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Extreme temperature 
fluctuations in laboratory models 
of the mid‑latitude atmospheric 
circulation
Miklós Vincze 1,2*, Cathrine Hancock 3, Uwe Harlander 4, Costanza Rodda 4,5 & Kevin Speer 3

Using two laboratory‑scale conceptual fluid dynamic models of the mid‑latitude atmospheric 
circulation we investigate the statistical properties of pointwise temperature signals obtained in long 
experiment runs. We explore how the average “equator‑to‑pole” temperature contrast influences the 
range and the jump distribution of extreme temperature fluctuations, the ratio of the frequencies 
of rapid cooling and warming events, and the persistence of “weather” in the set‑ups. We find 
simple combinations of the control parameters—temperature gradient, rotation rate and geometric 
dimensions–which appear to determine certain scaling properties of these statistics, shedding light on 
the underlying dynamics of the Rossby wave‑related elements of the mid‑latitude weather variability.

The average temperature contrast between the subtropical and polar regions of Earth influences the frequency at 
which extreme (“abnormal”) temperatures occur at mid-latitudes. This connection has been subject to extensive 
research in the past decades, involving satellite and station data  analysis1, simulations in global climate  models2,3, 
and even experiments in conceptual laboratory settings. The observed changes in the persistence of certain 
weather situations, and their causal links to the weakening meridional temperature contrast also attract increasing 
attention in the climate science community. The average equator-to-pole temperature difference parameter 〈�T〉 
of the Northern Hemisphere lower troposphere exhibits a decreasing trend throughout the past  decades4,5, as 
the Arctic has warmed nearly four times faster than the  globe6 (“Arctic amplification”), and this climatic process 
affects the dynamics of atmospheric Rossby waves, or planetary waves, and the spatio-temporal distribution of 
weather patterns at mid-latitudes.

Large-scale Rossby waves are the dominant features of the Terrestrial weather system that form as a result 
of baroclinic instability in the  atmosphere7. They help transfer warm air from the low latitudes to the poles and 
cold air backwards, attempting to restore equilibrium. The characteristic spatial scales—zonal wavelengths—of 
Rossby waves are known to depend on 〈�T〉 ; generally, lower 〈�T〉 yields smaller coherent structures. Further-
more, not only the length scales associated with these waves are influenced by 〈�T〉 , but also the speed at which 
they drift eastward: smaller meridional temperature contrast typically yields slower drift. Thus, the variability 
and persistence of temperature fluctuations at a given mid-latitude geographic location are affected both by the 
characteristic spatial scale of the meandering borderline around the cold polar regions and the speed of the 
pattern’s propagation.

The differentially heated rotating annulus is a widely studied experimental model in which the fundamental 
underlying dynamics of baroclinic instability, Rossby waves, and cyclogenesis can be reproduced to a conceptual 
level, obeying the principle of hydrodynamic similarity. The arrangement of this set-up has been introduced 
independently by the groups of David  Fultz8 and Raymond  Hide9 in the 1950s, and similar experiments have 
since been applied to, e.g., the investigation of Rossby wave dispersion and wave-wave  interactions10,11, daily 
temperature  statistics12, the spreading of passive  tracers13, the excitation of inertial gravity  waves14,15 in the atmos-
phere, and even for the validation and fine-tuning of numerical models and methods for weather  forecasting16,17.

Further experimental work conducted in baroclinic rotating annulus setups addressed the issue of tempera-
ture fluctuations in an ensemble of experiments with a continuously changing temperature  contrast18, an essential 
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aspect of the ongoing climate change. The basic relationships between the occurrence of extremely low or high 
temperature values and the meridional temperature contrast parameter �T have also been investigated in our 
more recent  experiments19,20, of which the present work is a natural continuation and extension.

Here we do not aspire to provide a detailed description of the flow features in the studied setting (as it has 
been done in the aforementioned previous research), instead we limit our scope to the scaling properties of vari-
ous statistical measures characterising the temperature fluctuations in this atmosphere-like sideways-convective 
rotating configuration. In order to explore a wide range of the relevant parameters, we contrast results from two 
series of experiments in set-ups with markedly different geometrical dimensions. We put a special emphasis on 
the analysis of “extremes” in temperatures and temperature jumps. In the investigated quasi-stationary signals 
we consider a value “extreme” when it falls out of the range containing 90% of all measured fluctuations around 
the long-time average (following appropriate detrending). We also evaluate the shape and scale parameters of 
the extreme value distributions of the temperature records, and their scaling with the control parametrs. The 
probability density function (PDF), and hence, the extreme value statistics of the temperature fluctuation time 
series in complex systems - including Earth’s climate system - are not independent from the spectral properties 
of the signal and vice versa. (Note, that this is far from being a trivial statement: generally, a randomly shuffled 
temperature time series would still have the same PDF as the original, but all spectral information would be 
totally destroyed.)

