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ABSTRACT

We study the teleconnection between El Niño–Southern Oscillation (ENSO) and the Indian summer monsoon

(IM) in large ensemble simulations, the Max Planck Institute Earth SystemModel (MPI-ESM), and the Community

Earth SystemModel (CESM1). We characterize ENSO by the June–August Niño-3 box-average SST and the IM by

the June–September average precipitation over India, and define their teleconnection in a changing climate as an

ensemble-wise correlation. To test robustness, we also consider somewhat different variables that can characterize

ENSO and the IM.We utilize ensembles converged to the system’s snapshot attractor for analyzing possible changes

in the teleconnection. Our main finding is that the teleconnection strength is typically increasing on the long term in

view of appropriately revised ensemble-wise indices. Indices involving a more western part of the Pacific reveal,

furthermore, a short-term but rather strong increase in strength followed by some decrease at the turn of the century.

Using the station-based Southern Oscillation index (SOI) as opposed to area-based indices leads to the identification

of somewhat more erratic trends, but the turn-of-the-century ‘‘bump’’ is well detectable with it. All this is in contrast,

if not in contradiction, to the discussion in the literature of a weakening teleconnection in the late twentieth century.

We show here that this discrepancy can be due to any of three reasons: 1) ensemble-wise and temporal correlation

coefficients used in the literature are different quantities; 2) the temporal moving correlation has a high statistical

variability but possibly also persistence; or 3) MPI-ESM does not represent the Earth system faithfully.
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1. Introduction

Probably the most important teleconnection phe-

nomena are those of El Niño–Southern Oscillation

(ENSO) (Trenberth 1976; Trenberth 1984; Bjerknes 1969;

Neelin et al. 1998). ENSO is a natural, irregular fluctuation

phenomenon in the tropical Pacific region (Timmermann

et al. 2018) and mostly affects the tropical and the sub-

tropical regions; however, it has an impact on the global

climate system as well. A crucial and open question that

has challenged scientists for decades is how ENSO would

change as a result of the increasing radiative forcing due to

the increasing greenhouse gas concentrations. The IPCC

has low confidence in what would exactly happen to

ENSO in the future, even though they have high confi-

dence that ENSO itself would continue (Christensen et al.

2013). There have been several studies (e.g., Guilyardi

et al. 2009; Collins et al. 2010; Vecchi and Wittenberg

2010; Cai et al. 2015) that aimed to reveal how ENSO

might respond to greenhouse-gas forcing. However, most

of the applied methods have a common drawback: they

evaluate averages and further statistical quantifiers (in-

cluding variances, correlations, etc.) with respect to time

in a time-dependent dynamical system (i.e., in our

changing climate or in simplified models thereof).

In a changing climate, where one or more relevant pa-

rameters are changing in time, there can be no stationarity

by definition, whereas stationarity is crucial for the ap-

plicability of temporal averages, as illustrated by Drótos
et al. (2015) in a toy model. In realistic GCMs globally

averaged quantities seem to behave better, but the prob-

lem proves to be significant for local quantities and tele-

connections (Herein et al. 2016; Herein et al. 2017). Since

the ENSO events are identified by temperatures that are

warmer or cooler than average, and teleconnections are

defined as correlations between such anomalies, it is im-

portant to have a firmly established notion of averages

when climatic means are shifting, as also pointed out by

L’Heureux et al. (2013, 2017) and Lindsey (2013).

To properly address the problem of evaluating aver-

ages in a changing climate, in this study we turn to a

gradually strengthening view according to which the

relevant quantities of the climate system are the statis-

tics taken over an ensemble of possible realizations

evolved from various initial conditions (see, e.g., Bódai
et al. 2011; Bódai and Tél 2012; Deser et al. 2012; Daron

and Stainforth 2015; Kay et al. 2015; Stevens 2015;

Bittner et al. 2016; Herein et al. 2016; Herein et al. 2017;

Drótos et al. 2017; Hedemann et al. 2017; Lucarini et al.

2017; Suárez-Gutiérrez et al. 2017; Li and Ilyina 2018;

Maher et al. 2019). We can trace back this view to Leith

(1978), whichwas recently revived (Branstator and Teng

2010) and rediscovered independently also by others. In

contrast to weather forecasting, one focuses here on

long-term properties, independent of initial conditions,

in order to characterize the internal variability, as well as

the forced response of the climate. The mathematical

concept that provides an appropriate framework is that

of snapshot (Romeiras et al. 1990; Drótos et al. 2015)

or pullback attractors (Arnold 1998; Ghil et al. 2008;

Chekroun et al. 2011), and the concept’s applicability

has also been demonstrated in laboratory experiments

(Vincze et al. 2017) as well as to tipping dynamics

(Kaszás et al. 2019).
Qualitatively speaking, a snapshot attractor is a unique

object in the phase space of dissipative systems with

arbitrary, nonperiodic forcing, to which an ensemble of

trajectories converges within a basin of attraction. In

the climatic context, the ensemble members can be

regarded as Earth systems evolving in parallel, all of

which are controlled by the same physics and are sub-

ject to the same external forcing (Leith 1978; Herein

et al. 2017). If the dynamics is chaotic, convergence

implies that the initial condition of the ensemble is

‘‘forgotten’’: after some time (the convergence time)

the evolution of the particular ensemble becomes in-

dependent of how it was initialized; instead, the dis-

tribution of its members, at any time instant, becomes

determined by the natural probability distribution of

the attractor. This means that the ensemble members,

in the given time instant, characterize the plethora of

all possible weather situations permitted in the Earth

system in a probabilistically correct way (Drótos et al.
2017). The snapshot attractor and its natural distribu-

tion depend on time in general, and their time evolution

is determined uniquely by the forcing scenario of the

system. Note that ensemble statistics do not rely on any

statistical characteristics of time evolution.

In this paper we directly construct the snapshot

attractor and its natural probability distribution, following

Herein et al. (2017) (see also section 4), and apply our

methodology—foreseen already by Leith (1978)—to the

teleconnection of ENSO and the Indian summer mon-

soon. To our knowledge, it is the first time that the snap-

shot approach (taking care of the convergence) is used

in the context of the ENSO–Indian monsoon telecon-

nection. Although an externally forced system is almost

surely nonstationary, in a finite ensemble this signal might

not show up. Here we will resort to statistical tests against

the null hypothesis of stationarity in order to ‘‘detect

nonstationarity’’ and learn about its nature.

