweighting method are an order of magnitude

FIG. 3. The renormalized chiral condensate (left) and the light quark number-to-light quark chemical potential ratio (right) as a
function of ðμB=TÞ2 at temperature T ¼ 140 MeV. Data from simulations at real μB (black) are compared with analytic continuation
from imaginary μB (blue). In the left panel, the value of the condensate at the crossover temperature at μB ¼ 0 is also shown. The
simulation data cross this line at μB=T ≈ 2.2.

FIG. 2. The renormalized chiral condensate (left) and the light quark number-to-light quark chemical potential ratio (right) as a
function of temperature at μB=T ¼ 1.5. The data points are shown together with an arcotangent based fit. In the insets, collapse plots are
shown in the variable T · ð1þ κðμBT Þ2Þ, with κ ≈ 0.012 for the chiral condensate and κ ≈ 0.016 for the quark number. In the left panel, the
value of the condensate at the crossover temperature at μB ¼ 0 is also shown.
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smaller, opening up new possibilities. Our chemical potential
scan shows that small statistical errors can be achieved up to
μB=T ¼ 2.7, and our temperature scan shows that the
severity of the sign problem is only weakly dependent on
the temperature (Fig. 1, right). Our method is then optimized
enough to make a full scan of the chiral transition region in
the RHIC Beam Energy Scan range feasible, with computing
resources available today. Such a scan allows us to attack the
most important open question of the Beam Energy Scan and
decide whether the crossover transition becomes stronger
in the range, as expected for a nearby critical end point
[84,85,103–106]. It would also allow us to obtain the
equation of state directly and test the range of validity of
several recently proposed resummation schemes [34,107] for
the Taylor expansion of the pressure in μB.
The lattice action used in this study is often the first point

of a continuum extrapolation in QCD thermodynamics.
Furthermore, while the sign problem is exponential in the
physical volume, it is not so in the lattice spacing.
Continuum-extrapolated finite μB results in the range of
the RHIC Beam Energy Scan are then almost within reach

for the phenomenologically relevant aspect ratio of LT ≈ 3.
On the theoretical side, sampling the most relevant con-
figurations allows one to study detailed aspects of the
theory at μB > 0, such as spectral statistics of the Dirac
operator, likely leading to new insights.

ACKNOWLEDGMENTS

We thank Tamás G. Kovács for useful discussions.
The project was supported by the BMBF Grant
No. 05P18PXFCA. This work was also supported by the
Hungarian National Research, Development and
Innovation Office, NKFIH Grant No. KKP126769. A. P.
is supported by the J. Bolyai Research Scholarship of the
Hungarian Academy of Sciences and by the ÚNKP-20-5
New National Excellence Program of the Ministry for
Innovation and Technology. The authors gratefully
acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by provid-
ing computing time on the GCS Supercomputers JUWELS/
Booster and JURECA/Booster at FZ-Juelich.

[1] N. Cabibbo and G. Parisi, Phys. Lett. 59B, 67 (1975).
[2] R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338

(1984).
[3] P. Gerber and H. Leutwyler, Nucl. Phys. B321, 387 (1989).
[4] Y. Aoki, G. Endrődi, Z. Fodor, S. D. Katz, and K. K.

Szabó, Nature (London) 443, 675 (2006).
[5] Sz. Borsányi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg,

C. Ratti, and K. K. Szabó (Wuppertal-Budapest Collabo-
ration), J. High Energy Phys. 09 (2010) 073.

[6] A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
[7] K. Fukushima, Phys. Rev. D 77, 114028 (2008); 78,

039902(E) (2008).
[8] P. Kovács, Zs. Szép, and G. Wolf, Phys. Rev. D 93, 114014

(2016).
[9] P. Isserstedt, M. Buballa, C. S. Fischer, and P. J. Gunkel,

Phys. Rev. D 100, 074011 (2019).
[10] F. Gao and J. M. Pawlowski, Phys. Lett. B 820, 136584

(2021).
[11] A. Bazavov et al. (HotQCD Collaboration), Phys. Lett. B

795, 15 (2019).
[12] H. T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, A. Lahiri,

S.-T. Li, S. Mukherjee, H. Ohno, P. Petreczky, C. Schmidt,
and P. Steinbrecher (HotQCD Collaboration), Phys. Rev.
Lett. 123, 062002 (2019).

