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Abstract We report on laboratory experiments investigating the dynamics of a free fluid surface in a cylin-
drical tank with a rotating bottom plate. The shear instability in the system creates polygonal structures,
which propagate around the domain, along the fixed vertical sidewalls. We analyze the wavelengths and
drift rates of these patterns, which are known from previous literature to be created by a complex inter-
play between centrifugal effects and gravity wave propagation in this unique geometry. We find that with
an empirical correction factor, the drift rates of the polygonal vortices can be approximated fairly well
by a surprisingly simple formula derived from the dispersion relation of linear gravity waves using easily
observable parameters.

1 Introduction

Wavenumber selection due to various forms of hydrody-
namical shear instability is ubiquitous in nature. In the
widely studied Couette–Taylor instability, for instance,
periodic vortices emerge in the fluid between two paral-
lel (or coaxial) rigid surfaces moving at different veloci-
ties [1, 2]. In the Kelvin–Helmholtz instability, velocity
shear develops at the interface between two fluid layers
of different densities and yields wavy disturbances if a
critical threshold of velocity difference is surpassed [3,
4].

In domains with periodic boundaries (e.g. in flows
in the azimuthal direction of a cylindrical or spheri-
cal system) the selection of “fastest growing” unstable
wavenumbers can be further restricted by the condition
that only integer multiples of the wavelength can fit
along the circumference. Then the relationship k ·r = n
(n = 1; 2; 3; . . .) between azimuthal wavenumber k and
characteristic radius r must hold. Probably the most
striking example for a flow created by an n = 6 shear
instability is the enigmatic North Polar Hexagon of Sat-
urn, a roughly 30,000 km-wide highly symmetric atmo-
spheric pattern that was first noticed in images taken by
the Voyager spacecraft [5]. There the shear between the
zonal domains in the vicinity of the hexagon is main-
tained by the differential rotation of the gas giant planet
[6].
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A somewhat similar special case of shear instabili-
ties has been reported relatively recently by Jansson
et al. [7] in experiments using a cylindrical tank of fluid
with fixed vertical sidewall and a bottom plate rotating
rapidly at angular velocity Ω0. In the viscous boundary
layers the fluid must minimize its velocity relative to
the rigid boundaries: it is forced to co-rotate with the
horizontal plate, and to stay at rest in the vicinity of
the static vertical walls, hence shear arises.

The considered experimental setting is a modified
version of the well known textbook example of a rotat-
ing fluid surface, commonly referred to as “Newton’s
bucket” [8], where all boundaries of a cylindrical cavity
rotate at the same angular velocity Ω0 around the ver-
tical axis of symmetry, and the working fluid inside also
exhibits solid body-like rotation. If, however, the side-
walls stay at rest but the bottom plate rotates, at cer-
tain values of Ω0 (depending on the geometrical dimen-
sions of the set-up and the viscosity of the working fluid)
regular polygonal vortex-like drifting patterns appear
at the free surface of the fluid.

The phenomenon has been studied in a handful of
experimental and theoretical works [9–11] and, finally,
[12, 13] have provided a clear and extensive framework
(backed up by experiments) for the explanation of the
underlying processes. The Tophøj model [12] treats the
flow in this experiment as a perturbed, originally axially
symmetric potential vortex. The selection of periodic
modes is then facilitated by a resonant coupling of two
different types of surface waves in the system, obeying
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Fig. 1 a The schematic
layout of the experimental
set-up and the position of
the camera. b The
cross-sectional sketch of the
tank, showing the rotating
axis connected to the roller
bearing, to which the
rotating plates of different
diameters could be
attached. The rabbets on
the base for acrylic vertical
cylinders of various
diameters are also shown
(not to scale)

different dispersion relations. Close to the nearly ver-
tical water surface at the center of the cylinder, the
flow is dominated by modes referred to as ‘centrifugal’,
whereas gravity wave-like modes are excited simulta-
neously in the vicinity of the lateral walls. The inter-
actions between these different branches of waves yield
the amplification of certain perturbations of coalescent
frequencies and wave numbers and the emergence of the
polygonal patterns.