2. Subjects of the study

Our investigations concern ensemble simulations from

two state-of-the-art climate models: the Community Earth
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SystemModel (CESM; Hurrell et al. 2013) and the Max

Planck Institute Earth System Model (MPI-ESM;

Giorgetta et al. 2013).

The CMIP5 versions of these models were already

studied regarding how reliable their ENSO character-

istics are. It is known that both models underestimate

the ENSO asymmetry, but all of the CMIP5 models

suffer from this problem (Zhang and Sun 2014).Generally,

however, both models show relatively good ENSO

characteristics compared to observations (Bellenger

et al. 2014; Capotondi 2013). The pattern of the mon-

soon precipitation is quite realistic in both models (see

also our analysis in section 6a); however, the future

projections for the Indian region generally have a

moderate confidence (Freychet et al. 2015). In the re-

cent study of Ramu et al. (2018), the strength of the

ENSO–Indian monsoon (IM) teleconnection has been

found to be considerably underestimated in bothmodels

compared to observations. We must note, however, that

Ramu et al. (2018) calculate the correlation coefficient

with respect to time in a historically forced single run,

so that the resulting values are possibly unreliable (cf.

section 6a).

We consider five ensembles in total. The CESM com-

munity designed the CESM Large Ensemble (CESM-

LE) with the explicit goal of enabling assessment

of climate change in the presence of internal climate

variability (Kay et al. 2015). All realizations use a

single model version (CESM with the Community

Atmosphere Model, version 5) at a resolution of 1923
288 in latitudinal and longitudinal directions, with 30

atmospheric levels. The MPI-ESM (Giorgetta et al.

2013) was also used to produce ensembles (called to-

gether the Grand Ensemble or MPI-GE) to explore

internal variability in a changing climate (Stevens 2015;

Bittner et al. 2016; Maher et al. 2019). The single con-

figuration applied to this purpose is model version MPI-

ESM1.1 in low-resolution (LR)mode, which corresponds

to a horizontal resolution of T63 with 47 vertical levels in

the atmosphere, and to 1.58 horizontal resolution with 40

vertical levels in the ocean.

The CESM Large Ensemble consists of 35 comparable

members and covers the time span of 1920–2100.

Between 1920 and 2005, historical climate forcing

(Lamarque et al. 2010) is used, and the RCP8.5 (van

Vuuren et al. 2011) is applied afterward, reaching a

nominal radiative forcing of Q 5 8.3Wm22 by 2100.

The MPI-ESM historical ensemble (MPI-HE in what

follows) has 63 members unaffected by spinup artifacts

in the ocean (Maher et al. 2019) and runs from 1850 to

2005 under historical climate forcing (Lamarque et al.

2010). The nominal radiative forcing becomes thusQ5
2.1Wm22 by 2005 (similarly as in the CESM-LE). The

MPI-ESM RCP2.6 and RCP8.5 ensembles (which we

shall call MPI-RCP2.6E and MPI-RCP8.5E) con-

tinue the previous runs between 2006 and 2099 under

RCP2.6 and RCP8.5, respectively (van Vuuren et al.

2011): the former provides information about the

effects of a pathway peaking in the early twenty-first

century, while the latter assumes further growth in

the anthropogenic emission. Finally, the MPI-ESM

one-percent ensemble (MPI-1pctE in what follows),

having 63 members of reliable output, starts in 1850

with the same (preindustrial-like) external conditions

as the MPI-HE. Being an idealized experiment, the

CO2 concentration is increased in this case by 1% per

year until 1999, while the concentrations of other

greenhouse gases and radiative agents are kept constant.

The nominal radiative forcing (calculated via the loga-

rithmic response; Ramaswamy et al. 2001) reached by 1999

is Q 5 8.3Wm22.

Figure 1 gives an overview (Meinshausen et al. 2011)

of the forcing scenarios, interpreted in terms of the

nominal radiative forcing Q, in the time span of our

particular investigations (beginning in 1890; see later).

Note that the nominal radiative forcing Q is not a pa-

rameter of the system, so that its time dependence is

not a forcing from a dynamical point of view. Instead, we

treat it as a proxy for the aggregated effect of all dif-

ferent forcing agents (which include different tracers in

the atmosphere, as well as the varying solar activity and

land use—except for the MPI-1pctE).

To ensure memory loss (i.e., convergence to the

snapshot attractor; Drótos et al. 2015; Herein et al. 2016;

Drótos et al. 2017), in most cases we discard the first 40

years of the simulations (the only exceptions are the

FIG. 1. The nominal radiative forcing Q as a function of time in

the particular simulations within the timespan of our investigation.

For the nominal radiative forcing in the CESM-LE,MPI-HE,MPI-

RCP8.5E, and MPI-RCP2.6E, see Meinshausen et al. (2011). The

nominal radiative forcing in theMPI-1pctE has been calculated via

the logarithmic response (Ramaswamy et al. 2001).
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simulations forced by the RCP scenarios, which are

continuations of the historical simulation). We empha-

size that, in principle, a detailed and dedicated investi-

gation should be carried out in bothmodels to determine

the time scale of the convergence, as advocated in

Drótos et al. (2017). Due to technical limitations, how-

ever, this is far beyond the scope of the present study,

which we believe to nevertheless provide reliable results

with the assumption of maximum 40 years for the con-

vergence time; see Part I of the online supplemental

material.

We note that our estimates for the convergence time

correspond to the convergence properties that are de-

termined by the atmosphere and the upper ocean with

time scales of a few decades, and not those that char-

acterize the deep ocean and its abyssal circulation, which

has time scales of hundreds or thousands of years.

According to this time-scale separation, we conjecture

that the adjustment of the slow climate variables cor-

responding to the abyssal circulation does not influence

substantially the statistical properties investigated here.

Note that, otherwise, all the studies on the twenty-first-

century climate change performed by looking at the

properties of an ensemble of simulations would be

hopeless. The details of this time-scale separation in the

climate system and its particular implications remain the

topic of future research.

