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ABSTRACT

Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received con-

siderable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer

(June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has

been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large

Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface

temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large ‘‘initial

condition’’ Earth systemmodel ensembles and 31 CMIP5models’ preindustrial control simulations to show that the

sameatmospheric process, resembling theobservedone and theone found in theCESM-LE, alsodominates internal

sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future sce-

narios, regardless of themodeling environment. However, all models exhibit limitations in replicating themagnitude

of the observed local atmosphere–sea ice coupling and its sensitivity to remote tropical SSTvariability in thepast four

decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about

models’ credibility in simulating interactions of sea ice variability with theArctic and global climate systems. Further

efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases

and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.

1. Introduction

The recent dramatic reduction in summer [June–August

(JJA)] Arctic sea ice cover has become an iconic symbol of

climate change (Vaughan et al. 2013). The scientific com-

munity has reached broad consensus that the observed sea

ice decline is mostly attributable to anthropogenic forcing

and its associated positive feedbacks, collectively known as

Arctic amplification (Deser et al. 2010; Cohen et al. 2014;

Screen and Simmonds 2010; Simmonds 2015; Notz and

Stroeve 2016; Screen et al. 2018; Jahn 2018). In addition, it is

well known that internal variability has played an important

role in regulating sea ice decadal variability in the past (Day

et al. 2012; Zhang 2015; Notz and Marotzke 2012; England

et al. 2019). However, the relative contribution of internal

variability to the total sea ice change and how models sim-

ulate the melting process due to internal variability are still

unclear, which hinders us from making a more reliable

projection ofArctic sea icemelting in the upcomingdecades.

Internal drivers of sea ice variability have been sug-

gested to originate from both oceanic (Zhang 2007;

Tokinaga et al. 2017) and atmospheric processes (Lee

2012; Notz 2014; Swart et al. 2015; Grunseich and

Wang 2016; Ding et al. 2017; Wernli and Papritz

2018; Olonscheck et al. 2019; Labe et al. 2019). Previous

research successfully linked observed Arctic summerCorresponding author: Qinghua Ding, qinghua@ucsb.edu
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circulation anomalies—featuring either a year-to-year

change or a low-frequency trend toward regional geo-

potential height rise above Greenland and the Arctic

Ocean—to September sea ice variability over the past

four decades and drew attention to the importance of a

local Arctic internal atmospheric process driving sea ice

variability (Ding et al. 2017, 2019). This circulation

pattern resembles a barotropic anticyclone favoring a

circulation-driven tropospheric warming and moisten-

ing and manifests as the primary mechanism of the local

atmosphere–sea ice coupling (Ding et al. 2017, 2019).

Analysis by Ding et al. (2019) using the fully coupled

CESM1Large Ensemble (CESM-LE) simulations alone

attributes 40%–50% of the observed summer sea ice

melting since 1979 to this internal atmospheric process,

which is also suggested by Hahn et al. (2018) to be in

connection with the recent rapid Greenland ice sheet

melt. Additionally, the Atlantic multidecadal oscillation

and the Pacific decadal oscillation were both suggested

to be major internal drivers of Arctic surface tempera-

ture and sea ice variability via their related ocean and

atmosphere heat transport on multidecadal/centennial

time scales (Chylek et al. 2009; Zhang 2015; Screen and

Francis 2016; Castruccio et al. 2019).

Besides these two prominent extratropical sea surface

temperature (SST) modes, which are believed to be

important due to their proximity to the Arctic, more

recent studies have revealed that internal SST variability

residing in the tropical Pacific can also have substantial

impact on Arctic climate (Ding et al. 2014; Baxter et al.

2019; Screen and Deser 2019). Meehl et al. (2018), using

an atmosphere-only model, suggested that summer sea

ice variability is more sensitive to SST anomalies in the

tropical Atlantic in line with a more recent study that

emphasized the importance of an atmospheric bridge

connecting the tropical Atlantic and Pacific (McCrystall

et al. 2020). In addition, Baxter et al. (2019) showed

observational and modeling evidence that a Rossby

wave train, induced by a cold SST anomaly in the east-

central tropical Pacific, can propagate into the Arctic

and manifest as an anomalous high pressure over the

Arctic Ocean. This high pressure plays a key role to

physically link September sea ice variability with tropical

SST changes (Baxter et al. 2019; Ding et al. 2017, 2019).

Nonetheless, remote drivers of Arctic sea ice vari-

ability are still controversial. Svendsen et al. (2018) im-

puted an important role for Pacific decadal variability in

driving the early-twentieth-century warming and pro-

posed that the current transitioning of the interdecadal

Pacific oscillation (IPO) from cooling to a warming

phase can lead to an accelerated Arctic warming.

Consistently, Screen and Deser (2019) also attribute an

important role for Pacific Ocean variability in the

timing of a seasonally ice-free Arctic in the CESM-LE

simulations. However, Ding et al. (2019) and Baxter

et al. (2019) both note that the summer IPO–Arctic

linkage in the CESM-LE is different from that in

observations. Observations reveal an out-of-phase rela-

tionship between tropical and Arctic surface tempera-

ture trends: negative tropical SST changes are associated

with positive Arctic surface temperature changes.

Nevertheless, CESM-LEhistorical simulations feature an

opposite trend: positive tropical SST trends fall in line

with positive Arctic surface temperature trends. In

addition, Blanchard-Wrigglesworth and Ding (2019) re-

cently realized that summertime tropical–Arctic linkages

are quite weak in the CESM-LE. The complex nature of

how lower latitude processes may influence Arctic cli-

mate change is further exemplified by atmosphere-only

model relaxation experiments (Ye and Jung 2019) along

withDong et al. (2019)who highlighted how important the

differences in the relative contribution of regional specific

Pacific surface warming in global feedback changes

are. Furthermore, Bonan and Blanchard-Wrigglesworth

(2020) recently proposed that the relatively short obser-

vational recordmay hinder us from fully understanding the

stationarity of tropical–Arctic linkages.

All these emphasize existing nontrivialities of tropical–

Arctic teleconnections and that tropical forcing onArctic

climate simulated in the CESM-LE should be treated

cautiously. More large ensemble simulations are needed

to evaluate the common features and performance in

simulating tropical–Arctic linkages across all available

models in the community and whether models share a

similar atmosphere-driven process governing Arctic sea

ice variability as revealed in observations and the CESM-

LE (Ding et al. 2017, 2019). Recently, six additional large

ensembles (from five independent modeling centers)

have become available and four of them provide neces-

sary variables for an analysis of the atmosphere–sea

ice coupling, which provides a newopportunity to achieve

our goal. However, a total of five large ensembles

(including the CESM-LE) are still not enough to repre-

sent the full spectrum of models’ performance in simu-

lating sea ice response to the atmosphere. To increase

models’ diversity in this study, we use a complementary

way to explore models’ internal variability through a

pseudoensemble method (Rosenblum and Eisenman

2017; Ding et al. 2019) focusing on the preindustrial

control simulations from CMIP5. By comparing the five

large ensembles with 31 long (longer than 200 years of

integration) control simulations from CMIP5, we aim to

search for common features of local and remote atmo-

spheric drivers of internal sea ice variability in the pre-

industrial, historical, and future simulations in multiple

warming scenarios as well as to assess the ability of
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current climate models to capture observed features of

these local and remote drivers.

