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Network and geometric characterization of three-dimensional fluid transport between two layers
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We consider transport in a fluid flow of arbitrary complexity but with a dominant flow direction. One of
the situations in which this occurs is when describing by an effective flow the dynamics of sufficiently small
particles immersed in a turbulent fluid and vertically sinking because of their weight. We develop a formalism
characterizing the dynamics of particles released from one layer of fluid and arriving in a second one after
traveling along the dominant direction. The main ingredient in our study is the definition of a two-layer map that
describes the Lagrangian transport between both layers. We combine geometric approaches and probabilistic
network descriptions to analyze the two-layer map. From the geometric point of view, we express the properties
of lines, surfaces, and densities transported by the flow in terms of singular values related to Lyapunov exponents,
and define a specific quantifier, the finite depth Lyapunov exponent. Within the network approach, degrees and an
entropy are considered to characterize transport. We also provide relationships between both methodologies. The
formalism is illustrated with numerical results for a modification of the ABC flow, a model commonly studied
to characterize three-dimensional chaotic advection.
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I. INTRODUCTION

The study of transport phenomena is at the core of fluid
mechanics. The Lagrangian approach to fluid transport has
received powerful insights from its relationship to chaos and
dynamical systems [1–3], and more recently from set-oriented
methodologies which can be recast into the language of graph
or network theory [4–7].

In most of the previous applications of these developments
to geophysical contexts, consideration has been restricted to
horizontal transport, as this is the dominant mode of motion
at large scales in oceans and in the atmosphere. Some works,
however, have addressed the full three-dimensional dynamics
[8–10]. Less attention has been given to the application or
adaptation of the approaches mentioned above to the pecu-
liarities of transport in the vertical direction, which is singled
out by the gravitational force.

As the main motivation for the present work, many relevant
biogeochemical phenomena involve the vertical transport of
particles in the ocean. Two paradigmatic examples are the
sinking of biogenic particles [11,12], like phytoplankton cells
and marine snow, which play a fundamental role in the bio-
logical carbon pump [13,14], and the sedimentation dynamics
of microplastics, which are becoming a key environmental
problem [15–17]. Despite the numerous studies with different
experimental and theoretical methodologies many questions
remain open, in particular those concerning the final fate of
the particles from a known release surface area (i.e., the con-
nection paths between surface and deep ocean), the amount
and time they are suspended in the water column, and the spa-
tial distribution over both the water column and the seafloor.
Beyond the ocean context, vertical transport is also relevant

in many other situations such as engineering processes [18] or
rain precipitation [19].

The objective of this paper is to extend and adapt the
powerful Lagrangian methodologies previously commented
on to dynamics for which there is a strong anisotropy in the
particle motion, leading to a clear transport direction. This
is the case when considering sinking particles in fluid flows.
We will concentrate on characterizing transport between two
layers: in the case of particles sedimenting under gravity,
particles released from an upper layer are driven by the flow
and reach and accumulate in a lower layer. We expect our
formalism would be useful also under transport anisotropies
produced by forces other than gravity. The main object we
will define is a two-layer map that connects the initial con-
ditions of particles released from one of the layers to their
final positions in the other one, after being transported by
the flow. We extract information from this map with the two
complementary approaches mentioned above: on the one hand
we use dynamical systems tools to describe the geometry of
the evolution of sheets of particles released from the initial
layer. In this way we formalize previous results obtained in
this context [20–22] and extend them by the introduction of a
specific quantifier related to Lyapunov exponents: the finite
depth Lyapunov exponent. On the other hand, connectivity
properties between the layers are studied with network theory
or probabilistic techniques. Relationships between both ap-
proaches are obtained, and the whole formalism is illustrated
with a modification of the ABC flow. This flow model is
frequently used as a simple example of three-dimensional
chaotic advection, to which we add an additional constant
velocity in the vertical direction to model sinking.
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The outline of the paper is as follows. In Sec. II we
introduce the basic Lagrangian description for transport of
particles between two layers. In Sec. III we study the geome-
try and dynamics of a falling layer of particles, introducing the
finite depth Lyapunov exponent. In Sec. IV we introduce the
network methods to characterize connectivity, and in Sec. V
we show the connection between the previous two descrip-
tions. In Sec. VI we present the numerical results obtained for
the modified ABC flow model. Section VII presents our con-
clusions. An Appendix contains additional technical details.

II. CHARACTERIZATION OF TRANSPORT
BETWEEN TWO LAYERS

Given a fluid flow characterized by a velocity field v(r, t ),
the Lagrangian description of transport considers the equa-
tions of motion for the position of fluid elements, which
evolve according to.

dr(t )

dt
= v(r(t ), t ). (1)

This equation defines the flow map φτ
t0 (r0), such that integrat-

ing Eq. (1) for a given initial condition r0 at t0 gives the final
position of the particle at time t0 + τ :

φτ
t0 (r0) = r(t0 + τ ). (2)

In the rest of the paper, we will restrict to the situation in
which v(r(t ), t ) is a three-dimensional velocity field, and tra-
jectories r(t ) move in regions of R3.

Description (1) is pertinent not only for the motion of
fluid elements. Particles of other substances immersed in a
fluid also satisfy a first-order equation like (1), provided they
are sufficiently small for their inertia to be neglected. For
example, in a variety of realistic situations in the ocean, the
equation of motion for the position of many types of particles
of biological origin or of microplastics is ruled by Eq. (1),
in which the velocity field is replaced by the actual velocity
of the fluid flow with an added constant vertical component
related to the sinking of the particle under gravity because of
its weight [11,12,17]. In this paper we will refer to the motion
of “particles” without specifying if they are particles of fluid
or particles submerged in a fluid. In both cases the dynamics
is provided by an equation of the type (1), and thus Eq. (2)
applies.

An object that plays an important role in the analysis of the
map in (2) is its Jacobian matrix (a 3 × 3 matrix), defined by

J = ∇φτ
t0 (r0). (3)

Given an infinitesimal separation between two initial condi-
tions dr0, J gives the evolution in time of this separation:
dr(t0 + τ ) = J · dr0. The singular values {Sα}α=1,2,3 of J
(i.e., the square roots of the eigenvalues of the Cauchy-
Green tensor C = JT J) give the stretching factors experienced
by infinitesimal material line elements oriented along the
eigendirections and initialized around r0 while integrated
from t0 to t0 + τ . The standard finite-time Lyapunov expo-
nents (FTLEs, {λα}α=1,2,3) are obtained from these singular
values as λα = |τ |−1 ln Sα [3].