3. Characterizing ENSO in a changing climate

The phases of ENSO are traditionally characterized

by looking at carefully constructed climate indices,

which surrogate the dominant features of the behavior

of the fields of interest of the climate system. Most

directly—and commonly—the sea surface tempera-

ture (SST) is considered to characterize the fluctua-

tions of ENSO, which arise in part by oceanic Kelvin

waves closely confined to the equator (Dijkstra 2005).

Indices of ENSO, the so-called Niño indices (Trenberth

1997), are defined as the average SST in various rectan-

gular regions stretched along the equator, minus the

temporal mean of that, then divided by its temporal

standard deviation, but traditionally involving some

smoothing as well. Thereby, anomalously high and low

values of the Niño index are considered as ‘‘episodes’’ or
phases of the fluctuation phenomenon, called El Niño
and La Niña, respectively (Trenberth 1997). Here we

are not concerned with episodes; nevertheless, we will

naturally end up with using anomalies in our context

(section 4).

What we need to decide about is the equatorial Pacific

region of interest. We choose the box 58N–58S, 1508–
908W, which defines the Niño-3 index; that is, we

consider the average SST TN3 in this box. This is so

because we wish to check the consistency of our findings

in a given ESM with a previous report on observational

data analysis (Krishna Kumar et al. 1999) that considers

the Niño-3 index.

To demonstrate the robustness of the detected changes

in the ENSO–IM teleconnection in the MPI-ESM, or

the lack of that, we also consider the difference, denoted

by pdiff, between the seasonal mean of the sea level

pressure at Tahiti and at Darwin (pdiff 5 pTahiti 2
pDarwin). The difference pdiff is the basis of the Southern

Oscillation index (SOI) as defined by the Bureau of

Meteorology of the Australian Government, and mea-

sures the strength of the Walker circulation. This ver-

sion, not involving statistical preprocessing of the time

series of the sea level pressure before taking their dif-

ference, is also called the Troup SOI. An anomalously

low (high) value of pdiff, and so that of the SOI, indicates

an El Niño (La Niña) phase (Troup 1965), and, there-

fore, the SOI (pdiff) is negatively correlated with the

Niño-3 (TN3).

In Part II of the supplemental material, we recall from

Herein et al. (2017) that climate indices should be

treated carefully in a changing climate. In particular,

long-term temporal averaging has to be avoided in their

definition, and should be replaced by averaging with

respect to the ensemble (after convergence has oc-

curred). In the following whenever we mention Niño-3
or SOI, we mean the revised ensemble-wise index/

anomaly when needed: we subtract the ensemble mean

from the quantity in question, and divide the result by

the ensemble standard deviation. Indices or any anom-

alies defined in this proper way do not carry information

about temporal shifts in the climatic mean of the corre-

sponding original quantities (like TN3 or pdiff). Therefore,

investigations of shifts in climatic means have to be and

can be carried out separately from those targeting the

internal variability as represented by anomalies only.

We do not investigate the shift of means here, but it can

be found in Herein et al. (2018) for a setting somewhat

different from here.

4. The ENSO–IM teleconnection in a changing
climate of the ESMs: A forced response of
internal variability

a. Conceptual considerations

A special aspect of internal variability is the presence

of teleconnections: for certain variables characterizing

geographically distant regions, anomalies with respect

to their climatic mean do not occur independently in a

statistical sense. As an example, in the case of ENSO, if
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TN3 (pdiff) is anomalously low (high) during the summer

months, there is a good chance that the precipitation of

the Indian monsoon is anomalously high, and vice versa

(Trenberth 1997). However, Roy et al. (2019) reports

that the teleconnection strength can be very different

when filtering for canonical, Modoki, or mixed ENSO

events. Note that we will primarily consider the June–

August (JJA) average of TN3 and pdiff and the June–

September (JJAS; monsoon season) average of the

precipitation P to conform to traditional definitions and

because the truly instantaneous quantities would have

much lower correlation. We will nevertheless use ex-

actly one data point from each year, which is the time

period within which these quantities are defined.

The simplest way to quantify the strength of the (tele-)

connection between two given variables is via Pearson’s

correlation coefficient r (Rogers and Nicewander 1988).

Note that the correlation coefficient is obtained, by

definition, as the average of the product of the anomalies

(as defined by subtracting the average and dividing by

the standard deviation; cf. the previous section) of the

corresponding quantities. Consequently, a correlation

coefficient between anomalies is the same as that be-

tween the original quantities. Therefore, in our context

of the teleconnection, we can speak interchangeably

aboutTN3 andNiño-3 on the one hand, and pdiff and SOI

on the other hand. We underline that Pearson’s corre-

lation coefficient is limited to detect a linear correlation

between the two quantities of interest; nonetheless, it is

useful for having a first-order picture of the existing

correlations in the fields.

In Herein et al. (2017) it has been demonstrated that

the traditional evaluation of correlation coefficients,

carried out via averaging over time, provides us with

grossly incorrect results under a changing climate. It is

thus important to evaluate correlation coefficients with

respect to the ensemble: in nonautonomous systems

with explicit time dependence the two operations are

not equivalent. As evaluation over the ensemble can be

done at any ‘‘instant’’ of time (after convergence), it also

enables one to monitor the temporal evolution of the

strength of the teleconnection during a climate change.

This temporal evolution is one aspect of the response of

internal variability to an external forcing. This is what

we shall investigate in this section for the teleconnection

between ENSO and the Indian monsoon.

In particular, we numerically evaluate the ensemble-

based correlation coefficient between the ‘‘instantaneous’’

JJA averages of the SST (TN3)—or the sea level pressure

difference (pdiff) between (grid points closest to) Tahiti

(178310S, 218260E) and Darwin (128280S, 1308500E)—and

the ‘‘instantaneous’’ JJAS seasonal average precipitation

P over India [except for a few states in order to keep to the

all-India summer monsoon rainfall (AISMR) dataset be-

ing our reference; see Fig. 1 of Parthasarathy et al. (1994)];

with the ‘‘option’’ of pdiff it reads as

r5
hp

diff
Pi2 hp

diff
ihPiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(hp2
diffi2 hp

diff
i2)(hP2i2 hPi2)

q ,

where h. . .i denotes averaging with respect to the en-

semble. The time t here, concerning the ENSO–IM

teleconnection, is discrete with yearly increments, as

explained above; this is why we write ‘‘instantaneous’’

using quotation marks.