[13] N. Haque and M. Strickland, Phys. Rev. C 103, L031901
(2021).

[14] Sz. Borsányi, Z. Fodor, J. N. Günther, R. Kara, S. D. Katz,
P. Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 125, 052001 (2020).

[15] A. Y. Kotov, M. P. Lombardo, and A. Trunin, Phys. Lett. B
823, 136749 (2021).

[16] G. Kovács, P. Kovács, and Zs. Szép, Phys. Rev. D 104,
056013 (2021).

[17] I. Montvay and G. Münster, Quantum Fields on a Lattice,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 1997).

[18] P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290
(2002).

[19] M. D’Elia and M. P. Lombardo, Phys. Rev. D 67, 014505
(2003).

[20] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 014502
(2009).

[21] P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 89, 074512
(2014).

[22] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and F.
Sanfilippo, Phys. Rev. D 90, 074030 (2014).

[23] P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 93, 014507
(2016).

[24] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, and
F. Sanfilippo, Phys. Rev. D 92, 054503 (2015).

[25] R. Bellwied, S. Borsányi, Z. Fodor, J. Günther, S. D. Katz,
C. Ratti, and K. K. Szabó, Phys. Lett. B 751, 559 (2015).

[26] M. D’Elia, G. Gagliardi, and F. Sanfilippo, Phys. Rev. D
95, 094503 (2017).

[27] J. N. Günther, R. Bellwied, S. Borsányi, Z. Fodor, S. D.
Katz, A. Pásztor, C. Ratti, and K. K. Szabó, Proceedings of
the 26th International Conference on Ultra-relativistic
Nucleus-Nucleus Collisions (Quark Matter 2017): Chi-
cago, Illinois, USA, 2017 [Nucl. Phys. A967, 720 (2017)].

[28] P. Alba et al., Phys. Rev. D 96, 034517 (2017).
[29] V. Vovchenko, A. Pásztor, Z. Fodor, S. D. Katz, and H.

Stoecker, Phys. Lett. B 775, 71 (2017).

SZABOLCS BORSÁNYI et al. PHYS. REV. D 105, L051506 (2022)

L051506-6

www.gauss-centre.eu
www.gauss-centre.eu
www.gauss-centre.eu
https://doi.org/10.1016/0370-2693(75)90158-6
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1016/0550-3213(89)90349-0
https://doi.org/10.1038/nature05120
https://doi.org/10.1007/JHEP09(2010)073
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.77.114028
https://doi.org/10.1103/PhysRevD.78.039902
https://doi.org/10.1103/PhysRevD.78.039902
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.93.114014
https://doi.org/10.1103/PhysRevD.100.074011
https://doi.org/10.1016/j.physletb.2021.136584
https://doi.org/10.1016/j.physletb.2021.136584
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1016/j.physletb.2019.05.013
https://doi.org/10.1103/PhysRevLett.123.062002
https://doi.org/10.1103/PhysRevLett.123.062002
https://doi.org/10.1103/PhysRevC.103.L031901
https://doi.org/10.1103/PhysRevC.103.L031901
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1016/j.physletb.2021.136749
https://doi.org/10.1016/j.physletb.2021.136749
https://doi.org/10.1103/PhysRevD.104.056013
https://doi.org/10.1103/PhysRevD.104.056013
https://doi.org/10.1016/S0550-3213(02)00626-0
https://doi.org/10.1016/S0550-3213(02)00626-0
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1103/PhysRevD.80.014502
https://doi.org/10.1103/PhysRevD.80.014502
https://doi.org/10.1103/PhysRevD.89.074512
https://doi.org/10.1103/PhysRevD.89.074512
https://doi.org/10.1103/PhysRevD.90.074030
https://doi.org/10.1103/PhysRevD.93.014507
https://doi.org/10.1103/PhysRevD.93.014507
https://doi.org/10.1103/PhysRevD.92.054503
https://doi.org/10.1016/j.physletb.2015.11.011
https://doi.org/10.1103/PhysRevD.95.094503
https://doi.org/10.1103/PhysRevD.95.094503
https://doi.org/10.1103/PhysRevD.96.034517
https://doi.org/10.1016/j.physletb.2017.10.042


[30] C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, and K.
Zambello, Phys. Rev. D 98, 054510 (2018).