In this paper we are interested in anisotropic situations in
which a direction of flow is distinguished from the others.

Specifically, instead of the fully three-dimensional motion
described by φτ

t0 , we are interested in the dynamics of particles
traveling between a pair of two-dimensional layers. The main
example is the case of particles released from an upper hori-
zontal layer, falling by gravity across a moving flow, and being
collected on a second, lower horizontal layer. Other sources
of anisotropy can play the role of gravity, but in this paper
we use the terminology appropriate to the sedimentation by
gravity example, so that both layers will be considered to be
horizontal. The first layer will be called the upper or release
layer, whereas the second one will be called the lower or
the collecting layer. We distinguish the vertical coordinate z
from the horizontal ones that form the horizontal vector x, so
that r = (x, y, x) ≡ (x, z). Particles are initially released (at
t0) from the horizontal layer M characterized by “height”
z0: M ≡ {r = (x0, z0), z0 fixed}, and we want to track the
horizontal position x at which the particle started at r0 first
reaches the second horizontal layer characterized by “depth”
z. As we stop the dynamics after this first arrival, we can say
that particles “accumulate” at the second layer. This proce-
dure defines a flow map which we call the two-layer map:
x = φz

z0
(x0). We do not explicitly specify the initial time t0, but

for time-dependent velocity fields there will be a dependence
on it.

Given a region D ∈ M of the upper layer, we call its
image φz

z0
(D) onto the lower one its footprint. It is the region

of the collecting layer where particles from D will become
accumulated.

Particles released at the same time do not necessarily arrive
at the same time at the final layer. Let ω(x0) be the time that
a particle started at t0 from (x0, z0) takes to reach the second
layer at z for the first time. Thus the time of arrival is tz =
t0 + ω. Although not explicitly written, ω and tz depend on
t0, z0 and z, in addition to x0. In terms of ω, the relationship
between the coordinates of the two flow maps introduced so
far is

φz
z0

(x0) = x[t0 + ω(x0)] = φ
ω(x0 )
t0 [r = (x0, z0)] |h,

z = φ
ω(x0 )
t0 [r = (x0, z0)] |z, (4)

where the subindices h and z indicate that the horizontal and
vertical coordinates of φω

t0 , respectively, should be taken.
In general φz

z0
can be computed by solving Eq. (1) from

initial conditions on M, and checking when the trajectory
crosses the second layer at z, as Eq. (4) indicates. In this paper
we will use this last method.

The Jacobian associated with the two-layer map is

J̄M = ∇φz
z0

(x0). (5)

Note that the gradient acts on the two-dimensional initial
position x0, so that J̄M is a 2 × 2 matrix. The subindex M
is a reminder of the fact that J̄M is defined on each point x0

of the upper layer M.
The singular values of this twodimensional Jacobian ma-

trix are the square roots of the eigenvalues of the associated
2 × 2 Cauchy-Green tensor:

C̄M = [∇φz
z0

(x0)
]T · ∇φz

z0
(x0), (6)

which will be used later.
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We next develop the two complementary approaches we
propose to study transport between two layers: the geometric
and the network approaches.

III. GEOMETRIC CHARACTERIZATION OF
A FALLING LAYER

First, we introduce a geometric characterization of the de-
formation of the falling layer of released particles with tools
from dynamical systems. This approach can be called either
geometric or dynamical.

In the same way that the three-dimensional Jacobian matrix
J maps infinitesimal vector particle separations from time
t0 to time t (dr(t ) = J · dr0), J̄M takes initial infinitesimal
separations dx0 on the horizontal release layer and gives its
footprint dxz on the collecting layer: dxz = J̄M · dx0. The
singular values �̄1 and �̄2 of J̄M give the stretching factors
experienced by the footprint of line elements initially oriented
along the eigendirections of C̄M. In analogy with the defini-
tion of FTLEs, we can define finite-depth Lyapunov exponents
[FDLEs, λ̄α (x0)] as the logarithmic rate of stretching along
the eigendirections:

λ̄α (x0) = 1

|z − z0| log �̄α, α = 1, 2. (7)

λ̄α is naturally expressed as a function of x0. But in fact it
is a property of the trajectory joining x0 and x = φz

z0
(x0),

so that it (and �̄α) can be thought of and displayed as a
function of the coordinates on the collecting layer, x. Al-
though not explicitly indicated, λ̄α (and �̄α) is a function
of t0, z0, and z. Values λ̄α > 0 (�̄α > 1) indicate growth of
lengths initially oriented along the corresponding eigendirec-
tion, whereas λ̄α < 0 (�̄α < 1) indicate length contraction. If
λ̄1 > λ̄2, for sufficiently large differences of depth |z − z0|,
we would have |dxz| ≈ e|z−z0|λ̄1 |dx(1)

0 |, where dx(1)
0 is the pro-

jection of the initial particle separation dx0 onto the singular
vector of singular value �̄1.

At difference with the FTLE, the FDLE has dimensions
of inverse of length, not of time. But this is not the most
important difference between the two quantities [in fact, an
alternative definition could be to replace |z − z0| by ω in (7)].
The main difference is that the FTLE quantifies the stretch-
ing of initial vectors as they are transported by the flow in
three-dimensional space, whereas the FDLE also includes the
projection effect experienced by these vectors when arriving
at the collecting layer: the footprint of such a vector is the
projection onto the horizontal layer of that vector arriving
there, taken along its direction of motion. Further details of
this projection process are given in the Appendix and are
illustrated in Fig. 1. Note also that the FDLE is not a form
of a finite-size Lyapunov exponent [23–25], since for this
last quantity initial separations are integrated until reaching
a specified separation value, whereas in the FDLE integration
proceeds until reaching a particular depth level z.

Next, we consider the effect of the flow on surface elements
initially located in the release layer. This was already studied
in [12,20–22] in the context of sedimenting particles in fluid
flows.