Our choice corresponds to investigating the direct

(i.e., nonlagged) influence of ENSO on the IM. There

also exists an indirect influence (Wu et al. 2012) between

the beginning of a given ENSO period (from December

to February) and the consecutive Indian summer mon-

soon. Interestingly, the sign of the correlation coefficient

between the ENSO characteristic and the IM precipi-

tation is opposite in this case. Beyond these influences,

Wu et al. (2012) also identify a ‘‘coherent’’ influence,

with origins in both seasons. These alternatives are,

however, out of the scope of the present paper.

b. Numerical results

Since the temporal character of the forcing is quite dif-

ferent in certain ensembles, the results are more easily

compared if we plot them as a function of the radiative

forcing Q instead of time. One should keep in mind,

however, that the response is always expected to exhibit

some delay (Herein et al. 2016), and that the nominal ra-

diative forcing Q is just a proxy for the aggregated effects

of different forcing agents (see section 2) [this can also be

formulated in a rather rigorous way using the formalism of

response theory; see discussion in Lucarini et al. (2017)].

The results are shown in this representation in Figs. 2a

and 2b for all ensembles considered. Due to the mod-

erate size of the ensembles, especially for the CESM-

LE, but also strongly affecting theMPI-ESMensembles,

the numerical fluctuation of the signals is considerable,

somuch that one cannot read off meaningful coefficients

for particular years (corresponding to individual data

points in our representation). The structure of the time

dependence thus remains hidden. What might be iden-

tified, however, from our plots are main trends or their

absence, with approximate values on a coarse-grained

temporal resolution. Had our ensembles been of infinite

size and, thus, able to accurately describe the distribu-

tion supported by the snapshot attractor, we would be

able to have information at all time scales.

As shown in Fig. 2 the MPI-ESM ensembles seem to

give a rather constant value, jrj’ 0.5, for the coefficient

[both with Niño 3 (TN3) and SOI (pdiff)], both when
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plotted as a function of Q (Figs. 2a,b) and when plotted

as a function of the time t (Figs. 2c,d). By a visual in-

spection, no trends can be identified with ‘‘confidence’’

even for the MPI-RCP8.5E or the MPI-1pctE. The

magnitude and the sign of the correlation coefficients

are in harmony with the observations (Walker and Bliss

1937; Parthasarathy and Pant 1985; Yun andTimmermann

2018). At the same time, the CESM shows very little cor-

relation. Such a large discrepancy is unexpected. For this

reason we do not examine the CESM here any further.

Note that the underestimation of the strength of the tele-

connection by the CESM agrees with Ramu et al. (2018).

After the visual inspection, we take to formally test-

ing if we can reject with high confidence the hypothe-

sis that the correlation coefficient is constant during

the timespan of the MPI-ESM simulations, or in any

(sub)intervals. Our test is based on the fact that the

distribution of the Fisher transform (Fisher 1915, 1921)

of an estimate of a given correlation coefficient r (i.e., its

area-hyperbolic tangent, which we shall denote by z)

calculated from a sample (in our case, an ensemble) of

given sizeN follows a known distribution to a very good

approximation: a Gaussian with a standard deviation of

1/
ffiffiffiffiffiffiffiffiffiffiffiffi
N2 3

p
, provided that the original quantities also

follow Gaussian distributions (Fisher 1936). Should the

latter conditions be met, the sampling distribution of z

would be the same in each year of a given ensemble

simulationwith the only possible difference appearing in

the mean of this distribution. Since calculations de-

scribed in Part III of the supplemental material support

that different years are independent for this single ex-

ceptional variable, the setup would become suited for a

Mann–Kendall test (Mann 1945; Kendall 1975) for the

presence of a monotonic trend in the time series of z,

whereby stationaritywould become rejectable. (Note that

nonmonotonic time dependence is out of the scope of a

single Mann–Kendall test, but testing in different inter-

vals may reveal nonmonotonicity, as discussed below.) To

keep simplicity, we evaluate Mann–Kendall tests for z

calculated from the original variables in the main text,

and give support for the negligible effect of their non-

Gaussianity in Part IV of the supplemental material.

We present values of the test statistic ZMK to indicate

the certainty of the presence of trends and also the sign

of detected trends (and show themore commonly used p

values in Part V of the supplemental material). We carry

out the test in all possible subintervals of our time series

(of annual data points) in order to gain some insight

into the possible inner structure of the simulations.

Note that this representation suffers from the so-called

multiple hypothesis testing problem enhanced by cor-

relation between neighboring data points of the plot

FIG. 2. The correlation coefficient between the all-India summer monsoon rainfall and (a),(c) Niño-3 or (b),(d)

SOI as a function of (top) the nominal radiative forcingQ and (bottom) time in different ensembles as indicated by

the coloring (see Fig. 1). For comparability,2r is plotted in (a) and (c). For visibility, MPI-RCP2.6E is not included

in (c) and (d). Consecutive years are connected by lines in all panels.
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(Wilks 2016); that is, even larger seemingly significant

patches may be false detections. However, the point-by-

point values of the test statistic are not corrupted, so that

the probabilities associated to these values are correct

and can be interpreted in the usual way.

Results for ZMK in the MPI-HE and the MPI-

RCP8.5E stitched together can be seen in Figs. 3a and

3b. Such a diagram could indicate if a trend is linear in

time, because in that case a stratification of the color

chart would be parallel to the diagonal or the hypote-

nuse of the right triangle of color. In contrast with this, a

‘‘hockey stick’’–like time dependence would instead re-

sult in a horizontal contour of low p values, in association

with the start year of the steep change. A further relevant

pattern will be a ‘‘dipole’’ of ZMK with an axis parallel to

the diagonal, corresponding to the emergence and the

subsequent reversal of a trend (a ‘‘bump’’ or a ‘‘ditch’’).

Note that these features are temporal, as opposed to a

possible relationship with the forcing (which might be

represented, e.g., by the radiative forcing Q, which is

not a linear function of time according to Fig. 1).

A steady increase in the teleconnection strength is an

attribute more so when Niño-3 characterizes ENSO (as

in Fig. 3a) as opposed to the SOI (Fig. 3b). In fact, with

the SOI a change is not even detected under the RCP8.5

scenario alone, only if the historical period is included.