Since the atmosphere–sea ice interactions may share

some similar coupling mechanisms on year-to-year and

low-frequency time scales in observations (Ding et al. 2017,

2019), we focus our model analysis on both year-to-year

(using correlation analyses in section 4a) and low-frequency

(using a linear trend-based method in sections 4b–d) time

scales when studying the atmosphere–sea ice coupling. Our

study, therefore, provides a chance to gain a deeper insight

into physical mechanisms behind both the recent sea ice

loss and year-to-year variability in summer. Through our

analysis, we also aim to advance our understanding of

tropical–Arctic linkages and their possibly decisive role in

determining the interannual and decadal prediction of

summertime Arctic sea ice.

2. Data and methods

a. Reanalysis, SST, and sea ice data

Weusemonthly geopotential heightZ and temperatureT

data at 27 pressure levels and the surface temperature (TS)

variable from the European Centre for Medium-Range

Weather Forecasts interim reanalysis (ERA-Interim, here-

inafter ERA-I) (Dee et al. 2011). Despite uncertainties be-

tweendifferent reanalysis datasets,Ding et al. (2017) showed

that ERA-I well reproduces the radiosonde measurements

in and around the Arctic, therefore we compare our model

results with ERA-I. SST data are obtained from ERSSTV5

(Huang et al. 2017). Sea ice data are derived from the

National Snow and Ice Data Center (NSIDC) climate data

record of passive microwave sea ice concentration (SIC),

version 3, of theNSIDC (Cavalieri et al. 1996).We calculate

sea ice area (SIA) as the product of ice concentration and

grid element area in each sea ice grid. Then the total

September sea ice area index (SIA index) is constructed as

the sum of sea ice area in all Arctic grid cells where ice

concentration is greater than 15%. Given the sensitivity of

sea ice’s annualminimum to climate variability in theArctic,

we focus on the September total sea ice area index from

observations and each of the model simulations.

b. Time frame

We target our historical analysis at the 1979–2012

period when the strongest September sea ice melting

is observed along with remarkable JJA geopotential

height rise above northeastern Canada and Greenland

(Ding et al. 2014, 2017, 2019; Mioduszewski et al. 2016).

After 2012 the Arctic circulation shows a pattern with

less prominent height rise and a slowdown in September

sea ice melting (Swart et al. 2015; Baxter et al. 2019).

Results, however, appear to be insensitive to the chosen

time window. Our future analysis, involving the RCP2.6,

RCP4.5, and RCP8.5 scenarios (Taylor et al. 2012), is

focused on the next three decades until 2050, when the

models show the strongest sea ice melting (Fig. 1).

c. Model experiments: Five large ensembles,
preindustrial, and historical simulations in CMIP5

Internal variability is an inherent feature of the cli-

mate system. When creating single-model large ensem-

ble simulations, unlike the CMIP5 ensemble, the same

model is run several times with small perturbations in

the initial condition, thus the single runs—that share the

model physics and the external forcing—are considered

parallel realizations of the same model. In this way in-

ternal variability and the forced component are sepa-

rable within a certain model, which is an advantage over

using multimodel simulations when exploring internal

processes in the climate system (Drótos et al. 2015).

Here we utilize five currently available ‘‘initial condi-

tion’’ large ensembles (LE) of fully coupled Earth

System Models collected by the U.S. CLIVAR Large

Ensembles working group (Deser et al. 2020) including

(i) theMax Planck Institute 100-memberGrandEnsemble

(MPI-GE; Maher et al. 2019), (ii) the CanESM2 50-

member LE (CanESM-LE) (Kirchmeier-Young et al.

2017), (iii) the 40-member CESM-LE (Kay et al. 2015),

(iv) theCSIROMk3.6 30-member LE (Jeffrey et al. 2013),

and (v) theGFDLCM3 20-member LE (GFDL-LE) (Sun

et al. 2018). We use model output for 1979–2080 with

CMIP5 historical forcing (Taylor et al. 2012) until 2005 and

RCP8.5 forcing for 2006–80.Additionally, we use the other

two available RCP2.6 and RCP4.5 forcing scenarios from

MPI-GE for 2006–80, which allows us to examine inter-

actions between internal climate variability and anthropo-

genic forcing with different intensity. In addition, we utilize

historical 1 RCP8.5 (1979–2080) simulations of 31 climate

models from CMIP5 and preindustrial simulations of the

same group of CMIP5models (Table 1). These preindustrial

runs contain integrations longer than 200 years representing a

realization of one individual model. The reason we include

these runs in our study is to assess whether the bias in Arctic

teleconnections from the five large ensembles are common

across all available models in CMIP5. To reduce uncertainty

arising from the different model physics, we will primarily

focus on the mean of four of the five large ensembles (ex-

cludingCSIRO-LE; for details see section 3) and themeanof

31 preindustrial simulations and before averaging all model

outputs are regridded onto the ERA-I 1.58 regular grid ap-

plying the ERA-I land–sea mask.

d. Statistical significance and MCA

We use the Student’s t test to calculate significance of

both correlations and composite values. Linear trends of
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FIG. 1. (a) Time evolution of the observed (1979–2017) (purple), the multimodel ensemble mean of CMIP5 models (gray), and the

forced model component of five LE simulations (single-model LE historical 1 RCP8.5 ensemble mean) September SIA indices (1979–

2080) as indicated on the legend (106 km2). Also shown is the time evolution of the ensemble mean (thick solid line) and the slow (thin

solid line) and fast (dashed line) groups (based on 15% of the total ensemblemembers) for (b)MPI-GE, (c) CanESM-LE, (d) CESM-LE,

(e) CSIRO-LE, and (f) GFDL-LE, alongwith (g) 31 CMIP5model SIA indices (thin gray lines) and themultimodel ensemblemean (thick

gray line). (h) Box-and-whiskers plot of September total SIA linear trends (1979–2012) in the five LE simulations (indicated below the x

axis) and the observed trend (red dashed line: 20.95 3 106 km2 decade21). The whiskers extend to 1.5 3 IQR. Crosses mark average

values; plus signs mark the outliers (outside 1.5 3 IQR). The median is indicated with an orange horizontal line.

7434 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/17/7431/4984136/jclid190803.pdf by guest on 01 August 2020



time series are removed each time before calculating

correlations.Maximumcovariance analysis (MCA)—which

uses singular value decomposition of the covariance matrix

to search for optimally coupled patterns between the two

input fields (Bretherton et al. 1992)—is applied to explore

the covariability between Arctic sea ice and atmospheric

circulation.

e. Fast-minus-slow composite: A simple but efficient
way to distinguish internal from forced variability

Teasing apart internal variability of any observed and

simulated variable from its forced component is chal-

lenging. Here, making use of the state-of-the-art large

ensemble simulations, we implement a simplemethod to

separate atmospheric processes originating from inter-

nal climate variability from those resulting from the

models’ forced component, which is regarded as the

cumulative effects of anthropogenic plus natural exter-

nal forcing. Because we are especially interested in

searching for an internal atmospheric process acting as a

driver upon summer sea ice melting as described inDing

et al. (2019), we focus on the spread of September total

SIA index variable between the members of the en-

semble that lets us separate groups of members showing

fast and slow melting for a given time period (based on

linear trends). Having identified those members of the

fast- and slow-melting groups we average the corre-

sponding linear trends in JJA, for example, 200-hPa

geopotential height Z200, in each group and calcu-

late the difference between the two Z200 composites

(divided by two, so as to scale to the ensemble mean).