Let us consider an infinitesimal material surface of area
dA0 started at the release layer at z0, which at any time is

τ̄ = ẑ × (τ × v
vz

)

dA0 = |τ x(t0) × τ y(t0)|dx0dy0 = dx0dy0

z0

z

v

ẑn̂

dAt = |τ x(t) × τ y(t)|dA0

τ y

τ x

dAacc = |τ̄ x × τ̄ y|dA0

v

FIG. 1. Illustration of the dynamics of a rectangular surface ele-
ment, lying on the upper layer at the release time t0, and with area
dA0, until leaving a footprint of area dAacc on the lower layer when
arriving there. See the discussion and the Appendix for details.

transformed into a surface of area dAt , and which finally
reaches the collecting layer at z leaving a footprint area dAacc

(see Fig. 1). If we take the initial surface element to be a
rectangle of sides given by the vectors x̂ dx0 and ŷ dy0 (x̂ and
ŷ are unit vectors in the x and y directions; the area of the
rectangle is dA0 = dx0 dy0), and noting that the cross product
of vectors gives the area of the parallelogram subtended by
them, we obtain

dAacc = |τ̄x × τ̄y| dA0, (8)

where τ̄x = ∂φz
z0

(x0 )

∂x0
and τ̄y = ∂φz

z0
(x0 )

∂y0
are two-dimensional

vectors on the final layer such that τ̄x dx0 and τ̄y dy0 give the
footprint of the initial vectors x̂ dx0 and ŷ dy0.

Simple algebra relates the cross product in (8) to the matrix
C̄M and the singular values �̄α:

|τ̄x × τ̄y| =
√

det C̄M = �̄1�̄2 ≡ F−1, (9)

where we have defined the quantity F , which we call the
density factor. It is a function of the trajectory that starts at
x0 and arrives at x = φz

z0
(x0), so that, with some abuse of

language, it can be considered as a function either of the initial
or of the final location: F = F (x0) or F = F (x). The name
“density factor” comes from the consideration of the ratio
between the density of particles in a release surface element,
σ (x0), and in its image in the collecting layer σ [x = φz

z0
(x0)].

In the situation in which both surface elements contain the
same particles, this ratio is the inverse of the ratio of areas and
thus equal to F :

σ (x)

σ (x0)
= dA0

dAacc
= F. (10)
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The surface elements dA0 and dAacc will contain the same
particles if a single surface element from the release layer
reaches dAacc. For time-dependent velocity fields, folding of
the falling layer can occur, and in this case the complete den-
sity ratio should be computed as the sum of all contributions
of the type (10) from the initial release areas dA0 that reach
the same dAacc at different times [20–22].

A convenient way to write F = dA0/dAacc is to split it into
two contributions [20–22] (see Fig. 1): the evolution of the
surface element under the time map φω

t0 until when its area
gets stretched to dAtz (recall that tz = t0 + ω is the time at
which the infinitesimal surface touches the z layer), and the
projection of this surface element onto the horizontal collect-
ing layer along the direction of motion. The combination of
both processes leaves a footprint of area dAacc on the bottom
layer, completing the action of φz

z0
:

F = dA0

dAtz

dAtz

dAacc
= SP. (11)

The stretching and projection factors, S and P, can be calcu-
lated as [20–22]

S = dA0

dAtz

= |τx(tz ) × τy(tz )|−1, (12)

P = dAtz

dAacc
=

∣∣∣∣ vz

n̂ · v

∣∣∣∣, (13)

where n̂(t ) is a unit vector normal to the falling surface el-
ement at time t , and the vectors τx(t ) and τy(t ) are tangent

to the sinking surface dAt at time t , given by τx = ∂φτ
t0

(r0 )

∂x0

and τy = ∂φτ
t0

(r0 )

∂y0
. The expression for S is obtained simply by

recognizing that τx(t ) dx0 and τy(t ) dy0 are the images under
time evolution of the vectors x̂ dx0 and ŷ dy0, respectively, that
make the initial surface, and thus the area at any time t is
dAt = |τx(t ) × τy(t )| dx0 dy0. A derivation of the expression
for P is given in the Appendix, where further details on the
projection process are given. As with λα , expression (12) is a
property of the trajectory joining x0 and the corresponding x in
the collecting layer, so that S can be considered as a function
of any of these two locations. Equation (13) involves veloc-
ities and the normal to the surface element at the collecting
layer, so that it is more natural to consider P = P(x), although
for invertible φz

z0
the values of P can also be mapped back to

the release layer and displayed there.
The density factor F can also be expressed in terms of

singular values of a different Jacobian matrix. We begin with
expressing the stretching factor S. First, note that the Jacobian
matrix in (3) has as columns the two vectors τx(t ), τy(t ) and

the additional one τz(t ) = ∂φτ
t0

(r0 )

∂z0
. Let JM be the 3 × 2 matrix

having as columns just the three-dimensional vectors τx(t ),
τy(t ). The subindex M indicates that it involves derivatives
only along the horizontal release layer M. The singular values
of JM, �1, and �2, are the square roots of the eigenvalues of
the 2 × 2 matrix CM = JT

MJM. Simple algebra demonstrates
that

S−1 = |τx(t ) × τy(t )| =
√

det CM = �1�2. (14)

We stress that the quantities �α are in general different from
the singular values Sα of the 3 × 3 matrix J in Eq. (3), giving

z0

z

FIG. 2. Sketch of the bipartite network construction. Particles
travel from the upper layer to the bottom one. Nodes are the boxes
Ai, i = 1, . . . , M0 on which the upper layer is partitioned, and Bj ,
j = 1, . . . , Mz, partitioning the lower one. Two nodes are linked if
some trajectory joins them.

the Lyapunov exponents as λα = |ω|−1 log Sα . �α character-
izes stretching only of infinitesimal initial vectors lying on the
horizontal initial layer. But, in the limit of large tz or |z − z0|,
vectors of arbitrary initial orientation are expected to approach
the directions that stretch faster under the action of J, so that
we expect that in this limit �α will approach Sα , for α = 1, 2.
More in general, since JM is the matrix J with a column
deleted, inequalities for singular values of submatrices [26]
lead to Sα+1 � �α � Sα , with α = 1, 2.

Comparison of Eqs. (9), (11), and (14) gives the following
relationship between the descriptions based on the singular
values of J̄M and JM:

�̄1�̄2 = P−1�1�2 = F−1, (15)

which also shows the two different ways to compute the den-
sity factor F .