In the present work, we intended to test how far
can one get with a decidedly simplistic “back-of-an-
envelope” type of approach in determining the rota-
tion rate of the polygons in the set-up, once knowing
the wave numbers and the size of the dry area in the
center, a posteriori. We find that a model based solely
on an adjusted dispersion relation of small amplitude
water surface (gravity) waves and a few simple assump-
tions regarding the velocity profile of the vortex gives
fairly good, yet easy-to-obtain results for the angular
velocities at which the polygon vortices propagate in
the azimuthal direction.

2 Set-up and methods

The basic layout of the set-up used for the experiments
is depicted in Fig. 1. The runs were conducted in a
44.5 cm-wide cylindrical acrylic tank with an open top,
mounted on a static stand. Tap water, colored with food
dye for visualization was used as working fluid. The flow
patterns were recorded by a simple off-the-shelf VGA
digital camera (Trust Spotlight Pro webcam, 640px ×
480px, 25 fps) placed above the center of the tank so
that the entire water surface stayed within its field of
view (Fig. 1a).

A 7 cm-wide roller bearing was built in the center
of the base plate, and rotating disks of different diam-
eters could be attached to it with a screw, as sketched
in the cross-sectional diagram in Fig. 1b. To adjust
the width of the experimental cavity itself, cylindri-
cal acrylic tubes of various diameters could be inserted
into three concentric circular rabbets on the base plate
(see Fig. 1b, not to scale). Hence—including the size of
the tank itself—we were able to conduct experiments

with five different values of cylinder diameter, namely
D = (7.5; 14; 17; 27; 44.5) cm.

The rotating axis of the plate was connected to a
turntable via transmission gears and a v-belt. The
angular frequencies of the plate used in the experiments
were in the interval of Ω0 = 8.2–50 rad/s and initial
water height H0 was ranging from 1 cm to 7 cm.

Ω0 was measured using a photogate placed under-
neath the tank, whose infrared light source was blocked
once in each revolution by a small metallic flag attached
to the axis of the plate. The turnaround times Tlab of
the observed wave patterns (and their variances) with
respect to the laboratory frame of reference—which
were much longer than the period of the plate’s rota-
tion—were measured directly from the video record-
ings.

3 Qualitative description of the flow

In this set-up the rotation of the bottom plate forces
the fluid to co-rotate with it, similarly to the afore-
mentioned case of “Newton’s bucket”, while the verti-
cal cylindrical wall pulls the water body backwards at
its sides, inducing shear. As viewed from the reference
frame of the plate this sidewall drag appears to initiate
a circular flow in the retrograde direction in the vicinity
of the boundary. Small perturbations of the free fluid
surface may then grow larger due to the positive feed-
back provided by Bernoulli’s principle: the cross section
area of narrower domains of the annular streamtube
tend to shrink further. These disturbances propagate
around the cavity in the azimuthal direction as waves.
However, due to the periodic boundary condition of the
problem only such components of the perturbations get
amplified sufficiently to become persistently observable
which are in constructive interference with themselves,
i.e. whose wavelengths fit integer times onto the circum-
ference of the water surface.

Figure 2 shows typical examples of the observed reg-
ular wave patterns (for the parameters Ω0, D , and H0

see the caption). In the top left panel the case of the
n = 0 “base state” is visible, where the contact line
between the (white) plate and the painted (dark) water
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Fig. 2 Four typical examples of the observed shapes along
the contact line between the fluid surface and the rotating
plate. The experimental parameters were as follows: n = 0:
H0 = 4 cm, D = 17 cm, Ω0 = 12.6 rad/s; n = 2: H0 = 4.5
cm, D = 17 cm, Ω0 = 34.3 rad/s; n = 3: H0 = 5 cm,
D = 44.5 cm, Ω0 = 9.4 rad/s; n = 4: H0 = 5 cm, D =
44.5 cm, Ω0 = 12.6 rad/s.Contour lines (yellow) were added
manually to highlight the fluid-plate interface (contact line)