A very certain trend begins within the historical period,

in the late twentieth century, and can be detected almost

irrespectively of the starting point of the interval, like a

hockey stick pattern. This is unexpected, as the histori-

cal forcing is the weaker one. It is even more interesting

to notice a trend with an opposite sign a few decades

later: as indicated by the dipole structure, the telecon-

nection first becomes stronger, and then loses strength.

Note the contrast with the Niño-3-based characteriza-

tion for which hard significant trends are traced out only

in the late twenty-first century: trends in the late twenty-

first century are practically absent when using the SOI.

To support the reliability of our methodology, we

present analogous results obtained with an independent

hypothesis testing technique in Part V of the supple-

mental material. In a completely different approach, the

slopes of linear fits displayed in similar diagrams also

trace out the same structure as that of Figs. 3a and 3b;

see Figs. 3c and 3d. Even a small-scale organization of

the diagrams along vertical and horizontal lines proves

FIG. 3. The ZMK values [color coded; jZMKj. 1.96 (corresponding to pMK , 0.05, shown in Fig. S6 in the online

supplemental material): red or blue, according to the sign] and slopes calculated in the MPI-HE and MPI-RCP8.5

stitched together for all possible subintervals of the whole time span. ENSO is represented by (a),(c) Niño-3 and

(b),(d) SOI.
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to be the same, which suggests that this organization is

not an artifact of the methodologies, but is presumably

due to the influence of the more outlying values of z.

The diagrams of the slopes in Figs. 3c and 3d also give

us a first estimate for the strength of assumedmonotonic

trends. Of course, these are very unreliable along the

main diagonal (cf. the low absolute values of ZMK in

Figs. 3a and 3b) but, in statistically significant areas of

the plots, they show how sudden the increase and the

drop in the teleconnection strength is for the SOI, and

that the strengthening is particularly fast in the late

twenty-first century for Niño-3.
As a test of robustness, we carry out the same evalu-

ation but exclude September from the monsoon season.

The diagrams of the test statistic ZMK (informing about

the certainty of the presence of a trend by being nor-

mally distributed in the absence of a monotonic trend)

and the slopes of linear fits are displayed in Fig. 4. We

conclude that the general structure of the changes in the

correlation coefficient is robust, even if the detectability

of change in some specific intervals is not robust.

To link what is seen when using Niño-3 and the SOI,

we extend our analysis to two further ENSO charac-

teristics: the Niño-3.4 index, considering the SST farther

west in the equatorial Pacific (in the box 58N–58S, 1708–

1208W; Ashok et al. 2007), and the box-SOI, extending

the box concept to the atmospheric sea level pressure

difference (replacing Tahiti and Darwin by the boxes

58N–58S, 808–1608E and 58N–58S, 1608–808W, respec-

tively; Power and Kociuba 2011). The results for these

two choices, shown in Fig. 5, are surprisingly similar to

each other and, furthermore, exhibit the main features

of both of the original choices: a gradual increase in the

teleconnection strength with an enhancement in the late

twenty-first century (Niño-3) and a ‘‘bump’’ at the turn

of the century (SOI). It is thus obvious that both Niño-
3.4 and the box-SOI are some kind of intermediate

representation of the ENSO phase between Niño-3 and

the SOI from the point of view of the teleconnection

with the Indian monsoon.

We further extend our analysis by performing the same

evaluation for the MPI-1pctE and for the combination of

the MPI-HE and the MPI-RCP2.6E; see Figs. 6 and 7, re-

spectively. When using Niño-3, a long-term increase in the

teleconnection strength is seen under any forcing. It is re-

markable that the strength of the teleconnection keeps in-

creasing even after the peak in the radiative forcing of the

RCP2.6 (Fig. 7). When following the RCP2.6 after the

historical period, the SOI-based characterization, surpris-

ingly, also ‘‘sees’’ this increasing teleconnection strength

FIG. 4. As in Fig. 3, but with September excluded from the monsoon season.
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in the late twenty-first century very well, unlike for the

RCP8.5 (Fig. 3). Finally, the MPI-1pctE is completely

different from the SOI point of view: the dipole pattern

indicates a weakening followed by a strengthening.

5. The ENSO–IM teleconnection in view of
observational data

In the context of observations, one is provided with a

single historical realization, and therefore no ensemble-

wise statistics can be evaluated. The obvious way to

check a change in time is to compare statistics belonging

to nonoverlapping time windows. A time series can even

be obtained by a moving window statistics. There are two

approaches to calculating moving cross-correlations.

One is a direct approach, calculating Pearson’s corre-

lation coefficient in any given time window. This way the

segment of the time series is ‘‘normalized’’ naturally by

the average and standard deviation of this segment.

Because of the removal of the mean, this is sometimes

viewed as detrending, besides a filtering out of low-

frequency variability. Yun and Timmermann (2018,

hereafter YT18) present their result in their Fig. 1b

following this approach. Alternatively, Krishna Kumar

et al. (1999, hereafter KK99) preprocess the time series,

before applying the direct method, by subtracting a

smoothed running mean in a centered window. We note

that with the latter approach, the resulting moving cor-

relation time series is shorter by a window size.

We apply both of these algorithms here, employing a

21-yr window, as did KK99 and YT18, although we use a

centered window for evaluating the correlation itself,

unlike YT18 (and probably also KK99) did without

justification. Stages and the result of this are shown in

Fig. 8, where we used the ERSST v5 (Huang et al. 2017)

and theAISMR (Parthasarathy et al. 1994; Mooley et al.

2016) observational data products for the SST and

Indian summer monsoon rainfall, respectively.

Our results do more or less reproduce that of KK99,

except perhaps that we see more variability before 1980.

[On the weakening of the teleconnection in the late

twentieth century, see also Kinter et al. (2002), Sarkar

et al. (2004), and Boschat et al. (2012).] It turns out also

that the direct method (YT18) results in approximately

the same time series in this scenario, except that r is most

typically, but not always, larger.

Nevertheless, we examine the robustness of the ‘‘sig-

nificance’’ of the weakening of the running correlation.

Prompted by the diversity of variables used in the liter-

ature, we perturb both the precipitation and SST variable

FIG. 5. As in Fig. 3, but for Niño-3.4 and the box-SOI.
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to be correlated with one another, whose results are

shown in Figs. 9a and 9b, respectively. By ‘‘perturbation’’

we mean considering alternatives either to the data

product or the area over which we calculate the mean.