We do the same with zonal mean geopotential height Z,

zonal mean temperature T, surface temperature TS and

September SIA. We will refer to the difference of the

fast and slow groupZ200, Z, T, TS, and SIA trends as the

fast-minus-slow Z200, Z, T, TS, and SIA composites,

respectively. Because all ensemble members are forced

in the sameway, the fast-minus-slow composites remove

the forced signal and retain signals that originate from

fundamental internal atmospheric variability. Since

correlation between sea ice and a given atmospheric

variable, assuming linearity, reflects the strength of the

coupling between them, we can compare the composite

trend patterns to the results obtained from the correla-

tion analysis to determine whether a similar pattern is

present over the two time scales. The selection of the

number of ensemble members belonging to the fast and

slow groups is based on choosing;15% (approximately

1 standard deviation from the mean) of the total number

of ensemble members (members in each group: MPI-

GE: 15, CanESM-LE: 7, CESM-LE: 6, CSIRO-LE: 5,

and GFDL-LE: 3 members).

To account for possible limitations of the fast-minus-

slow composite, we further explore how well the fast-

and slow-melting groups represent the total ensemble

spread of the simulated atmosphere–sea ice coupling. In

doing so, first, we calculate linear trends in all members

of a given LE over 1979–2012 for both JJA Z200 and

September SIC within the Arctic (north of 608N).

Second, we remove the ensemble mean trend from each

member, so the residual trends of each member only

reflect inherent internal variability of a model over the

selected time period. To understand how sea ice and

Z200 are coupled in the Arctic due to pure internal

variability, we calculateMCA (Bretherton et al. 1992; Li

et al. 2017) between JJA Z200 and September SIC trend

fields across all the members in a given LE. In this way,

the time expansion coefficients will not reflect temporal

changes, rather member series, which we compare with

themagnitude of September total SIA index linear trend

derived from each member. The comparison reveals

that the fast and slow melting groups (based on 1

TABLE 1. The 31 climate models in the CMIP5 historical 1
RCP8.5 and preindustrial control experiments that were used in

the study, and the length of the preindustrial (PI) run. Expansions/

definitions of the models are available online (https://www.ametsoc.org/

PubsAcronymList).

CMIP5 model name Length of PI run (yr)

1. ACCESS1.0 500

2. ACCESS1.3 500

3. CanESM2 996

4. CMCC-CESM 277

5. CMCC-CM 330

6. CMCC-CMS 500

7. CNRM-CM52 490

8. CNRM-CM5 850

9. CSIRO Mk3.6.0 500

10. GFDL CM3 500

11. GFDL-ESM2G 500

12. GFDL-ESM2M 500

13. GISS-E2-H 251

14. GISS-E2-H-CC 780

15. GISS-E2-R 251

16. GISS-E2-R-CC 1062

17. HadGEM2-CC 240

18. HadGEM2-ES 314

19. INM-CM4 500

20. IPSL-CM5A-LR 1000

21. IPSL-CM5B-LR 300

22. IPSL-CM5A-MR 300

23. MIROC-ESM 870

24. MIROC-ESM-CHEM 255

25. MIROC5 630

26. MPI-ESM-LR 1000

27. MPI-ESM-MR 1000

28. MPI-ESM-P 1156

29. MRI-CGCM3 500

30. NorESM1-M 252

31. NorESM1-ME 501
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standard deviation of linear trends in September total

SIA index) show the strongest negative and positive

loading in the intermember MCA. Thus, we are confi-

dent that the fast-minus-slow composite can basically

capture the leading mode of covariability between Z200

and sea ice for 1979–2012 as well as for the future (2020–

50) time frame as the repeated analysis confirmed.

f. Pseudoensemble of preindustrial CMIP5
simulations

Additionally, we extend the fast-minus-slow method

to 31 CMIP5 models that have at least 200-yr-long pre-

industrial control simulations. Cutting the 2001-yr-long

control runs into consecutive 34-yr periods we create a

pseudoensemble with n 2 33 members, where n is the

length of the givenCMIP5model’s control run (Rosenblum

and Eisenman 2017; Ding et al. 2019) and each member

corresponds to a 34-yr-long time series. Although the

pseudoensemble members are not initialized with pertur-

bations in the initial condition and the consecutivemembers

have overlapping periods—therefore, strictly speaking,

they do not represent the full scope of possible climate

states allowed by internal variability—the control runs

have constant external forcing thus the members of the

pseudoensemble are assumed to be generated by the

given model’s purely internal climate physics (or model

specific biases as is the case with single-model LEs as well).

We then search for the 34-yr-long periods showing the

fastest and slowest sea ice melting based on linear trends

and difference the corresponding Z200, Z, T, TS, SIA

trends to construct the fast-minus-slow composite. Similar

to the real-ensemble calculationswe select 15%of the total

number of the pseudoensemble members for each of the

fast and slow groups. Averaging these 31 fast-minus-slow

composite patterns we provide an overview of CMIP5

model performance in capturing the observed coupling of

sea ice with both the local Arctic and remote tropical at-

mosphere on low-frequency time scales.

3. September sea ice changes in the historical and
future warming scenarios

Figure 1 gives an overview of the time evolution of the

September total SIA index in observations and model

simulations for 1979–2080, in addition to the linear

trends in each model ensemble members compared to

the observed melting rate over the historical era (1979–

2012; Fig. 1h). Figure 1a shows the historical 1 RCP8.5

ensemble mean simulations of each large ensemble’s

September total SIA indices (solid colored lines) and the

ensemble mean of 31 CMIP5 runs (solid gray line) along

with the NSIDC observations (solid purple line). The

observed prominent rate of melting and interdecadal

variability are not well captured in any of the single-

model or the CMIP5 multimodel ensemble mean sim-

ulations (Fig. 1a; Baxter et al. 2019). This indicates a

possible role for internal variability in driving sea ice

variability in the past and very likely in the upcoming

decades too. Furthermore, the large decline seen in the

observed record between 1979 and 2012 lies outside the

1.53 interquartile range (IQR) of four LE simulations’

spread, except for theGFDL-LE, which shows extensive

melting (Fig. 1h). Sources for this underestimation may

be rooted in a lower sea ice sensitivity (Rosenblum and

Eisenman 2017; Notz and Stroeve 2016) of most current

climate models or other processes inherent to the cli-

mate dynamics, part of which is the subject of the pres-

ent study.

Except for the CSIRO-LE, each of the ensemble

simulations underestimate SIA on the historical time

frame relative to observations with the CESM-LE re-

sembling the observed SIAmagnitude the best (Fig. 1a).