surface is circular. The n = 1 case, corresponding to
an elongated elliptical interface with the center of rota-
tion close to one of its foci could be observed but only
as a short-lived transient pattern during the spin-up of
the system, therefore it could not be analyzed properly
in the present work. Snapshots of the n = 2; 3; 4 pat-
terns are visible in the further panels of Fig. 2. Regular
waves with larger wavenumbers could not be observed
in the technically accessible range of the experimental
parameters Ω0, D , and H0, except for a short tran-
sient appearance of an uncertain n = 5 pattern. It is
to be noted that in the present study we decidedly do
not discuss the nondimensional parameters which deter-
mine the observed value of n in the given experimental
configuration: such regime diagrams have already been
published and discussed in detail in, e.g. [9]. Instead, we
take the observed and prescribed values of n, Ω0, and
the thickness of the fluid layer, and attempt to find
a universal approximate relationship connecting these
parameters with the observed drift rates.

4 Quantitative theory

In our “simplistic” approach to estimate the drift rate of
the polygonal patterns, we start from the idealized case
of linear (small amplitude) gravity waves at the surface
of a non-viscous fluid of uniform depth h. In such a
setting the angular frequency ω of a propagating wave,
as detected by a stationary observer is determined by

the well known dispersion relation

ω =
√

gk tanh(kh), (1)

where g denotes the acceleration of gravity, and k rep-
resents the wavenumber [14].

Although the formula (1) is not expected to be
directly applicable for the large amplitude waves in
question, it may still provide appropriate order-of-
magnitude estimates of the drift rates with which the
observations can be compared. Thus, our basic hypoth-
esis—that the drifting polygons can actually be consid-
ered as gravity waves in a very special geometry—can
be put to a test.

However, to comply with the boundary conditions
of the studied configuration, Eq. (1) must be slightly
adjusted. The angular frequency ωlab associated with
wave propagation, as observed from the laboratory, is
given by ωlab = 2πn/Tlab, where n = 2; 3; 4 is the num-
ber of “sides” of the observed polygons, and period Tlab

is the time it takes for the drifting pattern to complete
one full revolution with respect to the laboratory frame
of reference. (Note, that ωlab is therefore not the angu-
lar velocity of the pattern, but an integer multiple of
that.)

Let us assume now that we observe the wave propaga-
tion from a reference frame co-rotating with the bottom
plate. Then the observed angular frequency ωwave of the
wave is “Doppler shifted” so that ωwave = ωlab − Ω0

holds, where Ω0 denotes the angular velocity of the
rotating plate. The wave number k in (1) is connected
to n, and the average radial distance r̄ of the contact
line between the fluid and the plate, measured from the
axis of rotation as k = n/r̄.

In this rotating frame of reference centrifugal accel-
eration Eacf must also be taken into account. Using Ēr as
a position vector pointing to an arbitrary point along a
circle of characteristic radius r̄, Eacf in the domain reads
as Eacf = v2(r̄)/r̄ · Ēr/r̄

Therefore g in (1) is to be replaced with the mod-
ulus of the vector sum of (downward pointing) Eg and
(“outward” pointing) Eacf, i.e. g′ =

√
a2
cf + g2, hereafter

referred to as “modified gravity”. Accordingly, water
depth h in the dispersion relation must also be replaced
by the typical thickness h′ of the water layer in the
direction of Eg′. Due to the peculiarities of the setup’s
geometry, even in the absence of a wave-like pertur-
bations this thickness h′ varies largely with the dis-
tance from the center. (A few examples of the local
thickness measured in the direction of Eg′ are marked
in the right-hand side cross section of the water body
in Fig. 1b.) Also, this total “depth” at each point is
changing markedly with the phase of the drifting polyg-
onal pattern as sketched in the left-hand side of Fig. 1b
with a dashed line. We found that taking h′ ≈ R − r̄,
where R is the radius of the plate provides a consistent
and easy-to-measure (upper) limit that can be used as
a characteristic depth scale parameter in the system.
Note, that via r̄ this quantity also depends on H0.
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Thus, we can estimate a theoretical angular fre-
quency of the wave propagation using the prescribed
and observed values of Ω0, n and r̄ as parameters to
calculate the adjusted dispersion relation