To start with, instead of the AISMR data, we use the

CRU PRE v4.03 (Harris 2019a,b) data (available only

over land), masked with theAISMR regions for an exact

match in this respect. The different data product does

make a difference with respect to the ‘‘significance’’ of

weakening, indicating less of it in view of the CRU PRE

data. It also matters if instead of a mask given by the

shape of India [except for a few states; see Fig. 1 of

Parthasarathy et al. (1994)] we take the mean in the box

58–258N, 708–908E (YT18): there is less (more) weak-

ening after 1980 (around 1950). Furthermore, excluding

the monsoon rain in September also results in more

weakening around 1950. Otherwise, the little difference

after 1980 indicates that in this period the monsoon

season became shorter.

Using other data products for the SST, on the other

hand, namely ERSST v4 (Huang et al. 2015) (as also

used by YT18) and HadISST1 (Rayner et al. 2003),

makes a difference only before 1940. Finally, consider-

ing only the eastern half of the Niño-3 box shows again

less weakening after 1980, but leaves the period around

1950 largely unaffected. [We have checked that the

subtraction of a smoothed running mean before calcu-

lating the running correlation (KK99) brings about mi-

nuscule differences in all cases; results not shown.]

6. Discussion

a. Possible reasons for the apparent discrepancy
between model and observations

The contrast between the ensemble-wise (section 4) and

temporal (section 5) results obtained for theMPI-ESM and

observations, respectively, is constituted by the opposite

sign of the change in the strength of the ENSO–IM tele-

connection. This disagreement may have different reasons:

1) The ensemble-wise and temporal correlation coeffi-

cients do not quantify the same thing.

2) The temporal single-realization result features so

much internal variability that it does not actually

allow for detecting nonstationarity.

3) The model is not truthful to the real climate.

Regarding point 1 we recall that the ensemble-wise

correlation coefficient is an ‘‘instantaneous’’ (yearly)

quantity whereas the temporal correlation coefficient

is obviously using information from several years. The

latter is not really relevant in a changing climate, whereas

FIG. 6. As in Fig. 3, but for the MPI-1pctE. Note the shorter length of the simulation.
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the probability of the co-occurrence of the anomalies

of the two system components (ENSO and IM) is re-

flected correctly only in the former, as discussed in the

introduction.

As a further aspect of the difference, the ensemble-

wise r, unlike the temporal one, does not exclude cor-

relations of low-frequency variability; in principle it

could be the case that the latter was strengthening in the

twentieth century and it dominated over a weakening

correlation of higher-frequency variability.

Regarding point 2 we remark that in section 5 we did

not pursue hypothesis testing (as we did in section 4) as

the time series of moving correlations has an autocor-

relation time determined by the window size, and so it

does not satisfy, for example, the assumption of the

Mann–Kendall test. While this may be circumvented by

restricting the investigation to nonoverlapping windows,

such a techniquemakes obvious that the autocorrelation

introduced by windowing seriously reduces the effective

sample size. For instance, even if the original time series

of r lacks autocorrelation, a 21-yr windowing of a 140-yr

time series results in an effective sample size of no more

than 7, approximately. Nevertheless, it is surprisingly

common to see in publications an incorrect report on the

significance of, say, trends despite these aspects. It ap-

pears to us that KK99 also disregarded these consider-

ations when they claimed that the weakening of the

teleconnection is significant in a statistical sense. Indeed,

if the detection of trends or nonstationarity in this con-

text is already challenging when endowed with a 63-

member ensemble (section 4), it seems hopeless from a

single realization. See also Wunsch (1999), Gershunov

et al. (2001), and Yun and Timmermann (2018).

Nevertheless, it would be very valuable to be able to

rely on temporal statistics, by which observational cli-

mate data could be analyzed. As climate models can

represent some aspects of the climate inaccurately, our

only chance to gain an understanding of those aspects is

by analyzing observational data. Ben Santer advocates

(2019, personal communication) that the great value of

ensembles of climate model simulations, like the MPI-

GE or CESM-LE, is that they can serve as a testbed for

temporal statistics or algorithms. For example, one can

check how well ergodicity is satisfied in some given

context, which is known (Drótos et al. 2016) to be not

satisfied in a generic nonautonomous case.

Returning to point 1 in this respect, we can simply

evaluate the temporal correlations for all 63 converged

FIG. 7. As in Fig. 3, but for the MPI-RCP2.6E stitched after the MPI-HE. Note that the lower triangles are

identical to those in Fig. 3.
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members of the MPI-GE, and see if they typically

feature aweakening teleconnection like KK99 reported.

Figure 10 shows the result with both kinds of ‘‘de-

trending.’’ We see that the ensemble average temporal

correlation [a quantity also evaluated by Mamalakis

et al. (2019)] is rather steadily increasing in the historical

period, which lets us conclude that the disparate treat-

ment of low-frequency correlations does not bring about

a typical opposite trend here. Nevertheless, the different

behavior of the ensemble-mean temporal correlation

under RCP8.5—increasing with the indirect method

of KK99 and stagnating with the direct method of

YT18—cautions us to keep an open mind about unex-

pected differences.

The same figure also addresses the possibility of point

2. The variances of the moving correlations are very

FIG. 8.Moving temporal correlation coefficient based on observational data (see also themain text): (a) JJAS all-

India summer monsoon rainfall data; (b) JJA mean Niño-3 index based on the ERSST v5 dataset. In both of these

diagrams a 21-yr runningmean is shown as well as a smoothing of it obtained by the Savitzky–Golay filter (of order 3

and a window size of 21 years, applying Matlab’s ‘‘sgolayfilt’’). This is what is subtracted from the original data, in

ways of detrending, following KK99. (c) ‘‘Anomalies’’ obtained following KK99, providing visuals of correlation.

(d) The correlation coefficient itself, obtained by both the direct method of YT18 and the method of KK99.