The seminal paradigm-changing minimal model of  Hasselmann21 successfully explained the “red noise” 
character of climate variability based on the principle that one can treat the slowly changing component of the 
variability as a deterministic linear system, and the high-frequency effects as an uncorrelated additive noise. 
However, it can be shown that such additive noise models cannot produce the non-Gaussian PDFs of tempera-
ture fluctuations often observed in  nature22, and therefore fail to account for the scaling of the extreme tails of 
the PDFs.

Models applying correlated additive and multiplicative (CAM) noise forcing, however, can produce “heavy”- 
(power-law-) tailed distributions while also maintaining the red noise behavior of the spectra. The frequency 
spectrum F(ω) has the form F(ω) ∝ 1/(�2 + ω2) , where parameter � is associated with the critical frequency, 
below which the spectrum is white noise-like, and above which it follows a power law. This spectrum shape is 
identical to the case of purely additive noise, with the important difference that here � also depends on the mul-
tiplicative  noise23. As for the PDF, the power law exponent α of the tail ( p(x) ∝ |x|−α ) is also a function of the 
coupling constant of the multiplicative noise. In the CAM model α is found to follow an increasing linear relation 
with � , which means that weaker damping (i.e. smaller cut-off frequency � ) results in heavier tails (smaller α ), 
i.e. larger extreme values are expected.

To explore whether the dynamics of temperature fluctuations in the laboratory experiments behaves similarly 
to a CAM model, we investigate how certain spectral properties (cut-off frequencies, and characteristic time-
scales) of the recorded temperature signals scale with the thermal forcing, and discuss whether their change is 
consistent with the scaling of the ranges of extreme temperatures. Our results may hopefully be applicable for a 
better understanding of the relevant scale parameters in the actual mid-latitude weather variability.

Set‑up and data acquisition
The basic layout of the rotating annulus configuration is sketched in Fig. 1a. The tank is mounted on a turntable 
revolving around its axis of symmetry at angular velocity � in counterclockwise direction ( � > 0 ) and is divided 
into three sections by heat conductive coaxial cylindrical walls. The innermost domain of radius R1 is referred to 
as the “cold bath”, where water of constant temperature T1 (below room temperature) is circulated through a cool-
ing thermostat (chiller). A separate regulated closed loop water circuit keeps the “warm bath”, i. e. the outermost 
annular gap, and its sidewall of radius R2 at a higher prescribed temperature T2(> T1) . The inner annular cavity 
of gap width L = R2 − R1 forms the experimental domain, and is filled up with the working fluid—water—up to 
height level H. The fluid surface is free, and the flow is driven by the buoyancy flux maintained by the temperature 

Figure 1.  The experimental setups. (a) Sketch of the rotating annulus configuration and its most relevant 
dimensions (cf. Table 1). (b) A photo of the GFDI large annulus setup. (c) A photo of the BTU small annulus 
setup. (In this picture water level H does not match the one used in the present experiments.) The figure in 
panel (a) was created using KolourPaint for Ubuntu linux, Release 20.12.3 (freely available and downloadable at 
https:// apps. kde. org/ kolou rpaint/).

https://apps.kde.org/kolourpaint/
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contrast �T = T2 − T1 between the cylindrical walls. This configuration is a barebone representation of the 
atmosphere at the mid-latitudes of the Northern Hemisphere with the inner “cold” cylinder modeling the cold 
polar regions and the “warm” outer rim the subtropics.

Our experiments were conducted in two set-ups with different dimensions summarized in Table 1. The “large 
annulus” (Fig. 1b) is located in the Geophysical Fluid Dynamics Institute (GFDI) of the Florida State University, 
while the “small annulus” (Fig. 1c) belongs to the Department of Aerodynamics and Fluid Mechanics of the 
Brandenburg University of Technology (BTU); hereafter, the two respective series of experiments will thus be 
referred to as GFDI and BTU runs.

This work focused on the analysis of temperature time series obtained from fixed co-rotating thermocouples 
in the two annulus setups. In the case of the GFDI apparatus, standard K-type thermocouples with a measure-
ment precision of δT ≈ 0.001◦ C were utilized, whereas, the BTU setup used Ahlborn ALMEMO NiCr sensors 
with δT ≈ 0.05◦ C. The temperature records were acquired at 1 Hz sample rate in both configurations by co-
rotating data loggers mounted on the turntables. The thermometer placed in the working fluid was fixed at the 
mid-radius of the gap, i.e. at distance R = (R1 + R2)/2 from the axis of symmetry and at a small height of h 
from the bottom of the tank (see Table 1). It is to be noted that in both settings h is already above the Ekman 
boundary  layer7, whose characteristic scale is determined by � and the kinematic viscosity of the working fluid. 
Identical thermometers were installed in the cold and warm baths to record the time development of the thermal 
boundary conditions.

The experiments were performed as follows. After filling up the tank with water, first the heating and cool-
ing systems were turned on and then rotation was initiated. In a transient phase of ca. 4000 s after rotation was 
started the temperature contrast �T exhibited a steep exponential saturation, followed by a small-slope plateau. 
Our analysis was limited to the latter quasi-stationary phase. The length of the evaluated temperature signals 
was 16 000 s (i.e. around 2666 revolutions, or “days”) in the case of the GFDI runs, and 25 000 s (i.e. around 8333 
revolutions, or “days”) for the BTU runs.