The CMIP5 ensemble mean relatively well represents

the average of the other LEs’ sea ice conditions on the

historical time frame; however, after the early 2010s,

four of five LE experiments (except for the CSIRO-LE)

start to melt sea ice considerably faster than the CMIP5

mean. On the historical time frame, of the five model

ensembles, the GFDL-LE and the CanESM-LE melt

sea ice the fastest with ice-free conditions (,106 km2) in

the near future, and the MPI-GE (Notz et al. 2013) and

the CSIRO-LE mean simulations show the slowest rate

of ice melt on both the historical and future time win-

dows (Fig. 1a). The rate of summer sea ice melt in the

CESM-LE accelerates after 2012 picturing a seasonally

ice-free Arctic Ocean in the model within the next three

decades (Screen and Deser 2019). The colored thin

dashed (thin solid) lines in Figs. 1b–f represent the fast

(slow) sea ice melting groups in each of the model en-

sembles. These are the members’ average September total

SIA index time series that were selected to construct the

fast-minus-slow composites. Note, that for all the five

model ensembles the members of the fast group initially

containmore ice than those of the slow group, which seems

natural, since, by construction, the fast group has to start

with more ice so that it has more ice to melt (Figs. 1b–f).

Note also that the magnitude of the ensemble mean of

the CSIRO-LE SIA simulations considerably stands out

from the other simulations, indicating that a realistic

summer mean sea ice state may be missing in the model

(Uotila et al. 2013), which makes the comparison with

observed summer sea ice conditions questionable. The

lack of a correctly replicated summer mean state might

also affect other current climate models, which are po-

tential targets of future large ensemble simulations:

the large spread in the simulated total September SIA

7436 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/17/7431/4984136/jclid190803.pdf by guest on 01 August 2020



indices between different CMIP5 models are visualized

in Fig. 1g. The poor comparison between CSIRO-LE

atmosphere–sea ice interactions and observations is

even more clearly seen when examining the spatial

pattern of the linear trend in September SIA in Fig. 2

(notice how different CSIRO-LE is from the other four

LE simulations in Figs. 2g,l). Therefore, when attempt-

ing to reduce uncertainty arising from the different

model physics, we will focus on the mean of only four of

the five LE simulations (excluding CSIRO-LE) in the

later parts of the paper. However, we note that even

including CSIRO-LE in the calculation of the average

does not significantly alter the results (not shown).

Figure 2 demonstrates September sea ice melting

rates in observations (Fig. 2a), in the mean of the four

LEs’ ensemble mean (excluding CSIRO-LE, Fig. 2b), in

the mean of 31 CMIP5 (Fig. 2c) and in each of the five

LEs’ historical (Figs. 2d–h) and future (Figs. 2i–m) en-

semble mean simulations. In general, on the historical

time frame themean of four LE and the 31 CMIP5mean

model simulations share the observed sea ice melting

spatial pattern, albeit with some differences in the

melting trend magnitudes (Figs. 2b,c). We note that the

CanESM-LE shows the strongest melt closer to the pole

rather than in the marginal seas as seen in the other

three LEs and in the observed record.Wewill show later

that although each model exhibits different total SIA

variability, the coupling patterns of SIA with the atmo-

sphere from year-to-year are very similar (Figs. 3, 4),

indicating that the models’ bias in simulating the mean

SIA is not critical to the determination of the coupling of

the atmosphere to sea ice, which is mainly associated

FIG. 2. Linear trend of September SIA in (a) observations (NSIDC), (b) the mean (denoted with angle brackets) of the four LEs’

ensemble mean historical1RCP8.5 simulations (excluding CSIRO-LE), and (c) the mean of 31 CMIP5 historical1RCP8.5 simulations

for 1979–2012. Also shown: As in (a)–(c), but for the five individual LEs’ ensemble mean simulations for (d)–(h) 1979–2012 and (i)–(m)

2020–50 based on the RCP8.5 scenario.
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FIG. 3. Linear correlation of JJA (a) Z200, (b) zonal mean geopotential height, and (c) temperature with September total SIA index in

ERA-I reanalysis for 1979–2012 (contoured values are significant at 95% confidence level). Correlation of JJA (d) Z200, (e) zonal mean

geopotential height, and (f) zonal mean temperature with September SIA index for 1979–2012 averaged over four LEs’ historical 1
RCP8.5 runs [correlations are computed as the mean (denoted with angle brackets) of the four correlation maps (excluding CSIRO-LE)

each of which is constructed as first computing correlation in each of the members of a given single-model LE and then averaging over the
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with SIA anomalies. This finding is consistent with the

trend-related composites on the low-frequency time

scales as well, however, seems to be contingent upon

simulating the real summer mean state relatively well.

4. Atmosphere–sea ice coupling

a. Year-to-year coupling: Observed versus simulated

Observations reveal that in the past decades, summer

sea ice variability has been driven by a remarkable rise

in geopotential height above northeast Canada and

Greenland with the strongest height rise occurring during

2007–12 (Ding et al. 2014, 2017, 2019; Baxter et al. 2019).

The associated circulation pattern in the Arctic favors a

warming and moistening (increased specific humidity) at-

mosphere through a circulation-driven adiabatic warming

process, which likely contributed to accelerated summer

sea icemelt between 2007 and 2012 (Baxter et al. 2019). To

better illustrate this coupling in observations and model

simulations on the year-to-year time scales, we compute

the correlation of linearly detrended JJA Z200, zonal

mean geopotential height, and temperature with linearly

detrended September SIA index in ERA-Interim (Figs.

3a–c), in the five model ensembles and in 31 CMIP5

models for 1979–2012. Correlations had first been com-

puted in each of the ensemble members then averaged

over thewhole given ensemble. To get an overall picture of

how models capture the observed Arctic atmosphere–sea

ice coupling on interannual time scales we average the four

correlation maps belonging to each of the four large en-

semble simulations (Figs. 3d–f). Similarly, we average the

31 correlation maps derived from each of the individual

CMIP5 model historical 1 RCP8.5 runs (Figs. 3g–i). We

also show correlations between Arctic area-averaged

(north of 608N) JJA Z200 and total September SIA in-

dex for the CMIP5 multimodel and five single-model

ensembles’ individual members (Fig. 3j). In Fig. 4 corre-

lations calculated for each of the five individual LEmean

simulations are additionally presented.

Figures 3 and 4 show that September SIA index is

negatively correlated with both JJA upper-level geo-

potential height and lower–midtropospheric temperature

in both observations and the CMIP5 multimodel or

single-model ensemble mean simulations. This corre-

sponds to the inverse relationship between temperature

or geopotential height and sea ice changes. However,

the magnitude of the correlation is consistently under-

estimated by all models, especially in the cases of the

CSIRO-LE and the CanESM-LE, which, in line with the

lack of a correctly resembled summer mean sea ice state

(Fig. 2g) or melting spatial pattern (Figs. 2e,g), appear to

show less strong interannual atmosphere–sea ice con-

nection (Figs. 4d,e,j,k). Figure 3j demonstrates that the

ensemble spread is the largest for the CanESM-LE and

the CSIRO-LE, relative to the size of the ensembles, and

these models show the least negative correlations across

their members. Additionally, all large ensembles show

improvements relative to the CMIP5 ensemble and the

CESM-LE appears the best in resembling the observed

correlation. Observations reveal stronger interannual

coupling between sea ice and both upper-level geopotential

heights (20.65 vs 20.3) and lower-tropospheric tempera-

tures (20.75 vs20.5) than themodels (Fig. 3).We find that

the difference between the models and observations is

greater if we compare summertime temperature values and

September sea ice than doing so with the annual means as

presented by Olonscheck et al. (2019).