IV. THE NETWORK APPROACH

We now describe a characterization of fluid transport be-
tween layers by tools from network or graph theory. This type
of approach can also be called probabilistic or set-oriented.
Our goal is to generalize studies such as [5,27] by considering
a bipartite network, which is the natural framework to study
two-layer transport. For this we construct the discrete version
of the Perron–Frobenius operator describing the transport ma-
trix between the two layers.

A. Coarse graining of the flow and transport matrix

The upper layer is partitioned with a set of boxes
{Ai}i=1,...,M0 , and the lower layer with boxes {Bj} j=1,...,Mz (see
Fig. 2). Each of these boxes is interpreted as a node in a
bipartite network. Links between the upper and the lower layer
are established by the action of the two-layer map. These links
are directed and weighted, with weights between Ai in the
upper layer and Bj in the lower one given by the proportion
of area of Ai that is mapped onto Bj , which defines a transport
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matrix:

P(z0, z)i j = μ
[
Ai

⋂ (
φz

z0

)−1
(Bj )

]
μ(Ai )

. (16)

μ(S) is the measure of set S (a part of the release layer)
here taken to be its area. The map (φz

z0
)−1 is the inverse of φz

z0
,

i.e., it takes points from the lower layer that at some moment
were reached by the released particles and maps them back
into the position they had at t0 in the upper layer. Note that
for time-dependent velocity fields this inverse map can be
multivalued, as several initial conditions x0 can reach the same
point in the lower layer, provided they do so at different times.
In this case, all preimages of box Bj should be considered in
Eq. (16). From a practical point of view, one computes the
matrix elements P(z0, z)i j by releasing a large number Ni of
trajectories from box Ai at t0, and counts how many of them,
Ni j , reach the collecting layer for the first time at box Bj .
The ratio Ni j/Ni estimates the value of P(z0, z)i j for Ni large
enough.

We note that the transport matrix P(z0, z) is different from
the one used in previous works in two aspects: first, it rep-
resents connections between two distinct regions: the release
and the collecting layer, whereas the transport matrix used
for example in [5,27] quantifies the transport between boxes
embedded in the same fluid region. This bipartite character
of our transport matrix is shared by other operators in the
literature (see, for example, [8]), but then the second differ-
ence is that in those cases transport is computed during a
fixed amount of time, whereas in our case what is fixed is the
distance between the two layers, with possibly different times
of transport between them for different particles.

Equation (16) immediately leads to a probabilistic inter-
pretation: P(z0, z)i j � 0 is the probability that a particle that
started at t0 in a uniformly random position in box Ai of the
release layer reaches the collecting layer for the first time
on box Bj . If all the particles released from M reach the
collecting layer, then P(z0, z)i j is row stochastic:

Mz∑
j=1

P(z0, z)i j = 1. (17)

If some particles never reach the collecting layer, then we
can have

∑M
j=1 P(z0, z)i j < 1, this being the probability of

reaching the lower layer if starting from a random position
in the release one. As when dealing with open flows [28]
one can consider the transport matrix that takes into account
only the particles that do reach the second layer. The so-called
out-strength of node i, defined as

SOUT(i) =
Mz∑
j=1

Pi j, (18)

can be used to formulate a general definition of the bilayer
transport matrix, which is row-stochastic and valid for both
closed and open flows (i.e., cases in which the collecting layer
is always reached and cases in which it is not):

Qi j =
{

Pi j

SOUT(i) if SOUT(i) �= 0

0 if SOUT(i) = 0
. (19)

In the following we indicate some relevant network mea-
sures that can be computed from this bipartite transport
matrix.

B. Network measures

Many quantities have been introduced to characterize the
topology and connectivity properties of networks [29]. In
this paper we will not consider nonlocal quantifiers, such as
optimal paths, betweenness, or communities [4,5,30–32]. We
just introduce the simplest quantifiers involving single nodes,
namely, degrees and network entropy. The adjacency matrix
is given by

Ai j =
{

1 if Qi j > 0

0 if Qi j = 0
. (20)

It is used to define the out-degree of a node i, KOUT(i), i.e.,
the number of nodes in layer z receiving fluid from node i in
layer z0, and the in-degree for a node j, KIN( j), which is the
number of nodes of the release layer from which fluid content
arrives at node j in the collecting layer:

KOUT(i) =
Mz∑
j=1

Ai j, (21)

KIN( j) =
M0∑
i=1

Ai j . (22)

Quantities related to degrees but that take into account
the actual proportion of particles arriving at each node (the
weights of the links) are the out-strength defined in Eq. (18)
and the in-strength:

SIN( j) =
M0∑
i=1

Pi j . (23)

An alternative to SIN can also be defined by using Qi j instead
of Pi j . It coincides with (23) for closed flows, which is the
case for the example presented later in this paper.

Another quantity that takes into account the weights of the
links is the network entropy, defined for each node i of the
release layer as

H (i) = −
Mz∑
j=1

Qi j log(Qi j ). (24)

Note that, different from previous references [5], we have
not introduced a prefactor corresponding to the inverse of the
integration time in the definition (24).

V. RELATIONSHIP BETWEEN GEOMETRIC AND
NETWORK CHARACTERIZATION

For clarity, in the following we write expressions in terms
of the matrix Pi j , with the understanding that Qi j should be
used instead if the flow is open. We first obtain a relation-
ship between the probabilistic or network approach and the
geometric or dynamical one for the evolution of densities.
Recall that Pi j is estimated as Pi j = Ni j/N0, where Ni j is
the number of particles released from box Ai and landing

065111-5



REBECA DE LA FUENTE et al. PHYSICAL REVIEW E 104, 065111 (2021)

on box Bj , provided N0 particles are seeded from each re-
lease box (giving the same density σ0 at each initial box
if all of them have the same area). Then SIN( j), defined
in (23), is estimated as SIN( j) = Nj/N0, where Nj is the
number of particles landing on box Bj irrespective of their
origin. On the other hand, the average of the ratios of local
densities σ (x)/σ0 of the points inside a collecting box Bj ,
〈σ (x)〉Bj /σ0 = μ(Bj )−1

∫
Bj

dxσ (x)/σ0, is also estimated by
Nj/N0. These estimates become exact in the limit N0 → ∞.
Using relationships (9) and (10) we find

SIN( j) = lim
N0→∞

Nj

N0
= 〈F 〉Bj = 〈(�̄1�̄2)−1〉Bj , (25)

where the left-hand side is computed from the network ap-
proach of Sec. IV, and the right-hand average is a coarse
graining of quantities from the geometrically based approach
of Sec. III. Note that Eq. (10) assumes the absence of folding
processes producing multiple branches of arrival of the release
layer onto the collecting one, so that this is also needed for the
validity of (25).