[31] Sz. Borsányi, Z. Fodor, J. N. Günther, S. K. Katz, K. K.
Szabó, A. Pásztor, I. Portillo, and C. Ratti, J. High Energy
Phys. 10 (2018) 205.

[32] R. Bellwied, Sz. Borsányi, Z. Fodor, J. N. Günther, J.
Noronha-Hostler, P. Parotto, A. Pásztor, C. Ratti, and J. M.
Stafford, Phys. Rev. D 101, 034506 (2020).

[33] A. Pásztor, Zs. Szép, and G. Markó, Phys. Rev. D 103,
034511 (2021).

[34] S. Borsányi, Z. Fodor, J. N. Günther, R. Kara, S. D. Katz,
P. Parotto, A. Pásztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 126, 232001 (2021).

[35] R. Bellwied, Sz. Borsányi, Z. Fodor, J. N. Guenther, S. D.
Katz, P. Parotto, A. Pásztor, D. Pesznyák, C. Ratti, and
K. K. Szabó, Phys. Rev. D 104, 094508 (2021).

[36] C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F.
Karsch, E. Laermann, C. Schmidt, and L. Scorzato, Phys.
Rev. D 66, 074507 (2002).

[37] R. V. Gavai and S. Gupta, Phys. Rev. D 68, 034506 (2003).
[38] R. V. Gavai and S. Gupta, Phys. Rev. D 71, 114014 (2005).
[39] C. R. Allton,M.Doring, S. Ejiri, S. J. Hands, O. Kaczmarek,

F. Karsch, E. Laermann, and K. Redlich, Phys. Rev. D 71,
054508 (2005).

[40] R. V. Gavai and S. Gupta, Phys. Rev. D 78, 114503 (2008).
[41] S. Basak et al. (MILC Collaboration), Proc. Sci., LAT-

TICE2008 (2008) 171 [arXiv:0910.0276].
[42] Sz. Borsányi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and

K. Szabó, J. High Energy Phys. 01 (2012) 138.
[43] S. Borsányi, G. Endrődi, Z. Fodor, S. Katz, S. Krieg, C.

Ratti, and K. K. Szabó, J. High Energy Phys. 08 (2012)
053.

[44] R. Bellwied, S. Borsányi, Z. Fodor, S. D. Katz, A. Pásztor,
C. Ratti, and K. K. Szabó, Phys. Rev. D 92, 114505 (2015).

[45] H. T. Ding, S. Mukherjee, H. Ohno, P. Petreczky, and H. P.
Schadler, Phys. Rev. D 92, 074043 (2015).

[46] A. Bazavov et al., Phys. Rev. D 95, 054504 (2017).
[47] M. Giordano and A. Pásztor, Phys. Rev. D 99, 114510

(2019).
[48] A. Bazavov et al., Phys. Rev. D 101, 074502 (2020).
[49] A. Hasenfratz and D. Toussaint, Nucl. Phys. B371, 539

(1992).
[50] I. M. Barbour, S. E. Morrison, E. G. Klepfish, J. B. Kogut,

and M.-P. Lombardo, Nucl. Phys. B Proc. Suppl.60, 220
(1998).

[51] Z. Fodor and S. D. Katz, Phys. Lett. B 534, 87 (2002).
[52] Z. Fodor and S. D. Katz, J. High Energy Phys. 03 (2002)

014.
[53] Z. Fodor and S. D. Katz, J. High Energy Phys. 04 (2004)

050.
[54] M. Giordano, K. Kapás, S. D. Katz, D. Nógrádi, and A.

Pásztor, Phys. Rev. D 101, 074511 (2020).
[55] E. Seiler, D. Sexty, and I.-O. Stamatescu, Phys. Lett. B

723, 213 (2013).
[56] D. Sexty, Phys. Lett. B 729, 108 (2014).
[57] G. Aarts, E. Seiler, D. Sexty, and I.-O. Stamatescu, Phys.