Results
The range of temperature fluctuations
We evaluated the statistical properties of temperature fluctuations T(t) over time t, acquired by the sensor in the 
experimental domain throughout the aforementioned quasi-stationary part of the runs. The time-average of the 
temperature contrast ��T(t)� ≡ �T2(t)− T1(t)� served as an adjustable control parameter, whereas rotation rate 
� and water depth H were fixed in both series of experiments.

The Taylor number Ta, a nondimensional parameter for quantifying the effect of the Coriolis acceleration 
relative to that of the viscous drag reads as

where ν = 1.004× 10−6 m 2 /s is the kinematic viscosity of the fluid (water). Since � , H and the gapwidth L did not 
vary within the two series of experiments, Ta was also fixed in both configurations, yielding TaGFDI = 1.01 · 1012 
and TaBTU = 8.32 · 108 for the GFDI and BTU experiments, respectively.

The other important nondimensional parameter of thermally driven flows subject to Coriolis force is the 
thermal Rossby number RoT (also known as Hide number) defined as

where g = 9.81 m/s2 is the acceleration of gravity, and α = 2.07× 10−4 1/K represents the volumetric thermal 
expansion coefficient of water around room temperature. (The typical scale of RoT for Earth’s Rossby waves is 
O(RoT ) = 10−2 .) Note, that although the 〈�T〉 intervals of the GFDI and BTU series overlap (see Table 1), they 
cover separate domains when expressed using RoT as a nondimensional temperature scale.

(1)Ta = 4�2L5

ν2H
,

(2)Ro T = αgH��T�
4�2L2

,

Table 1.  The parameters of the two experiment configurations.

parameter GFDI (large annulus) BTU (small annulus)

gap inner radius R1 [m] 0.16 0.045

gap outer radius R2 [m] 0.61 0.125

gapwidth L [m] 0.45 0.075

water level H [m] 0.08 0.05

thermometer level h [m] 0.01 0.006

angular velocity � [rad/s] 1.047 2.096

Taylor number Ta 1.01 · 1012 8.32 · 108

thermal Rossby number RoT 0.001–0.0029 0.0032–0.011

mean temperature contrast 〈�T〉 [ ◦C] 5.5–15.9 2.9–10.9

number of runs 12 7
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The analyzed time series T(t) were obtained following the removal of a 7th-order polynomial trend from 
the raw signals, thus �T(t)� = 0 holds. The histograms of T(t) from all experiments are shown in Fig. 2a and b. 
The data points are identical in both panels, with GFDI and BTU measurements highlighted in panels a) and 
b), respectively. In each panel the data points are colored with respect to the (logarithm of the) RoT of each run, 
and analogously for the BTU runs in panel (b). As visible, the runs with higher 〈�T〉 (and hence higher RoT ) 
exhibited wider range of temperature fluctuations for both tank configurations. Note, that the vertical scale in 
panels (a) and (b) is logarithmic, therefore a histogram following a normal distribution would be parabolic here. 
The “extreme” range in which the measured temperature signal tended to fluctuate around zero was expressed 
using the quantiles of these histograms, corresponding to the 5th and 95th percentiles (marked as Q0.05 and 
Q0.95, respectively) of the empirical distribution, as well as for the 2nd and 98th percentiles (Q0.02 and Q0.98).

Figure 2.  The scaling of temperature fluctuations. (a) and (b) Histograms of temperature fluctuation signals 
T(t) acquired in the vicinity of the bottom close to the mid-radius of the annular gap. The data points are 
repeated in both panels but those from the GFDI and BTU runs are highlighted by coloring—following 
log10 RoT—at panels a and b, respectively. (c) Limit points of the intervals associated with different measures of 
the range of detrended temperature signals T(t) based on the percentiles indicated in the legend, as a function 
of thermal Rossby number RoT . Filled blue and red data points correspond to the lower and higher endpoints 
of the intervals, respectively, for the GFDI runs, unfilled symbols represent the analogous endpoints for the 
BTU experiments. (d) The lengths of the intervals covering the range in which 90% (circles) and 96% (empty 
triangles) of the values of T(t) scatter around zero, and the full width at half maximum (FWHM, filled triangles) 
of the corresponding distribution. The coloring indicates the series of experiment runs (GFDI—blue, BTU—
red). The figure was created using Gnuplot version 5.2, Release 5.2.8 (freely available and downloadable at http:// 
www. gnupl ot. info/).

http://www.gnuplot.info/
http://www.gnuplot.info/
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We found that a remarkably good collapse of data across the GFDI and BTU results is achieved if these 
(dimensional) temperature fluctuation ranges are plotted against RoT . Figure 2c shows the aforementioned 
Q0.02, Q0.05, Q0.95, Q0.98 quantiles as a function of RoT for the GFDI (filled red and blue symbols, see legend) 
and the BTU (unfilled red and blue symbols) runs. The characteristic ranges of their temperature fluctuation 
distributions seem to follow the same, roughly linear scaling, strongly implying that—within the studied flow 
regimes—RoT provides an appropriate parameter to describe the extreme excursions of temperature in rotating 
annulus experiments.