We now suggest some network-geometric relationships
similar to the ones developed in [5] for single-layer La-
grangian flow networks. In particular, relationships between
degree and network entropy on the one hand and the largest
stretching factor and Lyapunov exponent on the other were
found. These relationships were not exact ones, but approxi-
mate relationships that were checked to hold for the case of
long times, sufficiently small network boxes, and a clear hy-
perbolic situation (i.e., Lyapunov exponents sufficiently larger
or smaller than zero).

By repeating the heuristic arguments developed in [5] we
can find the following approximate relationships between the
network and the geometrical description of our two-layer dy-
namics:

KOUT(i) ≈ 〈�̄〉Ai
= 〈e|z−z0|λ̄〉Ai , (26)

H (i) ≈ 〈log �̄〉Ai
= |z − z0|〈λ̄〉Ai

, (27)

where �̄ and λ̄ are defined below. The averages perform a
coarse graining of the values of �̄(x0) or λ̄(x0) over all initial
conditions inside the initial box Ai. Different from the bidi-
mensional situation considered in [5], in which only one of
the stretching factors was larger than one (a single expanding
direction), in the present three-dimensional dynamics several
directions can be expanding, and these directions are, in the ar-
guments leading to Eqs. (26) and (27), the ones that contribute
to the out-degree KOUT or to the network entropy H . In conse-
quence, in Eqs. (26) and (27) we should use for every initial
location �̄ ≡ ∏

α �̄α , where the product is over all factors �̄α

that satisfy �̄α > 1 at that point, or, equivalently, λ̄ ≡ ∑
α λ̄α ,

where the sum is over all positive FDLEs, λ̄α > 0, at that
point.

We stress that relationships (26) and (27) are not exact, but
we expect them to be satisfied for sufficiently small network
boxes, large |z − z0|, and dynamics sufficiently hyperbolic,
which roughly requires �̄α sufficiently different from unity.
We will check this validity for a particular flow model in
Sec. VI E.

VI. NUMERICAL RESULTS

In this section we illustrate the previous concepts with a
slightly modified version of an idealized incompressible 3D
flow, the ABC flow.

A. ABC flow model

The ABC flow is a 3D model flow which is widely used
for analyzing chaotic transport [33,34]. It provides a simple
stationary solution of Euler’s equation for incompressible,
inviscid fluid flows.

To simulate the situation of particles going from one layer
to another, we modify the ABC flow with a drift in a prefer-
ential direction, specifically in the vertical one (z-direction),
without changing most of the properties of the flow. The
motivation for this choice is to mimic in a very simple way
the transport of particles falling under gravity in a chaotic fluid
flow. The equations describing the model are

ẋ = vx = A sin z + C cos y, (28)

ẏ = vy = B sin x + A cos z, (29)

ż = vz = C sin y + B cos x + D. (30)

We take A = 1, B = √
2,C = √

3 for which chaotic motion
is found [34]. The constant D = −3.15 is the one giving a
contribution to the velocity pointing downwards. Its value is
just sufficient to keep the particles traveling downwards in the
z direction (thus, vz < 0 for any particle at any time). Among
other consequences, this guarantees that all initially released
trajectories will reach the collecting layer at some time, so that
SOUT = 1 in Eq. (18). In the horizontal coordinates the fluid
domain is x, y ∈ [0, 2π ] with periodic boundary conditions.
In the vertical (z-coordinate) particles are released from the
layer z0 = 10 and are followed until they reach the layer at
coordinate z where integration is stopped. Thus the model is
defined in the vertical interval [z, z0].

Note that ∇ · v = 0. The facts that vz < 0 and that the flow
is time-independent guarantee that the map φz

z0
is one-to-one.

B. Transport properties between layers

We first study the map φz
z0

for the ABC flow by taking
z0 = 10 and z = 0 (particles fall from height z0). In Fig. 3
we show a histogram of arrival times, p(ω). It shows a two-
peaked shape with peaks around the values 2 and 6. We can
differentiate two main dynamical behaviors: more laminar
for the first peak and more chaotic for the second one. This
suggests the existence of two zones of trajectory behavior in
the fluid flow, which is confirmed in Fig. 4.

We show in Fig. 4 the spatial distribution of ω, the time
needed by every particle to go from layer z0 to layer z. This
time is shown as a color map for every particle at the release
layer z0 and on its corresponding final position at layer z.
The color map in the bottom layer is conveniently computed
by running the flow backwards in time from a regular grid
of initial conditions located at z. The equivalence between
the backwards- and the forward-in-time calculation of ω is
guaranteed by the fact that for this time-independent flow the
map φz

z0
is one-to-one. Since vz < 0 for any particle and time,
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FIG. 3. Histogram of the times to reach the second layer at z = 0,
starting from z0 = 10.

all particles released in the upper layer reach the collecting
layer in a finite time, and all locations in the collecting layer
receive a trajectory.

We observe the two mentioned regions in Fig. 4: the first
peak in Fig. 3 corresponds to the dark regions, with more
laminar trajectories, i.e., the particles go straightforwardly
from one layer to the other; and the red regions correspond to
the second peak and to more convoluted (chaotic) trajectories.
The frontiers between initial conditions of large and small
ω are quite sharp and will be identified with lines of large
finite-depth Lyapunov exponent in Sec. VI C.