ωtheor =
√

g′k tanh(kh′), (2)

and then to contrast the result with the observed ωwave.
It is to be noted that to estimate g′ along the unper-

turbed contact circle one must know (or assume) the
form v(r) of the tangential velocity profile. In the clas-
sic “Newton’s bucket” configuration the water body is
in solid body rotation, implying v(r) = Ω0r at all dis-
tances. However, [12, 13, 15] have demonstrated that
in the set-up studied here the observed shape of the
outer regions of the water surface is consistent with
the assumption of a potential vortex characterized by
tangential velocity that is inversely proportional to r
outside a finite vortex core in the center.

Generally, as viewed from the co-rotating frame of
reference the unperturbed (axially symmetric) water
surface shape z (r) is set by the equilibrium between
the (hydrostatic) pressure gradient force and the cen-
trifugal force, and is given by

v2(r)
r

= g
∂z(r)
∂r

. (3)

For the case of a rotating free-surface fluid in solid
body rotation (Newton’s bucket), Eq. (3) yields the
well-known parabolic shape

z(r) = z0 +
Ω2

0r
2

2g
, (4)

where z0 is the water level at the center and g denotes
the acceleration of gravity. z0 is determined by the
radius R of the tank, the height H0 of the water at
rest (i.e. in the same tank, without rotation) and Ω0 as

z0 = H0 − Ω2
0R

2

4g
. (5)

In case of z0 < 0, a “dry” domain appears around the
center, and a circular contact line forms between the
bottom plate and the surface of the working fluid. The
condition for such an interface to appear is

Ω0 >
2
R

√
gH0. (6)

In a potential vortex v(r) = k · r−1, where k is a con-
stant, however, the surface shape from (3) takes a form
[12, 13]

z(r) =
k2

2g

(
C − 1

r2

)
, (7)

where the integration constant C is set by H0, R, and
k .

Earlier experiments on three dimensional vortices
generated by a magnetic stirrer bar [16–18] in a fixed
cylindrical tank of water have shown that the shape
of the water surface can be approximated with the
assumption that the flow is solid body-like in a domain
r ≤ ξ around the center, and behaves like a potential
vortex in the outer region r > ξ. The continuous veloc-
ity profile—known as Rankine vortex [19]—can thus be
written as

v(r) =
{

Ω0r, if r ≤ ξ.
Ω0ξ

2/r, if r > ξ.
(8)

The surface shape corresponding to a Rankine vortex
is, therefore, parabolic in the r ≤ ξ domain, and fol-
lows an inverse quadratic form (7) for r > ξ. From (3)
it then follows that the distance ξ can be practically
detected as the inflection point as the surface shape
z (r). Such a fluid surface of a stirrer bar-generated
vortex from a control experiment—where the depres-
sion was far above the bottom of the tank—is shown
in Fig. 3a. The funnel is highlighted by a dotted line
and the radial boundaries of the parabolic domain of
width 2ξ are marked with dashed lines. Fig. 3b demon-
strates that food dye, injected into the funnel with a
syringe does not propagate beyond this domain of solid
body rotation. Here no shear arises that would mix the
dye and dilute it rapidly (as it would happen in the
potential vortex-like region).