Figure 2d presents the width of the extreme ranges, i.e. the Q0.05–Q0.95 (circles) and the Q0.02–Q0.98 
(empty triangles) intervals for both series (GFDI blue, BTU red). To quantify the more typical fluctuations the 
full width at half maximum (FWHM) of the distribution is also plotted for each run (filled triangles). (FWHM is 
a commonly used standard parameter for measuring the width of distribution, spectral peak, or any bump-like 
pulse, that is easy to obtain and does not require any a priori knowledge about the function. In the case of a Gauss-
ian distribution FWHM is directly proprtional to the standard deviation σ : FWHM = 2

√
2 ln 2σ ≈ 2.335σ .) 

These measures of width also appear to scale with RoT in a fairly consistent manner.
It is to be noted that this collapse of data also implies that although generally RoT is not the only nondimen-

sional parameter to be considered for the dynamics of Rossby waves, in the studied domain of the Ta− RoT 
parameter plane the range of temperature fluctuations does not appear to depend on Taylor number Ta. (The 
Ta-values for the two configurations were of different orders of magnitude, see Table 1).

As visible from the histograms of Fig. 2a and b, the distributions of the temperature fluctuation signals are 
dominantly left skewed and have rather fat tails. The values of kurtosis K of the samples are plotted against their 
skewness S in Fig. 3 for both series of experiments. The implications of the fact that all data points scatter above 
the K = (3/2)S2 (dashed) curve will be discussed later, in the section “Discussion and conclusions”. It is also to be 
noted that no obvious correlation could be established between S or K, and the control parameters RoT or 〈�T〉.

The scale and shape parameters of the extreme tails
A common approach to explore the probabilities of events associated with extremely high temperatures in the 
climate system is fitting the Generalized Pareto Distribution (GPD)—a widely applicable model for the tails of 
other distributions—to the empirical probability of temperature T(t) exceeding a value x > 0 among those data 
points that are higher than a threshold u > 024,25. This conditional probability p is given by

where σu > 0 and ξ  = 0 denote the so-called scale and shape parameters of the distribution, respectively. The 
problem of selecting the lowest threshold u0 above which an empirical distribution can be considered to be a 
member of the GPD family is not trivial. However, it can be easily shown that once the distribution of the excesses 
of u0 exhibits GPD-like character, this remains valid for all thresholds u > u0 , too. Then, theoretically, the shape 

(3)p(T(t)− u > x | T(t) > u) =
(

1+ ξx

σu

)− 1
ξ
,

Figure 3.  Kurtosis K  versus skewness S  of the temperature signals. The coloring indicates the series of 
experiment runs (GFDI—blue, BTU—red) and the dashed line denotes the function K = (3/2)S2 . The figure 
was created using Gnuplot version 5.2, Release 5.2.8 (freely available and downloadable at http:// www. gnupl ot. 
info/).

http://www.gnuplot.info/
http://www.gnuplot.info/
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parameter ξ is independent from the selected u, whereas σu scales linearly with u in such a manner that the re-
parameterized σ ∗ = σu − ξu should also remain constant for all thresholds u ≥ u0.

One can estimate ξ and σ ∗ using the multiple threshold  method24,26, where the log-likelihood  function24 
L(ξu, σu) corresponding to (3) is maximized numerically for threshold excesses x − u > 0 , and the process is 
repeated for a wider range of thresholds u. The estimates for ξ and σ ∗ can then be obtained by fitting the lin-
ear function σu(u) = ξu+ σ ∗ to the obtained maximum likelihood estimates of the scale parameter versus u. 
Plotting the function σu(u) is also useful for finding the lowest threshold u0 above which the function can be 
considered linear, indicating the validity of the GPD approximation. In all of our experiments u0 fell above the 
Q0.95 quantile of temperature fluctuations.

The resulting estimates of these parameters are presented in Fig. 4 for both series of experiments as a function 
of RoT . As visible in panel a), data points for the shape parameter ξ scatter around the mean value ξ = −1.33 
(with a standard deviation of 0.41) without any obvious trend. The scale parameter σ ∗ , however, clearly appears 
to increase linearly with RoT , and the data from the two experiment configurations, again, exhibit a rather good 
collapse of data.

These findings indicate that the exponent of the extreme power-law tail of the temperature distribution does 
not depend on the “meridional” temperature contrast of the model, and therefore, in accordance with the wid-
ening of the histograms—already observed in Fig. 2 in terms of the quantiles—the highest extreme temperature 
values which may be observed in the system (scaling with σ ∗ ) also increase linearly with the thermal Rossby 
number RoT.