Overall, both the perturbed initial condition and

CMIP5 models capture the observed interannual cou-

pling of Arctic summertime circulation and September

sea ice variability but with weaker magnitudes and

with a somewhat different horizontal Z200 and vertical

height/temperature profiles, which is an important lim-

itation common to all the models (Figs. 3, 4). Thus, our

analysis suggests that simulated sea ice appears to be less

sensitive to changes in the atmosphere than observed in

the past 40 years (Ding et al. 2017).

b. Low-frequency atmosphere–sea ice coupling from
1979 to 2012

Figures 3 and 4 demonstrate that the notable atmosphere–

sea ice coupling seen in year-to-year observations is generally

captured in model simulations, albeit with some prominent

structural differences. The same circulation-driven process

 
whole given LE]. Correlation of JJA (g) Z200, (h) zonal mean geopotential height, and (i) zonal mean temperature with September SIA

index for 1979–2012 averaged (denoted with angle brackets) over 31 CMIP5 models’ historical 1 RCP8.5 runs (correlations are first

computed in each of 31 models, and then the 31 correlation patterns are averaged to construct a 31-member multimodel ensemble).

Contours in (d)–(i) do not represent significance because we do not account for the significance of the averaged correlation maps.

(j) Correlation of Arctic area-averaged (608–908N; 08–3598E) JJA Z200 and September SIA index in each of the members of the five LE

simulations: the whiskers extend to 1.53 IQR. Crossesmark average values; plus signsmark the outliers (outside 1.53 IQR). Themedian

is indicated with an orange horizontal line. The red dashed line indicates the ERA-I correlation value (r 5 20.58). All variables are

linearly detrended before calculating correlations.
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FIG. 4. Linear correlation of JJA (left) Z200, (center) zonal mean geopotential height, and (right) zonal mean temperature with

September SIA index using the five LEs: (a)–(c) MPI-GE, (d)–(f) CanESM-LE, (g)–(i) CESM-LE, (j)–(l) CSIRO-LE, and (m)–(o)

GFDL-LE. Correlations are first computed in each of themembers of a given single-model LE and then are averaged over thewhole given

LE. Contours do not represent significance because we do not account for the significance of the averaged correlation maps. All variables

are linearly detrended before calculating correlations.
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may also be important on low-frequency time scales as Ding

et al. (2019) already showed for both observations and the

CESM-LE. Because the Z200, zonal mean geopotential

height Z, and zonal mean temperature T fast-minus-slow

composites reflect the coupling between trends in the atmo-

spheric variable and sea ice, we can compare the composite

trend patterns to the ones obtained previously with correla-

tion analysis anduse the similar features of the two to assume

an alike physical mechanism over the two time scales. Thus,

to reach a more comprehensive understanding of how JJA

atmospheric circulation can drive September sea ice vari-

ability independent from the different modeling environ-

ments, we further examine the long-term behavior of this

atmospheric process utilizing the fast-minus-slow composites

of JJA Z200, Z, T, and September SIA derived from his-

torical, future, or preindustrial runs of the available climate

simulations and compare them to observations.

We first show the observed linear trends of JJA Z200,

Z, T, and September SIA in the Arctic for 1979–2012

(Figs. 5a–d). Based on Figs. 5a–c for the past four de-

cades, the Arctic summer circulation has been dominated

by an atmospheric process resembling an anticyclone

centered above Greenland and northeast Canada, which

can cause tropospheric warming on top of the local an-

thropogenically forced temperature rise. This observed

circulation pattern is reproduced in the mean of four

LE simulations’ historical fast-minus-slow composites

(Figs. 5e–g) rather well, in contrast with the linear trend

patterns derived from the ensemble mean (forced com-

ponent) simulations, which show uniform height rise and

warming in the Arctic without any regional anticyclone-

driven features (Figs. 5i–k). We note that the composite

trend magnitudes (Figs. 5e–g) are markedly weaker than

the observed trend magnitudes (Figs. 5a–c) suggesting

that internal atmospheric variability may play a key role

in the observed summer circulation changes; however,

models exhibit limitations in fully capturing the magni-

tude of the internal atmospheric process. Because the

FIG. 5. Observed (ERA-Interim/NSIDC) (a) Z200, (b) zonalmean geopotential height, (c) zonal mean temperature, and (d) September

SIA linear trends for 1979–2012. Historical (e) Z200, (f) zonal mean geopotential height, (g) zonal mean temperature and (h) September

SIA fast-minus-slow composite trends and the ensemble mean (i) Z200, (j) zonal mean geopotential height, (k) zonal mean temperature

and (l) September SIA trends averaged over the four LE historical1RCP8.5 experiments for 1979–2012 [excludingCSIRO-LE; themean

of four Z200, height, temperature, and sea ice either fast-minus-slow composite or ensemble mean (forced) trends is denoted with angle

brackets]. Note the color bar differences between the composite in (e)–(g) and the forced [in (i)–(k)] or observed [in (a)–(c)] trend

magnitudes.

1 SEPTEMBER 2020 TOPÁL ET AL . 7441

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/17/7431/4984136/jclid190803.pdf by guest on 01 August 2020



spatial patterns of changes in the atmospheric variables

on the low-frequency time scales (Figs. 5e–g) strongly

resemble the ones we have seen in the atmosphere–sea

ice correlation maps (Figs. 3, 4), the weaker composite

magnitudes may be related to the tendency for models to

underestimate atmosphere–sea ice correlations (Figs. 3, 4)

relative to observations. This can be a consequence of a

shared physical mechanism over the two time scales

(Ding et al. 2017).

For further investigation we also compute themean of

four LEs’ fast-minus-slow composite of September SIA

to extract the internal trend component of sea ice melt

(Fig. 5h) and compare it to the forced component

(Fig. 5l). Although the mean of the four LE simulations’

Z or T composite trend magnitudes are smaller by a

factor of 3–4 relative to the corresponding forced com-

ponent magnitudes (Figs. 5e–g vs Figs. 5i–k), the dif-

ference between the internal and the forced sea ice

melting pattern magnitudes or spatial distributions is

less pronounced. The fact that the prominent difference

between internal and forced atmospheric trend magni-

tudes does not result in large differences between forced

and internal sea ice melting rates further emphasizes the

necessity to search for associated atmospheric changes

to understand the underlyingmechanism responsible for

the melting.