C. Geometric characterization

The Jacobian J̄M is computed by releasing particles on
a regular grid on layer z0, integrating their trajectories under
the modified ABC flow until reaching the final layer at z,
and approximating the derivatives in J̄M = ∇φz

z0
(x0) by finite

differences between final positions of initially neighboring
particles. Then its singular values �̄1 and �̄2 are computed
after construction of the Cauchy-Green tensor C̄M = J̄T

MJ̄M.
Figure 5 shows the maximal FDLE λ̄1(x0) from Eq. (7),

displayed on the release layer z0 = 10, for collecting lay-
ers at three different depths z. We see that increasingly
finer filamentary structures appear for increasing travel depth.
This is similar to the behavior of the FTLE for increasing
integration time. We note that the highest FDLE values
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FIG. 4. The travel time, ω, from release layer (z0 = 10) to col-
lecting layer (z = 0) displayed at the initial and final position of each
particle.
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FIG. 5. Maximal FDLE λ̄1 for dynamics under the modified
ABC flow, displayed at the initial particle locations in the release
layer z0 = 10, and for the collecting layer at (a) z = 2π , (b) z = 4,
and (c) z = 0.

roughly divide the release domain into two regions (remember
the periodic boundary conditions in the horizontal directions)
that closely correspond to the long and short travel time re-
gions in Fig. 4: as for the FTLE, ridges of the FDLE are
associated with separatrices that divide the release layer into
regions of different dynamic behavior. In particular, these
structures are reminiscent of a stable foliation correspond-
ing to hyperbolic trajectories. Although periodic trajectories
cannot exist when vz < 0 everywhere in a domain with a
finite vertical extension at any time, they can exist in the
same velocity field with periodic boundary conditions in the
vertical direction. Finite portions of such trajectories will
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FIG. 6. (a) The density factor, F , computed as F = (�̄1�̄2)−1

at the collecting layer z = 0, giving the relative density of collected
particles if the density in the release layer z0 = 10 is uniform. (b) The
stretching factor S, computed as S = (�1�2)−1. (c) The projection
factor P from Eq. (13). We have checked that F = SP to good
accuracy. Note the logarithmic scale in the color maps.

govern finite-time chaotic dynamics through finite-length ver-
sions of the corresponding stable and unstable manifolds that
appear according to the extent of the domain in the z direction
when periodicity is not prescribed for that coordinate. Ridges
in the FTLE field would arise from intersections with the
release layer of these finite-length stable manifolds, and this
also happens at the same locations in the FDLE field, as seen
in Fig. 5, in spite of the complication that arises from the
projection effect included in the definition of the FDLE. In
fact, we have checked (not shown) that these intersections are
much more clearly identified in the FDLEs than in the FTLEs.

It also appears that there is a correspondence between the
intersections with the collecting layer of finite-length unstable
manifolds and ridges in the density factor F : in Fig. 6(a) we
plot the factor F on the collecting layer, which is the factor
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FIG. 7. Out-degree and in-degree in the release (z0 = 10) and the
collecting (z = 0) layers, respectively.

that multiplies the initial density at the release layer (and thus
it is proportional to the accumulated density of particles if
the release density is constant). We also display in the other
panels of Fig. 6 the two geometric factors, stretching S and
projection P, that shape F [i.e., F = S P, Eq. (11)]. We see
clearly from the plot of F that filamentary structures will
appear in the density collected in the lower layer. The effect
of surface-element stretching (S) is less determinant for F
than the projection of surface elements onto the collecting
layer (P), although this can be different for other types of
flows. In more complex flows [20–22] the projection factor
can even diverge at caustics, locations where the denominator
of Eq. (13) vanishes. As in [20], there is some degree of
anticorrelation between S and P, so that the fluctuations in
F are smaller than those in S and P.

D. Network characterization

We study connectivity properties between layers z0 = 10
and z = 0. For doing this, we divide the upper layer into 100 ×
100 square boxes Ai, i = 1, . . . , 10 000, and the lower one
into 100 × 100 square boxes Bj, j = 1, . . . , 10 000. Then
we release from each box in z0 900 particles uniformly dis-
tributed. We integrate each of these particles with the map φz

z0

[equivalent to integrating Eq. (1) until reaching the collecting
layer at z].

In Fig. 7 we show the out-degree in the starting layer and
the in-degree in the final one. The out-degree for a given box
in the starting layer indicates the number of boxes reached
in the final layer. It is a measure of dispersion, and large
values at a box indicate that a part of a repelling or dispersing
structure is present there. On the other hand, large in-degree
values in the final layer indicate mixing from a large number
of different initial boxes, so that boxes with in-degree maxima
trace out the location of attracting regions. Part of these ideas
is confirmed when comparing out-degrees to the FDLEs of
Fig. 5(c).

Another quantity computed in the network approach, the
entropy H (i) defined in Eq. (24), is displayed in Fig. 8. There
is a clear relationship with KOUT(i) (Fig. 7) and also with the
FDLEs of Fig. 5(c). These relationships will be checked more
systematically in the next section.

E. Relationship between geometric and
network characterization

In this section we first check Eq. (25). It relates the network
quantity SIN( j), giving also the density accumulated at box Bj
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FIG. 8. Entropy H (i) for transport from the release layer at z0 =
10 to the collecting layer at z = 0, displayed on the release layer.

in the lower layer relative to the uniform release density in
the upper layer, to a coarse graining on collecting boxes of
a quantity developed in the geometric approach, the density
factor F = (�̄1�̄2)−1. In Fig. 9 we see that, as predicted,
both quantities are nearly equal, although there are some
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FIG. 9. (a) The in-strength SIN( j) in the lower layer z = 0, which
gives the accumulated density in that layer starting from a unit-
density uniform release at z0 = 10. (b) Density factor averaged on
each box of the accumulation layer, i.e., 〈F 〉B j = 〈(�̄1�̄2)−1〉B j .
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FIG. 10. (a) Scatter plot of values of KOUT(i) vs 〈�̄〉Ai . The red
diagonal indicates the fulfillment of Eq. (26). (b) Scatter plot of
values of H (i) vs 〈log �̄〉Ai . The red diagonal indicates the fulfillment
of Eq. (27). Dots are colored according to the value of 〈�̄2〉Ai .

differences in the narrowest filamental regions, arising from
numerical inaccuracies. According to the outlying values in
Fig. 9(b), it is presumably SIN that can be computed more
reliably than (�̄1�̄2)−1.

We now address the validity of expressions (26) and (27).
Differently from Eq. (25), these formulas were derived only
heuristically, following the arguments of Ref. [5]. Their va-
lidity is subjected to restrictions such as smallness of boxes,
large values of |z − z0|, and sufficiently hyperbolic dynamics
(roughly, singular values sufficiently different from unity),
which we will now check if are satisfied for our modified ABC
flow.