Figure 4.  Shape and scale parameters of the temperature fluctuations. Shape parameter ξ (a), and 
re-parameterized scale parameter σ ∗ (b) of the Generalized Pareto Distributions fitted to the extreme 
fluctuations of the temperature time series as a function of thermal Rossby number RoT . The coloring indicates 
the series of experiment runs (GFDI—blue, BTU—red). The error bars represent the root mean square error of 
the linear fits of the σu(u) function obtained from the maximum likelihood estimates with multiple thresholds 
u. The figure was created using Gnuplot version 5.2, Release 5.2.8 (freely available and downloadable at http:// 
www. gnupl ot. info/).

http://www.gnuplot.info/
http://www.gnuplot.info/
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The range of temperature “jumps”
Next, we investigated the extremes in the rate of temperature change over time, and their scaling properties 
with respect to the parameters of the experiments. In the raw time series the finite temperature resolution δT 
of the thermometers and the frequent sampling (relative to the characteristic timescales in the flow) unavoid-
ably produce time intervals of seemingly constant temperature and step-wise changes of magnitude δT in both 
directions. Thus, calculating a pure forward difference of the raw signals would yield a time series consisting 
of the values 0 and ±δT only (or, with a lower sampling rate, its integer multiples). Hence, for this analysis we 
calculated a running mean of T(t) using a window of 60 s—i.e. 60 data points, as the sample rate was 1 Hz, 
translating to 10 and 20 revolutions in the GFDI and BTU set-ups, respectively—and then the forward differ-
ence of this smoothed signal. Analogously to the previously discussed case of the temperature values themselves, 
we considered a temporal change of temperature “extreme” if it fell out of the Q0.05–Q0.95 percentile range of 
the respective distribution of (smoothed) temporal temperature changes, hereafter referred to as “jumps”. Our 
analysis focused on the values of these percentiles.

As reported by Gyüre et al.12, daily temperature changes in weather station records exhibit a robust asymme-
try: increasing steps in the time series occur more frequently and have lower average magnitude than decreasing 
steps, implying that the cooling caused by cold fronts penetrating a region close to the surface is typically more 
rapid than the temperature increase due to warm fronts. Gyüre et al. also demonstrated this feature in a rotating 
annulus experiment.

When considering the extreme changes in temperature, the same asymmetry can be tested by introducing 
an “extreme skewness parameter” η = |Q0.05|/|Q0.95| , i.e. the ratio of the absolute values of the 5th and 95th 
percentiles (the mean of the distribution is zero since T(t) is stationary). This parameter was constructed in order 
to get a robust measure that is sensitive to the asymmetry of the extreme tails of the distribution, which is not 
necessarily captured by the sample skewness. η is shown as a function of thermal Rossby number RoT in Fig. 5a 
for both series of experiments (GFDI with blue circles, BTU with red triangles). Although no clear trend can 
be established, it is apparent that the vast majority of the data points scatter above the η = 1 line, implying that 
extremely rapid drops of temperature are significantly more common than abrupt warming jumps.

Unlike the magnitude of extreme temperature fluctuations the width of the Q0.05–Q0.95 interval of the jump 
distribution is not expected to scale with RoT . The time derivative of a temperature signal obviously depends on 
the characteristic timescale of the process, whereas RoT is timescale-independent by definition. Indeed, one way 
to introduce RoT is to treat it as the squared ratio of two characteristic temporal units: the time it takes for the 
flow to cross the horizontal domain of size L and the period of rotation (proportional to 1/�)7.

A further timescale of interest could be the one associated with conductive heat transfer. However, taking the 
molecular thermal diffusivity of water κ ∼ 10−7 m 2 /s and either the horizontal or the vertical length scale of the 
system L (or H) one finds that the conductive time scale can be estimated as L2/κ (or H2/κ ), yielding a range of 
∼ 104–106 s, much larger than the typical scales on which the “weather” fluctuates in both experimental set-ups.

Figure 5.  The scaling of temperature jumps. (a) Extreme skewness parameter η of the distribution of 
temperature jumps as a function of thermal Rossby number RoT for the two series of experiments (see legend). 
(b) The length of the interval in which 90% of the jump distribution scatter around zero (i.e., the Q0.05–Q0.95 
interval) for the two series of experiments (see legend) plotted against the parameter combination proportional 
to the characteristic temperature jump scale associated with an advection dominated heat transfer (cf. Eq. 4). 
The figure was created using Gnuplot version 5.2, Release 5.2.8 (freely available and downloadable at http:// 
www. gnupl ot. info/).

http://www.gnuplot.info/
http://www.gnuplot.info/
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Therefore, one can assume that the change of temperature (and hence, density) of any given incompressible 
water parcel in the flow is negligible, i.e.

holds, where d · /dt represents the total (Lagrangian) time derivative along the trajectory of a parcel, ∂ · /∂t 
marks the change of temperature measured at a given fixed measurement location �r , and �u(�r, t) denotes the 
velocity of the flow at �r.