FIG. 9. Moving temporal correlation coefficient, following YT18, based on various observational variable

combinations. Robustness is examined by ‘‘perturbing’’ both the (a) precipitation and (b) SST variables. The

legends indicate the following combinations: #1: ERSST v5, AISMR; #2: ERSST v5, CRU PRE masked with the

AISMR regions; #3: ERSST v5, CRUPRE in the box 58–258N, 708–908E (YT18); #4: (ERSST v5, AISMR JJA only;

#5: HadISST1, AISMR; #6: ERSST v4, AISMR; and #7: ERSST v5 eastern half of Niño-3 box, AISMR.
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large, but it is also not very unlikely to have a smaller

variance for many decades followed by a drift (i.e., a

considerable apparent weakening or strengthening of

the teleconnection). We find examples for this among

the 63 ensemble members. Actually, it is recognized in

many studies (Kinter et al. 2002; Ashrit et al. 2003;

Sarkar et al. 2004; Ashrit et al. 2005; Annamalai et al.

2007; Kitoh 2007; Chowdary et al. 2012; Li and Ting

2015) that ‘‘modulations’’ and corresponding apparent

trends in the studied correlation coefficient, when cal-

culated over different time intervals [as done by, e.g.,

Boschat et al. (2012) and R. Li et al. (2015)] or over

moving (sliding) time windows [as done by, e.g., Krishna

Kumar et al. (1999), Ashrit et al. (2001), Kinter et al.

(2002), Ashrit et al. (2003),Ashrit et al. (2005),Annamalai

et al. (2007), Kitoh (2007), Chowdary et al. (2012), and

Li and Ting (2015)], can appear as a result of internal

variability. In particular, Li and Ting (2015) conclude

that the observedweakening of the teleconnection in the

late twentieth century would be due to internal variabil-

ity. Sarkar et al. (2004) go beyond this saying, on the basis

of physical arguments, that ‘‘the effect of ENSO on

Indian precipitation has not decreased but on the con-

trary it has increased in recent times’’ (p. 4), aligning, in

fact, to our finding in the MPI-GE, but claiming that

actual strengthening was dominated by internal vari-

ability seeing a weakening.

Finally, we address the possibility of model errors,

point 3. We start with presenting maps of global SST

trends for the historical period in Fig. 11, comparing the

MPI-ESM and observations. All-year data are used to

fit a straight line whose slope represents the trend. As for

the model, we show both the ensemble average and

standard deviation of the trends.

Like some earlier versions (Collins et al. 2005), the

version of the MPI-ESM used to generate the MPI-GE

seems to have a La Niña–like warming, that is, more

warming in the western than in the eastern equatorial

Pacific. Considering the ensemble-wise variance glob-

ally, the observed warming (and cooling) trends seem to

be consistent with the model. Note that the observed

equatorial Pacific warming, like the ensemble mean in

the MPI-GE, is La Niña–like, and it is in disagreement

with the report of Lian et al. (2018) on a cooling instead,

even if in the eastern equatorial Pacific. We do not

pursue here rigorously (Wilks 2016) the question of the

(in)consistency of these patterns, although it should be

clear that it would be just a matter of dataset size to

detect inconsistency.

We continue with similar maps of JJAS precipitation

climatology over India shown in Fig. 12. It is clear that

themodel has less rain over land, possibly partly because

of its coarser resolution, so that high mountains that

‘‘force’’ precipitation are not resolved. Increasing model

resolution has been plausibly indicated by Anand et al.

(2018) to reduce model biases (see their Fig. 6) also over

the sea. The latter might be a clue that, due to the con-

servation of water, negative precipitation bias over high

mountains and positive biases nearby over the ocean

can be related. Considering the ensemble-wise vari-

ability too, the discrepancy can be indeed considered a

bias, not just a difference by chance or statistical error.

However, the patterns between model and observa-

tions certainly bear a resemblance. The patterns for the

trends, on the other hand, are less similar; see Fig. 13.

Furthermore, themagnitude of some local trends in the

observation exceeds by far anything in any realization

of the model.

While this might be a clue to the origin of the dis-

crepancy between a possible weakening temporal cor-

relation in observations and a typically strengthening

one in the model, we emphasize that a temporal corre-

lation of detrended data is hoped to quantify some re-

lationship between fluctuations rather than forced trends

FIG. 10. Moving temporal correlation coefficient for all converged members of the MPI-GE in the historical

period continued seamlessly with the RCP8.5 forcing scenario, following both (a) KK99 and (b) YT18. The thin

gray lines show all the realizations while three realizations are shown in color, providing examples. Thick blue lines

show the ensemble average of the temporal correlation, which are blown up in insets to better indicate any trend.
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of the climatic mean signal. Nevertheless, in conclusion,

if the discrepancy is to do with model errors (point 3),

then it is more likely coming from the side of the pre-

cipitation than the SST.

However, when regarding the particular quantities

at the basis of our analyses of the teleconnection,

Fig. 14a shows that the average Indian monsoon

rainfall in the model and observations seem to have

FIG. 12. Climatological JJASmean precipitation in model and observation. (a) Ensemble mean and (b) standard

deviation of the JJAS mean precipitation in the MPI-HE (1880–2005). (c) JJAS mean precipitation in the CRU

PRE (1900–2010) dataset (data available only over land).

FIG. 11. Climatological SST trend in model and observation. (a) Ensemble mean and (b) standard deviation of the SST trend in the

MPI-HE (1880–2005). (c) SST trend in the ERSST v5 (1880–2016) dataset.
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consistent fluctuation characteristics and perhaps also

trend, even though the underestimation of the rainfall

by the model is also seen from this angle. The Niño 3

index or TN3, shown in Fig. 14b, can be described very

similarly: despite a 28C cooler model, the variance

and temporal characteristics of the fluctuations seem

to closely resemble each other in the model and

observations.

b. The nonlinearity of the response and possible
reasons for that

In view of the Niño-3–AISMR correlation (see, e.g.,

Figs. 3a, 4a, and 6a) the possibility that the forced response

of the teleconnection would be approximately linear can-

not be excluded. However, representing ENSO by the sea

surface temperature just in a somewhat more westerly box

FIG. 13. As in Fig. 12, but for long-term temporal trends of JJAS mean precipitation.