Regarding Eq. (26), comparison of KOUT from the upper
layer in Fig. 7 and λ̄1 in Fig. 5(c), which is the logarithm of
�̄1, already indicates a strong relationship. A more quantita-
tive comparison is made in Fig. 10(a) between KOUT(i) and
〈�̄〉Ai , where � = ∏

α �̄α is the product of all singular values
larger than unity. We see that, although there is a positive
correlation, there is no identity between the two quantities.
We attribute this failure of Eq. (26) to the fact that the second
singular value �̄2 takes values smaller but close to unity for
most of the trajectories. This is confirmed by the distribution
of �̄2 in the upper layer displayed in Fig. 11. We note that,
since the modified ABC flow is time independent, we always
have that the second Lyapunov exponent is zero, or S2 = 1.
The three-dimensional singular value S2 is not exactly �2 nor
�̄2, but it is related to them at long times, which justifies the
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FIG. 11. Probability density function of the values of �̄2 on the
release layer.

prevalence of values �̄2 ≈ 1 in Fig. 11, and then a lack of
hyperbolicity. �̄2 ≈ 1 implies that boxes in the upper layer
are not converted by the dynamics into thin filaments, as when
�̄2 � 1, but into broad strips. When reaching the collecting
layer, they will leave a footprint larger than the thin filament
implied in Eq. (26) when �̄2 < 1, and consequently KOUT will
be generally larger than predicted, as seen in Fig. 10(a).

Relationships that imply a weighting with the number of
particles reaching a particular box in the collecting layer are
expected to be more robust than relations such as Eq. (26)
that involve the degree, a quantity counting all boxes to which
particles arrive, independently on how many of them do so.
Thus, Eq. (27), although derived under heuristic arguments
similar to those leading to Eq. (26), is expected to be satisfied
under a broader range of conditions. This is indeed the case, as
seen by comparing plots of entropy (Fig. 8) with correspond-
ing plots of FDLE [Fig. 5(c)]. A more quantitative check is
performed in Fig. 10(b). We see that the equality in Eq. (27)
is satisfied much better than Eq. (26). Nevertheless, there are
still deviations, especially for small values of 〈log �̄〉Ai . These
small values arise from locations where �̄ ≈ 1, confirming
situations of lack of hyperbolicity. We have also colored the
points in the scatter plot with the values of 〈�̄2〉Ai . Again, the
stronger deviations occur when both 〈�̄2〉Ai and 〈�̄〉 are close
to unity.

VII. CONCLUSIONS

In this paper we have developed a formalism to character-
ize transport of particles between two layers in a fluid. The
motivation was to obtain a theoretical framework to analyze
problems related to the sinking of particles in fluid flows,
sedimenting towards a bottom layer. Two complementary sets
of tools have been addressed: geometrical or dynamical, by
studying the dynamics and deformation of a layer of particles,
and probabilistic, using concepts from network theory. Most
importantly, we have addressed the relationship between these
two approaches, and illustrated the whole formalism with a
modified ABC model.

The crucial step is the definition of a two-layer map, which
drives particles from an initial layer to the final one. Within
the geometric approach we have analyzed the deformation
of surfaces and lines of particles released from the upper

layer. A quantity related to the Lyapunov exponent, the FDLE,
has been defined and related to the quantities above. Within
the probabilistic methodology the natural description of the
system is via bipartite networks, in which quantities such as
the out-degree in the initial layer and the in-degree in the final
one acquire a clear physical meaning. Both descriptions have
been connected, for example, by expressing the accumulated
density of particles in terms of the in-degree and of averages
of singular values defined in the geometric approach. Other
geometric-network relationships that were successfully tested
for transport on a single layer [5] are satisfied here with poor
accuracy. This stresses the need for sufficiently hyperbolic
dynamics to justify some of the heuristic steps used in the
derivations.

More explicitly, the two-layer map provides a general de-
scription of particle transport between layers, without any
restriction to hyperbolic flows or transport without folding.
This means that most of the geometric and network formalism
described in Secs. III and IV, respectively, can be applied to
any type of flow. However, some of the specific relationships
we have obtained, namely, Eqs. (10) and (25)–(27), require
the validity of additional hypotheses that we now detail.

The heuristic arguments leading to Eqs. (26) and (27),
which link the geometrical perspective with the network-
based description, are restricted to sufficiently hyperbolic
dynamics, meaning in this context that �̄1 and �̄2 should be
sufficiently different from unity. Thus, these two relationships
will be valid only in regions dominated by strain. Unlike in
two-dimensional incompressible flows where it is sufficient to
take care of one singular value of the Jacobian matrix [20],
the second singular value of J̄M in three-dimensional flows is
independent of the first one and thus also plays a role. If this
second singular value �̄2 is close to unity, fluid patches re-
leased from the upper layer may be converted into broad strips
after being projected onto the collecting layer, which results in
a deviation from Eqs. (26) and (27). This dependence on the
second singular value is illustrated in Fig. 10(b).

On the other hand, folding of the falling surface, which
may occur in time-dependent flows, affects our formalism in
two ways. The first is that the inverse of the two-layer map,
appearing in (16), is multivalued if foldings are present, for
which Eqs. (10) and (25) have to be modified (as done in
[20,22]) to take into account all preimages of each given point
in the collecting layer. The second is that the singular values
of the Jacobian matrix J̄M are ill-defined at folds, so that
the evaluation of FDLEs and the density factor F becomes
impossible there as well. The decomposition F = SP and the
divergence of P shows, in fact, that F also diverges at folds,
identifying the appearance of caustics (cf. [20]).

Note that we have assumed homogeneity in the initial dis-
tribution of particles to focus on the effects of transport. If one
is interested in analyzing the evolution of nonhomogeneous
initial particle distributions, the density at the collecting layer
can be simply recovered by multiplying the initial density by
the corresponding density factor of each particle trajectory
reaching the bottom layer. Thus, final densities can always be
computed if the initial density of particles at the release layer
is known.