Evidence for sea ice–related atmospheric changes can

also be found in the individual LE simulations’ and 31

CMIP5 preindustrial control simulations’ composite

patterns for 1979–2012 in Figs. 6 and 7. During 1979–

2012, three of the five LE experiments’ fast-minus-slow

SIA composites (except for the CanESM-LE and the

CSIRO-LE) resemble the observed sea ice melting

spatial pattern with the strongest melting occurring

round the edge of the Arctic basin with a corresponding

high pressure in the upper troposphere and surface

warming (Fig. 6). Notably, the CanESM-LE—which shows

the strongest sea ice melt in the central Arctic—and the

CSIRO-LE—with only weak year-to-year coupling—both

share the features of the observed atmospheric process in

the fast-minus-slow composites albeit with some differ-

ences, especially in the sea ice composites because of

themodel’s lack of a realistic summermean state (CSIRO-

LE) or the biased spatial melting pattern (CanESM-LE,

CSIRO-LE). Importantly, the same patterns representing

the low-frequency atmosphere–sea ice coupling are repro-

duced in the pseudoensemble of 31 CMIP5 preindustrial

runswithout the presence of anthropogenic forcing (Fig. 7).

With the qualitative analysis of historical and prein-

dustrial fast-minus-slow composites in the various

model experiments we have shown robust evidence that

the regional barotropic height increase over the Arctic

in summer due to internal variability—via an adiabatic

warming process—also dominates summer sea ice vari-

ability on low-frequency time scales in both the real- and

pseudoensemble simulations (Figs. 5–7; Wernli and

Papritz 2018; Ding et al. 2019). Our results further sup-

port the findings of Ding et al. (2019) that this internal

atmospheric process is a contributor to sea ice melt

across different model environments. We have also

drawn attention to the fact that current climate models

possibly underestimate the strength of atmosphere–sea

ice coupling relative to the observed one in ERA-I on

both year-to-year and low-frequency time scales. The

weaker year-to-year coupling of sea ice with the atmo-

sphere (Figs. 3, 4) may indicate a weaker coupling

mechanism in the trend-related composites as well. In

ERA-I, the maximum JJA Z200 change over 1979–2012

in the Arctic is 26m decade21 whereas models show

only 4–7m decade21 in the fast-minus-slow composites

and the maximum JJA TS change over 1979–2012 in the

Arctic is 0.68C decade21 whereas models show only

0.128C decade21 in the fast-minus-slow composites. The

relative role of the internal component, therefore, needs

further estimation; however, our results indicate that

models fail to replicate the full strength of the observed

atmosphere–sea ice connection.

c. Low-frequency atmosphere–sea ice coupling from
2020 to 2050

How this atmospheric process, identified in observa-

tions and historical/preindustrial model simulations, will

behave in the future, has so far been unaddressed in the

literature. Therefore, we now evaluate the fast-minus-

slow composites in all the available future scenario runs

of the five large ensembles for 2020–50.

In general, the mean of the fast-minus-slow compos-

ites corresponding to the four models’ (excluding the

CSIRO-LE) RCP8.5 scenarios (Figs. 8a–c), unlike the

forced model component linear trends (Figs. 8e–g), are

reminiscent of the atmospheric structure that dominates

sea ice variability on interannual to interdecadal time

scales in observations, historical and preindustrial model

simulations. Similar to the historical period, all individ-

ual models show high pressure in the Arctic upper tro-

posphere along with surface warming concomitant to

sea ice loss (Fig. 9). The composite trendmagnitudes are

comparable to the small historical and preindustrial

composite magnitudes (relative to the observed trends).

We suggest that the small magnitudes seen in the future

fast-minus-slow composites (Figs. 8a–c, 9) may also be

connected to the underestimated atmosphere–sea ice in-

terannual coupling (Figs. 3, 4) rooted in themodel’s physics.

Examining the mean of four LEs’ September SIA

composites we can also see that future sea ice melt oc-

curs over the Arctic Ocean, north of Greenland, and
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Canada in the internal component reminiscent of the

ensemblemeanSIA trends (forced component) (Figs. 8d,h).

Despite minor differences in the magnitudes and spatial

patterns of sea ice melt between the forced and internal sea

ice trend components (Fig. 8d vs Fig. 8h) the atmospheric

circulation patterns differ considerably (Figs. 8a–c vs

Figs. 8e–g). Also, models show discernible sea ice melt

during 2020–50 relative to 1979–2012 (Fig. 2), whereas

FIG. 6. Historical fast-minus-slow composite trend plots of JJA (left) Z200, (left center) zonal mean geopotential height, (right center)

zonal mean temperature, and (right) September SIA for the five LEs’ historical1 RCP8.5 experiments for 1979–2012: (a)–(d) MPI-GE,

(e)–(h) CanESM-LE, (i)–(l) CESM-LE, (m)–(p) CSIRO-LE, and (q)–(t) GFDL-LE. Crosses indicate significance on the 95% confidence

level (two-sample t test).
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the differences in the magnitude of sea ice associated

atmospheric changes are not so pronounced between

the two periods (Figs. 6, 9). These suggest that circula-

tion may be of key importance in driving future sea ice

loss and raise the question of whether improvements in

modeled atmosphere–sea ice connections will help us to

quantify the relative role for internal variability in the

ongoing Arctic climate change along with improve the

accuracy of modeled sea ice sensitivity (Zelinka et al.

2020; SIMIP Community 2020; Winton 2011).

d. A role for the differing amount of external forcing

When addressing future changes in the climate system

the impact of anthropogenic forcing is a key issue. To

address the question of how the identified internal at-

mospheric processmay be influenced by external forcing

with different intensity, we perform supplementary

calculations and show evidence that—according to

the fast-minus-slow composites derived from each of the

three RCP scenarios of MPI-GE for 2020–50—the

circulation-driven process exists in all three forcing ex-

periments (Fig. 10). Furthermore, in the case of the

RCP4.5 scenario the composite trend magnitudes (for

Z200, Z and T) are larger (Figs. 10d–f) relative to the

RCP2.6 (Figs. 10a–c). However, interestingly, the RCP8.5

scenario again shows smaller trendmagnitudes (Figs. 10g–i)

comparable to the RCP2.6. This might be indicative of a

nontrivial response of the atmospheric process’s strength

to the external forcing with different intensities and that

there might exist an optimal amount of external forcing in

the model when sea ice is more sensitive to changes in the

atmosphere than other forcing scenarios. However, the

FIG. 8. Future (a) Z200, (b) zonal mean geopotential height, (c) zonal mean temperature and (d) September SIA fast-minus-slow

composite trends and the ensemble mean (e) Z200, (f) zonal mean geopotential height, (g) zonal mean temperature and (h) September

SIA trends averaged over four large ensembles’ RCP8.5 experiments for 2020–50 [excluding CSIRO-LE; the mean of each of the four

Z200, height, temperature, and sea ice either fast-minus-slow composite or ensemblemean (forced) trends is denotedwith angle brackets].

Note the color bar differences between (e)–(g) and (a)–(c).

FIG. 7. The mean (denoted with angle brackets) of 31 fast-minus-slow (a) Z200, (b) zonal mean geopotential height, (c) zonal mean

temperature and (d) September SIA composites constructed using each 34-yr-long period of long preindustrial control integration of 31

individual CMIP5 models, also known as the pseudoensemble method (see section 2f).
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extent to which the response of the coupling to the dif-

ferent intensity of external forcing is nontrivial needs fur-

ther study particularly using other models with differing

external forcing scenarios. Taken together, these lines of

evidence suggest a strong role for the internal atmospheric

process in driving sea ice loss with some yet-to-be-

determined contribution from the differing intensity of

external forcing in the upcoming decades.