Rev. D 90, 114505 (2014).
[58] Z. Fodor, S. D. Katz, D. Sexty, and C. Török, Phys. Rev. D

92, 094516 (2015).
[59] D. Sexty, Phys. Rev. D 100, 074503 (2019).

[60] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 100, 054512
(2019).

[61] M. Scherzer, D. Sexty, and I. O. Stamatescu, Phys. Rev. D
102, 014515 (2020).

[62] C. Gattringer, Proc. Sci., LATTICE2013 (2014) 002
[arXiv:1401.7788].

[63] C. Marchis and C. Gattringer, Phys. Rev. D 97, 034508
(2018).

[64] M. Cristoforetti, F. Di Renzo, and L. Scorzato (Auror-
aScience Collaboration), Phys. Rev. D 86, 074506
(2012).

[65] M. Cristoforetti, F. Di Renzo, A. Mukherjee, and L.
Scorzato, Phys. Rev. D 88, 051501 (2013).

[66] A. Alexandru, G. Başar, and P. Bedaque, Phys. Rev. D 93,
014504 (2016).

[67] A. Alexandru, G. Başar, P. F. Bedaque, G. W. Ridgway,
and N. C. Warrington, Phys. Rev. D 93, 094514 (2016).

[68] J. Nishimura and S. Shimasaki, J. High Energy Phys. 06
(2017) 023.

[69] P. de Forcrand, S. Kim, and T. Takaishi, Nucl. Phys. B
Proc. Suppl. 119, 541 (2003).

[70] P. de Forcrand, Proc. Sci., LAT2009 (2009) 010.
[71] S. D. H. Hsu and D. Reeb, Int. J. Mod. Phys. A 25, 53

(2010).
[72] A. Alexandru, M. Faber, I. Horváth, and K.-F. Liu, Phys.

Rev. D 72, 114513 (2005).
[73] A. Li, A. Alexandru, K.-F. Liu, and X. Meng, Phys. Rev. D

82, 054502 (2010).
[74] A. Li, A. Alexandru, and K.-F. Liu, Phys. Rev. D 84,

071503 (2011).
[75] M. Giordano, K. Kapás, S. D. Katz, D. Nógrádi, and A.

Pásztor, J. High Energy Phys. 05 (2020) 088.
[76] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabó, Phys. Lett.

B 643, 46 (2006).
[77] Sz. Borsányi, G. Endrődi, Z. Fodor, A. Jakovác, S. D.

Katz, S. Krieg, C. Ratti, and K. K. Szabó, J. High Energy
Phys. 11 (2010) 077.

[78] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D.
Katz, S. Krieg, A. Schäfer, and K. K. Szabó, J. High
Energy Phys. 02 (2012) 044.

[79] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D.
Katz, and A. Schäfer, Phys. Rev. D 86, 071502 (2012).

[80] Sz. Borsányi, Z. Fodor, S. D. Katz, A. Pásztor, K. K.
Szabó, and Cs. Török, J. High Energy Phys. 04 (2015) 138.

[81] B. B. Brandt, G. Endrődi, and S. Schmalzbauer, Phys. Rev.
D 97, 054514 (2018).

[82] M. D’Elia, F. Negro, A. Rucci, and F. Sanfilippo, Phys.
Rev. D 100, 054504 (2019).

[83] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C
96, 044904 (2017).

[84] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and
N. Xu, Phys. Rep. 853, 1 (2020).

[85] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 126,
092301 (2021).

[86] M. Giordano, K. Kapás, S. D. Katz, D. Nógrádi, and A.
Pásztor, Phys. Rev. D 102, 034503 (2020).

[87] Z. Fodor, S. D. Katz, and C. Schmidt, J. High Energy Phys.
03 (2007) 121.

[88] G. Endrődi, Z. Fodor, S. D. Katz, D. Sexty, K. K. Szabó,
and C. Török, Phys. Rev. D 98, 074508 (2018).