FIG. 14. Comparison of large-area averages in model (MPI-ESM) and observation (precipitation: AISMR,

magenta; SST: ERSST v5, blue): (a) JJAS precipitation and (b) JJA SST. To match the AISMR data, precipitation

in the model is averaged over the AISMR areas (India, except for a few states; see main text). The JJA SST is

averaged over theNiño-3 box. Thin gray lines represent all convergedmembers of theMPI-GE, while three colored

lines show examples of individual members; the thick blue lines show the ensemble mean.
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(Niño-3.4), or, by the SOI, nonlinearity—and what is

more, nonmonotonicity—becomes obvious (see, by

contrast, Figs. 3b, 4b, 5b, and 6b). We shall first discuss

possible reasons for nonlinearity even if the forcing

might be considered relatively weak in all scenarios

(from the point of view of response theory; Ruelle 2009;

Lucarini et al. 2017). Remember that temporal line-

arity has to be distinguished from a linear response to

forcing, but nonmonotonicity in Fig. 5 excludes both

options. We also recall that the teleconnection keeps

strengthening even after radiative forcing peaks inRCP2.6

(see Fig. 7).

In the slightly different setup of Herein et al. (2018),

considering precipitation only in the northern part of

India, from an analysis of the sensitivity of hypothesis

tests to stationarity, we concluded that the strength of

the teleconnection in view of the SOI cannot respond to

the radiative forcing Q instantaneously and linearly,

since otherwise those tests would have had to detect

nonstationarity also in the MPI-RCP8.5E alone and

the MPI-1pctE (beyond the MPI-HE), which was not

the case.

Some very strong form of nonlinearity could explain

the results in principle. However, another possible ex-

planation lies in the radiative forcing Q not being a dy-

namical forcing (i.e., a single quantity that appears

explicitly in the equations of motion). That is, a causal

response function might not exist between Q (as pre-

dictor) and r (as predictand; Lucarini 2018).

In particular, the strength of the teleconnection may

respond in a different way to variations in different

forcing agents. Remember that the nominal radiative

forcing Q represents the aggregated effects from sev-

eral different agents, and responses might not be possi-

ble to be interpreted in terms of variations in the single

quantityQ. The underlyingmechanismsmight even turn

out to be not or not directly related to the increase in the

net energy flux.

In fact, the differentiation of responses with respect to

different forcing agents would not be very surprising. As

shown by Bódai et al. (2018) by considering a (globally

homogeneous) CO2 forcing alone, while the resulting

Q might act as a dynamical forcing with respect to the

surface temperature, it does not do so, for example, with

respect to the temperature at the tropopause (Bódai
et al. 2018). The teleconnection of ENSO with the

Indian summer monsoon might indeed involve a physical

mechanism not restricted to the surface, or to observables

that would secure the causality of the ‘‘response’’ of the

teleconnection to Q. If we add that the response in the

climatic mean of the Indian summer monsoon has actu-

ally been found by Li and Ting (2015; however, by uti-

lizing techniques based on temporal averaging) to be

governed by different mechanisms under aerosol forcing

(related to volcanism, or, indeed, large-scale pollution in

South and Southeast Asia) and greenhouse gas forcing,

we can easily imagine that the fluctuations of the Indian

summer monsoon respond differently to these two kinds

of forcings, causing the teleconnection to respond in a

different way, too.

Note that volcanism is enhanced in the late twentieth

century when changes in the strength of the telecon-

nection are first prominently seen in the MPI-GE. In

fact, a hypothesis has been put forward by Maraun and

Kurths (2005) that after major volcano eruptions in the

southwest Pacific the ‘‘cooling effect could reduce the

land/sea temperature gradient and thus make theMonsoon

more sensitive to ENSO influence’’ (p. 4). These authors

found more regular oscillatory ENSO dynamics and a

phase locking between ENSO and the monsoon in the

observed time series after major volcano eruptions in

southern Indonesia, which, they claim, should be reflected

in an increased correlation, perhaps (see below) consis-

tent with our finding. This could also be an indication

that a single realization contains already a lot of infor-

mation about the forced response in terms of a nonlinear

quantifier of the teleconnection, as opposed to Pearson’s

‘‘linear’’ correlation coefficient. Taking into account that

the pure ensemble-based description of teleconnections

is the statistically most relevant one and is usually more

robust than single-realization temporal techniques, it

might prove to be extremely fruitful to carry out an

ensemble-based analysis but replacing Pearson’s corre-

lation coefficient by e.g., Spearman’s ‘‘nonlinear’’ rank

correlation coefficient.

Nevertheless, Maraun and Kurths (2005) claim to not

disagree with KK99 about the decrease of the correla-

tion strength as a forced response. They describe a

transition near 1980 from a 1:1 phase locking into a 2:1

phase locking, with the Indianmonsoon oscillating twice

as fast. This connection, they claim, would be ‘‘invisible

to (linear) correlation analysis,’’ or rather the correla-

tion would be destructed by the additional monsoon

peak. Note, however, that nonstationarity is not yet

verified for observations (section 6a), so that the picture

might be more complicated than sketched by Maraun

and Kurths (2005). From this point of view, it could be

checked if the MPI-ESM features the same effect in

terms of the phase difference analyzed by them.

The above discussion shows many possibilities for

a nonlinear response. However, we have also found

considerable variations in the results when choosing

different characteristics of ENSO. Nevertheless, a long-

term increase in the ENSO–IM teleconnection strength

is present in every scenario when utilizing an area-based

index. Furthermore, a ‘‘bump’’ is also rather consistently
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detected under the combination of the historical and

RCP8.5 forcings at the turn of the century if the ENSO

characteristic is based on some more western part of the

Pacific. It is only for the pressure difference pdiff between

two grid points that a rather erratic behavior is found.

Such a quantity should be more sensitive when the

spatial patterns playing the main role in the telecon-

nection phenomenon are not simple and when these

patterns change substantially even if the bulk does not.

While the analysis of changes in the ENSO pattern

[usually investigated by empirical orthogonal functions

(EOFs)] may already prove to be informative, the pat-

terns most relevant for the teleconnection can be identi-

fied by the ‘‘maximal covariance analysis’’ (MCA) or

‘‘canonical correlation analysis’’ (CCA). One can evalu-

ate these also ensemble-wise, similarly to the recently

developed snapshot EOF technique (SEOF; Haszpra

et al. 2020), by which changes in these patterns can be

studied or detected. [See the SEOF’s application to

ENSO in Haszpra et al. (2020); one may call the new

techniques SMCAand SCCA.] In principle, it may still be

that such analyses yield a different picture depending on

using the SST or the sea level pressure to characterize

ENSO. We will investigate these matters as future work.
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