With the assumption of (4) the measured time derivatives of the temperature signals at a fixed measurement 
location are determined by the �u∇T term, whose scaling properties can be obtained by estimating the charac-
teristic velocity scale of the flow U and expressing the typical temperature gradient as ∇T ∼ ��T�/H . For the 
latter estimate we used H since the vertical temperature gradient in the system is larger than the horizontal as 
both scale with 〈�T〉 , but H < L in both experimental tanks.

The aforementioned characteristic horizontal velocity U of a buoyancy-driven flow in (quasi-) geostrophic 
equilibrium—where the pressure gradient force caused by the temperature differences are balanced by the Corio-
lis force—can be estimated  as27

Thus, the product �u∇T is expected to depend on the combination U〈�T〉/H , yielding αg〈�T〉2/(2�L) , that is 
proportional to 〈�T〉2/(�L) , since the values of α and g are the same for both configurations.

The widths of the Q0.05–Q0.95 intervals for the jump distributions of all runs are plotted against 〈�T〉2/(�L) 
in Fig. 5b. The data points from the GFDI (blue) and BTU (red) runs exhibit a fairly good data collapse, suggest-
ing that the extreme fluctuations of jumps indeed tend to depend on the time scale associated with advective 
heat transfer.

Power spectra and the scaling of persistence
We addressed the spectral features of the T(t) signals and explored the 〈�T〉-dependence of two relevant time-
scales (or, equivalently, frequency scales): the threshold frequency f ∗ above which the fluctuations resemble an 
uncorrelated noise, and the one associated with the spectral domain, in which the persistence of the “weather” 
is the highest.

The Fourier spectra of T(t) from all experiment runs—obtained using the Lomb–Scargle Fourier method and 
the REDFIT software  package28, then smoothed with a 201-point running averaging in the frequency domain 
for better visibility—are shown in Fig. 6a and b for the GFDI, and BTU set-ups, respectively. The coloring rep-
resents the (logarithm of) RoT that is proportional to 〈�T〉 within both experiment configurations. The sharp 
high frequency peak, and its harmonics correspond to the rotation rate of the tank, which were identical in all 
runs of the given apparatus (cf. Table 1). Clearly, each spectrum exhibits a red noise character up until a certain 
threshold frequency f ∗ around which a distinct kink is found. f ∗ serves as a measure for the separation between 
the “more correlated” and “less uncorrelated” fluctuation timescales, and a clear increasing trend of its value with 
the temperature contrast parameter can be observed in both series of experiments, as shown also in Fig. 6c and 
d for the GFDI and BTU runs, respectively. The small inset in panel b) provides an exemplary illustration of the 
procedure we used to approximate f ∗ by finding the intersection point of linear fits to the high-frequency range 
(but below aforementioned peaks) and the mid-frequency domain of the doubly logarithmic-scaled spectra.

Next, we explored the “predictability” of time series T(t) in terms of persistence P. In meteorology, persistence 
refers to the extent at which a given day’s (or other time interval’s) weather can be used as a credible forecast 
for the following day(s). Persistence P = 0 indicates an uncorrelated signal, while P ≈ 1 implies a tendency of 
long intervals with similar  values29. The persistence of a time series is closely related to its correlation proper-
ties. The autocorrelation function A(τ ) of a time series X(t) of long-term memory shows a power-law decay 
A(τ ) = �X(t)X(t + τ)� ∼ τ−α with correlation exponent 0 < α < 1 . The scaling properties of variance within 
intervals of length s can also be expressed in terms of the Hurst exponent H as s2H . Persistence P, Hurst  exponent30 
H, and the correlation exponent α are connected by the following relationships: P = 2H − 1 ; H = 1− α/2 . A 
Brownian noise yields H = 0.5 , thus a H > 0.5 scaling indicates the presence of memory in the system.

A convenient method to obtain an estimate of H is provided by the detrended fluctuation analysis (DFA) 
which measures the average magnitude of fluctuations as a function of the interval length s of the time  series31,32. 
DFA has the adventage of being computationally robust and that it removes polynomial trends over each con-
sidered interval. Here we apply the DFA2 routine, where the number 2 refers to a quadratic polynomial used in 
the detrending.

The DFA2 spectra of the T(t) signals are shown in Fig. 7a for the GFDI and BTU runs, with blue and red 
curves, respectively. The black solid line represents a slope of 0.5, associated with a Brownian process. (Note 
the double logarithmic scale.) To evaluate how the control parameter 〈�T〉 affects the “weather in the tank”, we 
determined the timescale s∗ at which the largest local exponent H is found (i.e. where the slope of the log–log 
DFA2 spectrum is the steepest). Panels Fig. 7b and c show s∗ as a function of ��T�−1 for the GFDI and BTU 
experiments, respectively. Apparently, in both series of runs, the relationship is linear, indicating a roughly 
inverse proportionality between the logarithm of the “most persistent” timescale and the temperature contrast. 
In other words, the time scale at which the coarse-grained signal of temperature fluctuations is the most predict-
able appears to be larger for a smaller “meridional” temperature gradient. This observation also implies that for 
timescales below s∗ the predictability generally decreases with 〈�T〉.