FIG. 9. Future fast-minus-slow composite trend plots of JJA (left) Z200, (left center) zonal mean geopotential height, (right center)

zonal mean temperature, and (right) September SIA for the five LEs’ RCP8.5 experiments for 2020–50: (a)–(d) MPI-GE, (e)–(h)

CanESM-LE, (i)–(l) CESM-LE, (m)–(p) CSIRO-LE, and (q)–(t) GFDL-LE. Crosses indicate significance on the 95% confidence level

(two-sample t test).
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FIG. 10. Future fast-minus-slow composite trend plots of JJA (left) Z200, (center) zonal mean geopotential height, and (right) zonal

mean temperature in (a)–(i) the three RCP scenarios of MPI-GE for 2020–50 and (j)–(l) the arithmetic mean of the composites belonging

to each of the three scenarios. Crosses indicate significance on the 95% confidence level (two-sample t test).

7446 JOURNAL OF CL IMATE VOLUME 33

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/17/7431/4984136/jclid190803.pdf by guest on 01 August 2020



So far, we have demonstrated strong, qualitative con-

sensus between the observed and modeled circulation–

sea ice coupling pattern on both interannual and

low-frequency time scales that is generated by internal

variability inmodel simulations regardless of the differing

external forcing scenarios or themodel physics. However,

we have also seen that all models tend to underestimate

the magnitude of the atmosphere–sea ice coupling on

year-to-year (Fig. 3), which presumably has impacts on

the fast-minus-slow composite trend magnitudes. To

gain a more detailed understanding of this discrepancy,

we turn to analyzing remote drivers of this local coupling.

5. Tropical drivers of local atmosphere–sea ice
coupling

a. Observed connection between tropical JJA SST
and September SIA

In this section we attempt to assess what physical

mechanism can possibly drive the atmospheric process

revealed in the preindustrial, historical, and, more im-

portantly, future model runs. Observations show sig-

nificant negative convective heating anomalies over the

east-central Pacific in summer during 1979–2012 result-

ing in a Rossby wave train–like atmospheric telecon-

nection pattern representing the leading internal mode

connecting the Arctic to the tropics (Ding et al. 2014,

2019; Baxter et al. 2019). This propagating Rossby wave

train has been attributed to part of the observed prom-

inent geopotential height rise over Greenland between

2007 and 2012 causing rapid sea ice loss in addition to the

anthropogenically forced melting (Baxter et al. 2019).

Because of the observed modest but significant positive

correlation (;0.5) between September SIA and tropical

JJA SST and TS (Figs. 11a,b), we search for possible

remote dynamical coupling between the summer tropi-

cal SST and the subsequent September sea ice condi-

tions (Ding et al. 2014, 2017; Meehl et al. 2018; Baxter

et al. 2019).

b. The missing tropical–Arctic connection in the five
large ensembles and CMIP5

Figure 11 shows how September sea ice is statistically

connected to the preceding summer tropical TS values

by showing linear correlations in the five LE historical

experiments (Figs. 11c–g). Correlations are first com-

puted in each member of the given ensemble (after re-

moving the ensemble mean from each member) and

then averaged over the whole ensemble in each of the

five single-model ensembles. Additionally, the correla-

tion maps for the mean of the four LEs (Fig. 11h) and the

mean of 31 CMIP5 unforced preindustrial simulations

(Fig. 12a) along with the individual CMIP5 models

(Fig. 12b) and the individual ensemble members (Fig. 11i)

are shown. We find that neither of the models share

the observed significant positive correlations from the

northeast-central Pacific (08–258N;1808–1158W) on year-

to-year time scales in either the historical LE or CMIP5

preindustrial runs. Only 3 (,1%) of the 240 (100 1 50 1
40 1 30 1 20) LE members capture significant positive

correlation, with none of them being as high as the ob-

served one. Most important is that prevalent members of

the LEs and of the CMIP5 multimodel ensemble show

negative correlations indicating an opposite sign coupling

relative to observations, with a warm-Pacific–warm-Arctic

pattern instead of the observed cold-Pacific–warm-Arctic

pattern.

The lack of a correctly replicated Pacific–Arctic con-

nection motivates us to utilize the fast-minus-slow JJA

Z200 and TS composites to trace back possible mecha-

nisms that can lead to the formation of the Arctic anom-

alous high pressure seen in the composites in Figs. 5–10.

Weplot fast-minus-slowTS (shading) andZ200 (contours)

composites in the Northern Hemisphere for the historical

in Fig. 13 and for the future time frame in Fig. 14 to visu-

alize internal variations in summertime TS and Z200 as-

sociated with September sea ice conditions.

As for the historical time frame, the models capture

signals from the tropics connected to Arctic September

sea ice variability; however, neither the sign nor the

magnitude is reproduced compared to the observed TS

and Z200 linear trends (Figs. 13a,b). Observations reveal a

negative trend in the northeast-central Pacific surface

temperatures for 1979–2012 resembling the negative phase

of the IPO,whilemodels donot show such pattern in either

the fast-minus-slow or the forced trend components. The

composites exhibit the opposite phase of the IPO in each

of the simulations: a positive summer IPO pattern con-

comitant to sea ice retreat. The modeled atmospheric

teleconnection pattern seems to behave as a stationary

wave superimposed onto the zonal mean flow with the

warm phase in the tropical Pacific, instead of mirroring the

observed Rossby wave train (Ding et al. 2014; Baxter et al.

2019) with negative phase in the tropics.

Further details of the simulated atmospheric tele-

connection are revealed via the future composite plots

in Fig. 14. Models stick to simulating a positive-IPO-like

pattern in their future composites with warm TS anom-

alies in the east-central Pacific and cold anomalies in

the northwest-central Pacific. The CESM-LE and the

GFDL-LE exhibitmorewidespread, while theMPI-GE a

dampened warming signal in the tropical Pacific com-

pared to the historical period (Figs. 13, 14). However, no

clear signal is observed from the tropical Atlantic, except

for the CanESM-LE, which exhibits widespread cooling
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FIG. 11. Observed correlation of (a) linearly detrended JJA surface temperature (TS) and (b) linearly

detrended JJA sea surface temperature (SST: ERSSTv5) with detrended September SIA index for 1979–

2012.Also shown is the single-model LE average correlation between JJATS and September SIA index for

1979–2012 in the five single-model large ensemble experiments (c) MPI-GE, (d) CanESM-LE, (e) CESM-

LE, (f) CSIRO-LE, and (g) GFDL-LE and (h) the average of 4 LEs (excluding CSIRO-LE). The forced
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in both the tropical and midlatitude Atlantic. Clearly,

models disagree on specific details on how midlatitude or

even tropical TS changes are associated with future sea

ice loss.

Overall, the mismatch of the observed remote drivers

of summertime sea ice variability warns us that current

model dynamics may miss some important physical

linkages connecting the Arctic to the lower latitudes.