There are recent works studying, on the one hand, mi-
croplankton sedimentation in the ocean with network tools
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[35] and, on the other, the geometry of sedimentation dy-
namics and distribution of biogenic particles [12,21] and
microplastics [17]. We have presented here steps that connect
both approaches, and that may provide insights into problems
of sinking particles in the ocean. In particular, the FDLE is
a measure specifically defined for the study of flow patterns
between two layers with a preferential direction of motion
and quantifies structures in a different way if compared to
standard geometrical measures, such as the classical finite-
time Lyapunov exponent. For example, FDLE ridges neatly
separate regions in upper and lower layers in which particle
travel times are significantly different (compare Figs. 4 and 5).
Also, while the decomposition of F into S and P is not new
in itself, we have provided here alternative ways to compute
F and S. Such a decomposition is crucial for exploring and
quantifying the relative contributions of the stretching factor
S and the projection factor P to the resulting distribution of
particles when being collected after a sedimentation process.
In general terms, our formalism characterizes repelling and
attracting structures associated with transport between both
layers. The result is a theoretical characterization that may be
useful in future applications that focus on transport properties
of sinking particles, such as the study of sedimentation pat-
terns, and barriers between regions with qualitatively different
dynamics. Furthermore, community detection approaches that
become accessible due to the network characterization can
be practically useful, as has been the case in situations of
horizontal transport [5].

Comparing the approach of Sec. IV to that in [35] where
bilayer networks are also used, the crucial differences are that
[35], using a backwards-in-time approach, focuses on the ori-
gin over the surface of the particles deposited on the sea floor,
and that those authors are interested in a statistical description
over paleoscales. In contrast, our network approach is based
on a forward-in-time integration, so that we focus on the fate
of the particles after being released from the surface. We thus
identify flow structures at the timescales during which the
particles move from one layer to another, and we relate them
to the geometry of a falling layer. All of this is suited to the
application to mesoscale and submesoscale transport in the
marine environment, at timescales from days to months. This
will be also relevant for studies of sedimentation in atmo-
spheric flows, such as in the context of deposition of volcanic
ashes or aerosol particles [36,37]. More generally, we expect
our formalism to be of use in other flow problems in which a
dominant direction of transport occurs.
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APPENDIX

In this Appendix we give further details on the geometry
of projection and stretching that is used in the geometric ap-

FIG. 12. Sketch (in a two-dimensional situation) of the foot-
print or projection in the direction of motion, Pq, of a vector
q = (qx, qy ) onto a horizontal collecting layer (in fact a collecting
line) when arriving there with velocity v = (vx, vy ). We have Pq =
(qx − qzvx/vz )x̂, where x̂ is the unit vector in the direction of the
collecting line.

proach. Some of the expressions presented here were already
derived or used in Refs. [20–22].

First, we derive expressions for the footprint left by a vec-
tor q on the collecting layer as it arrives in it with a velocity v.
We will apply the expressions to vectors tangent to the falling
surface that represent infinitesimal segments of that surface.
Thus the velocity vector v is evaluated at the center point of
the falling segment when it touches the collecting layer at tz
and, because of the segment’s infinitesimal character, the same
v applies to the whole vector q. Figure 12 shows a sketch
of the geometry in a two-dimensional situation, so that the
components of the vector are (qx, qz ) and those of the velocity
(vx, vz ). The horizontal projection Pq of q along the direction
of motion, or footprint, is made of two parts: qx and the result
of multiplying qz by the tangent of the angle between v and the
vertical, i.e., qzvx/(−vz ). Considering also the y component,
the projected vector is Pq = (qx − qzvx/vz, qy − qzvy/vz ) and
the vertical component (Pq)z is zero. The projection of q =
(qx, qy, qz ) onto the direction of motion is a linear operation,
and thus it can be expressed as the action of a matrix P on the
vector, with

P =
(

1 0 −vx/vz

0 1 −vy/vz

)
. (A1)

A row of zeros can be added to the bottom if Pq is considered
to be embedded in three-dimensional space. An equivalent
expression for this projection operator can be written in terms
of cross products:

Pq = ẑ ×
(

q × v
vz

)
, (A2)

where ẑ is the unit vector in the positive vertical direction.

Let us consider a vector of the form τ(t ) = dφτ
t0

[x0(s)]

ds , which
is tangent to the falling surface at every time, and points
initially (at time t0) along the direction on the release layer
specified by the parameter s. τ̄ = J̄M · τ(t0) is its footprint
on the collection layer. The generation of this footprint (see
Fig. 1) results from the composition of two transformations,
namely, the three-dimensional stretching as the falling surface
is advected towards the collecting surface, τ(tz ) = JM · τ(t0),
and its subsequent projection onto the horizontal along the
direction of motion, τ̄ = Pτ(tz ). The combination of these
two processes gives the following relationship:

J̄M = PJM. (A3)
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This expression can be derived more formally by applying the
chain rule to Eq. (4), as done explicitly in [20] for the two-
dimensional case. Since the singular values of P are |v|/|vz|
and 1, standard inequalities for singular values of products
of matrices [26] allow us to show that �̄1 � �1|v|/|vz| and
�̄1�̄2 � |v/vz|�1�2. This last inequality is improved, how-
ever, by the exact equality in Eq. (15).

We now obtain expression (13) for the projection factor
P entering the density factor. We first note that τ̄x = Pτx(tz )
and τ̄y = Pτy(tz ). Thus, we can elaborate the expression for
the density factor in Eq. (9) (we omit the time variable tz to
simplify the notation):

F−1 = |τ̄x × τ̄y| = |Pτx × Pτy|

=
∣∣∣∣
[

ẑ ×
(

τx × v
vz

)]
×

[
ẑ ×

(
τy × v

vz

)]∣∣∣∣

= 1

v2
z

|[τx(ẑ · v) − v(ẑ · τx )] × [τy(ẑ · v) − v(ẑ · τy)]|

= 1

v2
z

|[τxvz − v(τx )z] × [τyvz − v(τy)z]|

= 1

|vz| |vz(τx × τy) + (τx )z(τy × v) − (τy)z(τx × v)|

=
∣∣∣∣ (τx × τy) · v

vz
ẑ

∣∣∣∣
=

∣∣∣∣ n̂ · v
vz

∣∣∣∣|τx × τy|. (A4)

Comparing with Eqs. (11) and (12) we identify the projec-
tion factor P = |vz/(n̂ · v)|, thus demonstrating Eq. (13).
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