(4)
dT

dt
≡ ∂T

∂t
+ �u∇T ≈ 0

(5)U ≈ αgH��T�
2�L

.
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We note, that for the spectral measures f ∗ and s∗ we were not able to find a combination of parameters that 
would yield a fairly good collapse of data from the two series of experiments like in the case of temperature 
fluctuations (Fig. 2) or in the case of jump distributions (Fig. 5).

Discussion and conclusions
In the present work we reported on the analysis of temperature signals acquired from minimal laboratory mod-
els of Rossby waves in the mid-latitude atmosphere. We found that the range of temperature fluctuations and 
their extreme values scale with the thermal Rossby number RoT , a nondimensional parameter quantifying the 
ratio of the two most relevant hydrodynamic timescales in a thermally driven rotating flow. As the shape of the 
histograms (Fig. 2), the analysis of their skewness and kurtosis (Fig. 3) and the fitted scale and shape parameters 
(Fig. 4) of the extreme tails clearly reveal, these distributions are not Guassian (the Kolmogorov–Smirnov tests 

Figure 6.  Fourier spectra of temperature signals. Double logarithmic Fourier spectra of the detrended 
temperature signals T(t) from the GFDI (a) and BTU runs (b). The spectra were obtained using the Lomb–
Scargle Fourier transform method using the REDFIT  package28, and were smoothed with a 201-point running 
averaging. The color scale represents the logarithm of the thermal Rossby number (i.e. the nondimensional 
temperature difference scale). Panels (c) and (d) show the logarithm of the threshold frequency f ∗—obtained 
as the frequency where the power law fits for the tail and the mid-frequency band of the spectra intersect, as 
shown in the inset of panel (b)—as a function of the temperature contrast 〈�T〉 for the GFDI and BTU runs, 
respectively. The figure was created using Gnuplot version 5.2, Release 5.2.8 (freely available and downloadable 
at http:// www. gnupl ot. info/).

http://www.gnuplot.info/
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for normality we performed also reject the null hypothesis of normality with confidence limits of α > 0.99 for 
all experiments).

As stated in the introduction, following the reasoning of  Sura22, the non-normality of the PDFs indicates 
that the temperature fluctuations in our laboratory systems cannot be described statistically by the simplest 
Hasselmann-type quantitative model of climate variability, in which the “slow” changes are driven by a “fast” 
additive noise. However, we found that not only are the distributions becoming with power-law-like tails, but 
the low-frequency amplitudes of the (typical red noise-like) temperature fluctuation spectra also increase (and 
so does the characteristic frequency f ∗ ) as the thermal forcing 〈�T〉 increases. This behavior is qualitatively con-
sistent with a simple one dimensional stochastic model that is able to produce non-Gaussian variability and red 
noise-like spectrum simultaneously, and where higher critical frequencies in the spectra correspond to heavier 

Figure 7.  The persistence of temperature signals. (a) Double logarithmic DFA2 spectra of the detrended 
temperature signals T(t) from the two series of experiments (see legend). The dotted line represents the slope 
(scaling exponent) of 0.5 associated with an uncorrelated Brownian noise-type signal. The DFA2 spectra were 
generated using the code by J. Mietus et al. dfa.c available at: https:// www. physi onet. org/ conte nt/ dfa/1. 0.0/ 
dfa.c. Panels (b) and (c) show the logarithm of the timescale associated with the steepest point of the double 
logarithmic DFA2 spectra, i.e. the largest local scaling exponent of the fluctuation ranges for the GFDI and 
BTU runs, respectively. The figure was created using Gnuplot version 5.2, Release 5.2.8 (freely available and 
downloadable at http:// www. gnupl ot. info/).

https://www.physionet.org/content/dfa/1.0.0/dfa.c
https://www.physionet.org/content/dfa/1.0.0/dfa.c
http://www.gnuplot.info/
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tails in the PDFs. Such a correlated additive and multiplicative (CAM) model for a variable x is described by the 
Stratonovich stochastic differential equation, which reads as

where � denotes the “effective drift”, φ is a constant, and η and η′ represent independent Gaussian white noise 
forcings. The second term of the right-hand side is the CAM term itself, in which the state-dependent φx is 
multiplied by η , which (besides η′ ) also contributes to the additive (state-independent) noise, hence the two 
contributions of η are correlated (positively, if φ > 0 , negatively if φ < 0 ). Since the Stratonovich interpretation 
of stochastic differential equations is applied here, where the uncorrelated noise process is approximated with a 
continuous “Brownian motion” of a very short but still finite correlation time, the last term, which incorporates 
the correlation of the noise forcing η with the state variable x is not exactly zero.