LATTICE SIMULATIONS OF THE QCD CHIRAL TRANSITION … PHYS. REV. D 105, L051506 (2022)

L051506-7

https://doi.org/10.1103/PhysRevD.98.054510
https://doi.org/10.1007/JHEP10(2018)205
https://doi.org/10.1007/JHEP10(2018)205
https://doi.org/10.1103/PhysRevD.101.034506
https://doi.org/10.1103/PhysRevD.103.034511
https://doi.org/10.1103/PhysRevD.103.034511
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevLett.126.232001
https://doi.org/10.1103/PhysRevD.104.094508
https://doi.org/10.1103/PhysRevD.66.074507
https://doi.org/10.1103/PhysRevD.66.074507
https://doi.org/10.1103/PhysRevD.68.034506
https://doi.org/10.1103/PhysRevD.71.114014
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.71.054508
https://doi.org/10.1103/PhysRevD.78.114503
https://arXiv.org/abs/0910.0276
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP08(2012)053
https://doi.org/10.1007/JHEP08(2012)053
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevD.92.074043
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.99.114510
https://doi.org/10.1103/PhysRevD.101.074502
https://doi.org/10.1016/0550-3213(92)90247-9
https://doi.org/10.1016/0550-3213(92)90247-9
https://doi.org/10.1016/S0920-5632(97)00484-2
https://doi.org/10.1016/S0920-5632(97)00484-2
https://doi.org/10.1016/S0370-2693(02)01583-6
https://doi.org/10.1088/1126-6708/2002/03/014
https://doi.org/10.1088/1126-6708/2002/03/014
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1088/1126-6708/2004/04/050
https://doi.org/10.1103/PhysRevD.101.074511
https://doi.org/10.1016/j.physletb.2013.04.062
https://doi.org/10.1016/j.physletb.2013.04.062
https://doi.org/10.1016/j.physletb.2014.01.019
https://doi.org/10.1103/PhysRevD.90.114505
https://doi.org/10.1103/PhysRevD.90.114505
https://doi.org/10.1103/PhysRevD.92.094516
https://doi.org/10.1103/PhysRevD.92.094516
https://doi.org/10.1103/PhysRevD.100.074503
https://doi.org/10.1103/PhysRevD.100.054512
https://doi.org/10.1103/PhysRevD.100.054512
https://doi.org/10.1103/PhysRevD.102.014515
https://doi.org/10.1103/PhysRevD.102.014515
https://arXiv.org/abs/1401.7788
https://doi.org/10.1103/PhysRevD.97.034508
https://doi.org/10.1103/PhysRevD.97.034508
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1103/PhysRevD.88.051501
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.1103/PhysRevD.93.014504
https://doi.org/10.1103/PhysRevD.93.094514
https://doi.org/10.1007/JHEP06(2017)023
https://doi.org/10.1007/JHEP06(2017)023
https://doi.org/10.1016/S0920-5632(03)80451-6
https://doi.org/10.1016/S0920-5632(03)80451-6
https://doi.org/10.1142/S0217751X10047968
https://doi.org/10.1142/S0217751X10047968
https://doi.org/10.1103/PhysRevD.72.114513
https://doi.org/10.1103/PhysRevD.72.114513
https://doi.org/10.1103/PhysRevD.82.054502
https://doi.org/10.1103/PhysRevD.82.054502
https://doi.org/10.1103/PhysRevD.84.071503
https://doi.org/10.1103/PhysRevD.84.071503
https://doi.org/10.1007/JHEP05(2020)088
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1007/JHEP11(2010)077
https://doi.org/10.1007/JHEP11(2010)077
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1007/JHEP02(2012)044
https://doi.org/10.1103/PhysRevD.86.071502
https://doi.org/10.1007/JHEP04(2015)138
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.1103/PhysRevD.97.054514
https://doi.org/10.1103/PhysRevD.100.054504
https://doi.org/10.1103/PhysRevD.100.054504
https://doi.org/10.1103/PhysRevC.96.044904
https://doi.org/10.1103/PhysRevC.96.044904
https://doi.org/10.1016/j.physrep.2020.01.005
https://doi.org/10.1103/PhysRevLett.126.092301
https://doi.org/10.1103/PhysRevLett.126.092301
https://doi.org/10.1103/PhysRevD.102.034503
https://doi.org/10.1088/1126-6708/2007/03/121
https://doi.org/10.1088/1126-6708/2007/03/121
https://doi.org/10.1103/PhysRevD.98.074508


[89] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.105.L051506 for a com-
plete description of the simulation algorithm, which
includes Refs. [90–94].