In addition, a recent study by Bonan and Blanchard-

Wrigglesworth (2020) suggested that the observed

Pacific–Arctic teleconnection may not be stable on

longer time scales. Thus, we propose further research

toward the application of paleoclimate proxy records in

the tropics and theArctic to shedmore light on tropical–

Arctic dynamical linkages, which might be a promising

candidate for a more reliable decadal-scale sea ice

prediction.

6. Discussion and conclusions

In this paper, through an analysis of five large en-

semble and dozens of long preindustrial simulations

with a focus on simulated internal atmospheric vari-

ability, we have (i) evaluated current climate models’

ability to replicate the dynamical processes partially

responsible for the observed sea ice loss and its local and

remote atmospheric drivers, and (ii) showed evidence

for the importance of atmospheric drivers of future

sea ice loss. The primary atmosphere–sea ice coupling

mechanism is based on a series of model experiments in

Ding et al. (2017) and is understood as a circulation-

driven process that warms and moistens the lower

troposphere adiabatically, thus regulating longwave ra-

diation that causes sea ice melt. In this paper further

evidence is presented that the same mechanism also

represents the dominant internal atmospheric process in

models that creates favorable conditions for sea ice

melting on both the historical and future time frames,

and this is regardless of differences in model physics.We

have also seen that the atmosphere–sea ice coupling

manifests in a somewhat different structure with exter-

nal forcing at different intensities, thus, further research

is advocated. Moreover, since models fail to fully

replicate the observed intensity and sensitivity of the

coupling between local and remote circulation changes

with sea ice, the quantitative estimation to what extent

the identified internal circulation variability can en-

hance the effect of anthropogenic forcing on the ob-

served sea ice loss, along with the role of Pacific Ocean

variability in decadal sea ice predictions remain uncertain.

One source of uncertainty is due to the limitation of

the models in capturing the observed magnitude of the

local atmosphere–sea ice coupling pattern (Fig. 3).

Because of the similarities between the atmosphere–sea

ice interactions seen on year-to-year and low-frequency

time scales, it is reasonable to assume that the under-

estimated year-to-year coupling has an impact on the

low-frequency focused composite calculations as well,

likely contributing to the consistently weak magnitudes

captured in the fast-minus-slow composites. Model

limitations in simulating wind-driven mechanisms or

moisture and cloud variability could be sources of biases

in replicating the observed atmosphere–sea ice coupling

(Hofer et al. 2019; Huang et al. 2019).

Another source of uncertainty regarding decadal sea

ice simulation is model limitations in capturing the ob-

served teleconnection originating from the tropical

Pacific. In light of our results, recent findings of Screen

and Deser (2019) involving the use of simulated IPO

phase changes as a predictor of seasonal sea ice condi-

tions might be suspect given that current LEs’ historical

simulations fail to capture the correct sign of the ob-

served Pacific decadal TS trends. This casts a shadow

over models’ credibility in simulating future changes in

the tropical Pacific that could be used for Arctic sea ice

projections. Suggestions for the importance of summer

Atlantic tropical SST in driving sea ice variability

(Meehl et al. 2018; Castruccio et al. 2019; McCrystall

et al. 2020) seems to be at odds with our findings: in our

Z200/TS composite plots, no common features are ob-

servable across themodels in the tropicalAtlantic regions

(Figs. 13, 14). We advocate future efforts dedicated to

elucidating the relative contribution of tropical Atlantic

and Pacific SST variability along with untangling which

 
component (ensemble mean) is removed from each member before calculating correlations. Correlation is

first computed in each member, then averaged over the whole ensemble for each of (c)–(g). (i) Correlation

in all members of the five LEs (indicated below the x axis) between detrended northeast-central Pacific

area-averaged [08–258N;1808–1158W, indicated with the gray-outlined box in (a) and (b)] JJA TS and

September SIA index for 1979–2012. The whiskers extend to 1.53 IQR. Crosses mark average values; plus

signs mark the outliers (outside 1.5 3 IQR). The median is indicated with an orange horizontal line. The

horizontal dashed red line marks the observed correlation; the black dotted lines mark the significance

(based on Student’s t test 95% confidence interval).
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side of the tropical Pacific basin has more prominence in

driving Arctic sea ice variability (Dong et al. 2019;

Warner et al. 2020).

We also note that in models the local Arctic

atmosphere–sea ice coupling still exists without prom-

inent remote tropical forcing although the magnitude of

the coupling is weaker. This indicates that the genera-

tion of the local coupling could also be due to local

feedback. Further research toward identifying the rela-

tive role of the local and remote forcing mechanisms in

the observed atmosphere–sea ice interactions is needed.

Although a recent study by Olonscheck et al. (2019)

also emphasized that atmospheric processes dominate

Arctic sea ice variability, we cannot rule out the role of

the heat content change in the ocean (Steele et al. 2008,

2010; Zhang et al. 2013; Deser et al. 2015). Limitations of

our methodology can also leave undetected variability

belonging to either atmospheric or oceanic processes,

since the fast-minus-slow method relies on a subjective

choice of ensemble members belonging to the fast and

slow groups. However, applying our linear method to

the pseudoensemble of preindustrial control simula-

tions, we also showed an example of how long control

runsmay be utilized to evaluatemodel performance.We

are also aware that there is no guarantee that the strength

of the teleconnections remains constant in the future

under high emission scenarios (Herein et al. 2016, 2017;

Tél et al. 2020; Haszpra et al. 2020); therefore nonlinear,

higher-order processes may also play a significant role.

Our study reveals that current climate model simula-

tions are able to replicate the physical mechanism of the

observed atmosphere–sea ice coupling in preindustrial,

historical, and future model simulations, emphasizing

the importance of internal atmospheric variability in

driving present and future sea ice melting. The present

analysis, however, is solely focused on reaching a qual-

itative understanding of internal drivers of sea ice loss

across different model environments; thus, the relative

contribution of internal variability remains an open

question in light of limited model performance. Overall,

we argue that more effort should be given to model

development to correctly replicate these physical link-

ages in our observed climate system. Phase 6 of the

Coupled Model Intercomparison Project (CMIP6) with

updated model versions potentially will improve the

presented uncertainties, and, if so, CMIP6 simulations

FIG. 12. (a) 31-member multimodel ensemble average correlation of JJA TS with September total SIA index

from the CMIP5 long preindustrial (PI) control runs (blue shading and contour) and observed correlation of JJA

SST (ERSSTv5) with September total SIA index for 1979–2012 (red contour). The correlationmap for each CMIP5

model is calculated separately over the entire integration period (see Table 1), and then the 31 correlation patterns

are averaged to construct a 31-member multimodel ensemble average. All variables are linearly detrended before

correlation. (b) Correlation between linearly detrended September total SIA index and linearly detrended

northeast-central Pacific area-averaged [08–258N;1808–1158W, indicated with the gray-outlined box in (a)] TS in

observations (r 5 0.45, with p , 0.05; pink bar) and in each of the 31 individual CMIP5 multimodel ensemble

members’ PI runs (gray bars).
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may be promising sources of improved decadal-scale sea

ice predictability.
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