It has been  demonstrated22 that the autocorrelation function ρ(t) of x(t) governed by (6) follows an expo-
nential decay of characteristic timescale �−1 , i.e. ρ(t) = exp (−�t) , yielding a red-noise type Fourier spectrum 
F(ω) ∝ 1/(ω2 + �

2) , a form rather similar to the spectra in Fig. 6 (up to threshold frequency f ∗ ). From (6) one 
can also derive the associated Fokker–Planck equations for the evolution of the PDF of x, and the moments of the 
distribution can be obtained.  Sura22 showed that—unlike in a normal distribution—the skewness and kurtosis of 
the PDF are non-zero and fulfil the following nontrivial general relation: K ≥ (3/2)S2 . This holds for the values 
of K and S for all of our experiments, as demonstrated by the fact that all data points in Fig. 3 scatter above the 
dashed parabola marking K = (3/2)S2.

Our analysis of the timescale associated with the largest persistence (Fig. 7), as well as the aforementioned 
observation of the shifting cut-off frequencies in the spectra (Fig. 6) both point to the fact that with increasing 
〈�T〉 a wider spectral domain is characterized by red-noise-like behavior (instead of being uncorrelated white 
noise). In agreement with the qualitative predictions of the CAM model and also with our observations, this 
spectral change is accompanied with the widening of the PDFs which follow non-normal distributions with 
heavy tails.

The observed 〈�T〉 and �-dependence of the largest “jumps” in the temperature time series (Fig. 5) teaches 
us another lesson. With the dynamic scaling arguments applied there we concluded that the distribution of the 
observed temperature changes in the pointwise temperature records ( ∼ ∂T/∂t ) are dominantly attributed to 
advection, or “hydrodynamic” processes related to the circulation ( ∼ �u∇T ), whereas “thermodynamics”, i.e. 
direct conductive heat exchange between given water parcels and their vicinity ( ∼ dT/dt ) plays a much lesser 
role on the timescales relevant for the “weather” in the tank. This finding may have relevance for the better 
understanding of the actual climate system, where it is still unclear whether the character of future heatwaves 
and extreme hot periods will have more to do with direct thermodynamic effects (due to global warming) or 
may rather be driven by the reorganizing atmospheric circulation. This question can be answered only with 
a thermodynamic theory of the mean stratification and meridional temperature gradient of the atmosphere. 
The dynamic part, namely the eddy adjustment to the environmental state, will then ultimately determine the 
frequency of heat waves. However, a theory for these processes is, to our knowledge, still  lacking33. It is to be 
emphasized that laboratory experiments, like the ones of the present work are obviously not suitable to model 
the complex thermodynamics of atmospheric circulation where the water cycle and the associated latent heat 
exchange between the different layers of the troposphere (and between the troposphere and the stratosphere) 
contribute substantially to setting the aforementioned meridional temperature contrast and stratification. Heat 
waves and cold outbreaks are often associated with Rossby waves, and it is also frequently stated in the  literature1–5 
that polar amplification affects the weather at mid-latitudes markedly. The results from minimalistic experiments 
like ours may be of importance for the climate science community, since we can isolate weather variability related 
to Rossby waves. Thus, these findings may help disentangle some of the complex causal links in the climate 
system by providing a “test case” in which temperature fluctuations arise solely due to the flows governed by the 
baroclinic instability of the model atmosphere, and where the climate forcing—represented here by the average 
temperature contrast 〈�T〉—can be considered stationary.

An earlier work by our team already investigated a similar minimal model of the climate system through an 
ensemble of experiments in which the thermal forcing �T(t) was strongly time-dependent but identical through-
out a series of  runs18. That campaign demonstrated the importance of an ensemble approach in understanding 
climate-like dynamics. For highly nonlinear systems subject to time-dependent control parameter drift, long-time 
statistics of a single “realization” cannot be considered to be appropriate surrogates of a truly meaningful prob-
ability distribution over an ensemble of “parallel realizations”34–37. To better understand the findings reported 
by Vincze et al. (2017)18, it was necessary to conduct the long-run experiments discussed in the present work 
with different settings of stationary forcing, to provide statistics with which the earlier time-dependent forcing 
scenarios can be compared. The new results underline the conclusion of the earlier paper that, although the 
“ensemble standard deviation” of the observed temperature fluctuations—i.e. the spread of the possible outcomes 
with decreasing �T(t)—increases, this does not imply that the range of fluctuations within a single realization 
would increase. On the contrary, the Rossby wave related temperature fluctuation intervals would decrease for 
a smaller 〈�T〉 , a result that may be of relevance for better understanding the ongoing climatic processes related 
to Arctic amplification.

However, it is to be emphasized that our experiments did not intend to represent the global atmospheric 
circulation in its vast complexity with the plethora of phenomena that affect the actual local temperature records. 
Yet, as shown by previous research, the rotating annulus configuration provides an accurate insight into certain 
basic statistical properties of atmospheric temperature  fluctuations12, and even their extreme  statistics19,20.

(6)
dx

dt
= −�x + (φx + 1)η + η′ − φ�xη�,
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Data availability
Measured raw data are available upon request from the corresponding author (M. Vincze).
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