[90] N. I. Fisher, Statistical Analysis of Circular Data
(Cambridge University Press, Cambridge, England, 1993).

[91] M. Abramowitz and I. A. Stegun, Handbook of Math-
ematical Functions with Formulas, Graphs, and Math-
ematical Tables (U.S. Government Printing Office,
Washington, D.C., 1964), Vol. 55.

[92] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 66, 034505
(2002).

[93] G. H. Golub and C. F. Van Loan, Matrix Computations,
3rd ed. (Johns Hopkins University Press, Baltimore, 1996).

[94] S. Tomov, J. Dongarra, and M. Baboulin, Parallel Comput.
36, 232 (2010).

[95] C. Morningstar and M. J. Peardon, Phys. Rev. D 69,
054501 (2004).

[96] Y.Aoki, Sz. Borsányi, S.Durr, Z. Fodor, S. D.Katz, S. Krieg,
and K. K. Szabó, J. High Energy Phys. 06 (2009) 088.

[97] V. Koch, A. Majumder, and J. Randrup, Phys. Rev. Lett.
95, 182301 (2005).

[98] A. Butti, A. Pelissetto, and E. Vicari, J. High Energy Phys.
08 (2003) 029.

[99] A. Pelissetto and E. Vicari, Phys. Rev. D 88, 105018
(2013).

[100] M. Grahl and D. H. Rischke, Phys. Rev. D 88, 056014
(2013).

[101] Y. Nakayama and T. Ohtsuki, Phys. Rev. D 91, 021901
(2015).

[102] G. Boyd, J. Fingberg, F. Karsch, L. Kärkkäinen, and B.
Petersson, Nucl. Phys. B376, 199 (1992).

[103] E. Shuryak and J. M. Torres-Rincon, Phys. Rev. C 101,
034914 (2020).

[104] E. Shuryak and J. M. Torres-Rincon, Eur. Phys. J. A 56,
241 (2020).

[105] P. Braun-Munzinger, B. Friman, K. Redlich, A. Rustamov,
and J. Stachel, Nucl. Phys. A1008, 122141 (2021).

[106] D. Mroczek, A. R. Nava Acuna, J. Noronha-Hostler, P.
Parotto, C. Ratti, and M. A. Stephanov, Phys. Rev. C 103,
034901 (2021).

[107] S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett.
128, 022001 (2022).

SZABOLCS BORSÁNYI et al. PHYS. REV. D 105, L051506 (2022)

L051506-8

http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.L051506
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1103/PhysRevD.66.034505
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1088/1126-6708/2009/06/088
https://doi.org/10.1103/PhysRevLett.95.182301
https://doi.org/10.1103/PhysRevLett.95.182301
https://doi.org/10.1088/1126-6708/2003/08/029
https://doi.org/10.1088/1126-6708/2003/08/029
https://doi.org/10.1103/PhysRevD.88.105018
https://doi.org/10.1103/PhysRevD.88.105018
https://doi.org/10.1103/PhysRevD.88.056014
https://doi.org/10.1103/PhysRevD.88.056014
https://doi.org/10.1103/PhysRevD.91.021901
https://doi.org/10.1103/PhysRevD.91.021901
https://doi.org/10.1016/0550-3213(92)90074-L
https://doi.org/10.1103/PhysRevC.101.034914
https://doi.org/10.1103/PhysRevC.101.034914
https://doi.org/10.1140/epja/s10050-020-00244-3
https://doi.org/10.1140/epja/s10050-020-00244-3
https://doi.org/10.1016/j.nuclphysa.2021.122141
https://doi.org/10.1103/PhysRevC.103.034901
https://doi.org/10.1103/PhysRevC.103.034901
https://doi.org/10.1103/PhysRevLett.128.022001
https://doi.org/10.1103/PhysRevLett.128.022001