The relevance of the v(r) profile for the problem stud-
ied here lies in whether the unperturbed average con-
tact radius r̄ of the “dry” area is smaller or larger than
the parameter ξ of the Rankine vortex. If r̄ ≤ ξ holds,
i.e. the contact line lies in the parabolic domain, so the
shape of the fluid surface has an observable inflection
at distance ξ, as sketched in Fig. 3d–then the centrifu-
gal acceleration at r̄ in the formula of g′ can be written
as acf = Ω2

0r̄. The case of ξ < r̄, however, means that
the intersection curve (contact line) of the bottom plate
and the Rankine vortex lies outside of the (then) hypo-
thetical distance of inflection. Then acf = Ω2

0ξ
4r̄−3 is to

be applied.
The fact that in certain experiments we could clearly

observe the appearance of the polygonal patterns even
when the center domain was not dry (as also reported
by, e.g., [10]) indicates that r̄ > ξ cannot be a necessary
condition for the occurrence of the instability. Such a
“wet” m = 2 pattern is shown in Fig. 3c, where the
reflections of light from the water layer in the center
are clearly visible. We note, however, that we restricted
our quantitative analysis to experiments in which the
center was dry, as this markedly simplified the visual
observation and evaluation of the patterns.

Based on the above reasoning and the visual observa-
tion of the water surface shape, we concluded that it is
not far-fetched to assume that in the vicinity of the cir-
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Fig. 3 a The shape of the surface funnel of a vortex, generated by a stirrer rod (cf. [16]) in a steady cylindrical tank.
The outline of the surface depression and the domain of parabolic shape (indicating solid body rotation) are marked with
dotted and dashed lines, respectively. b Dye injected into the funnel, tracing out the material holding (no-shear) domain
of the vortex. c An exemplary m = 2 polygonal vortex with a “wet” interior. d The schematic geometry of the typical
cross-section surface shape z (r) in the experiments, with the average contact line distance r̄ and the inflection distance ξ
marked, as measured from the axis of rotation and symmetry (dashed vertical line)

cular contact line the unperturbed flow exhibits approx-
imate solid body rotation, and hence g′ =

√
Ω4

0r̄
2 + g2

can be used in the adjusted dispersion relation for the
description of the waves formed by the displacement of
this contact line (2).

5 Results

Our findings are summarized in Fig. 4, where the
measured values of angular frequency ωwave are plot-
ted against the theoretical approximation ωtheor for all
tank diameters, wavenumbers, rotation rates and initial
heights combined.

The length of the vertical error bars represent the
double standard deviation of the observed (but not pre-
cisely constant) angular frequency of the polygonal pat-
tern in a given experiment. The horizontal error bars
originate from the uncertainty of the estimated charac-
teristic water thickness h′: as mentioned above, for the
calculations h′ ≈ R − r̄ was used, which includes the
mean radius r̄ of the contact line. We repeated the same
calculation with the minimum and maximum radial dis-
tance of the contact line in the given pattern as “depth”
scales, and the resulting values are represented by the
endpoints of each horizontal interval.

Apparently, the scatter plot shows a manifest cor-
relation and a fairly good data collapse around the
fitted linear trend line ωwave = 0.42(±0.02)ωtheor

implying that the theoretical framework based on the
dispersion relation of inviscid, small amplitude sur-
face waves above a uniform bottom topography pro-
vides an acceptable order-of-magnitude estimate for the
observed propagation when adjusted with an empirical
form factor of 0.4.

Fig. 4 Scatter plot of the measured angular frequencies of
the polygonal waves with respect to the frame of reference
co-rotating with the plate ωwave as a function of the calcu-
lated “theoretical” angular frequency ωtheor. The diameter
D of the tank and the mode number n is indicated in the leg-
end. Different data points with the same n and D differ in Ω0

and H0. The dotted line represents the ωwave = 0.42 ωtheor

linear trend line. The inset shows the data points from
the experiments contrasted with nondimensionalized disper-
sion relations from different small-amplitude theories: lin-
ear long-wave limit (black dotted line), linear short-wave
limit (blue dashed line), linear “full” dispersion (red solid
line), and the nonlinear BBM theory’s small-amplitude limit
(green solid curve)

6 Discussion and conclusions

In the present work we addressed the problem of drift-
ing regular wave patterns (also referred to as “poly-
gon vortices”) on the free water surface of a cylindrical
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shear flow. We argue that the wavelengths and angular
frequencies of these disturbances appear to be consis-
tent with the hypothesis that the observed propagation
can be interpreted as gravity waves travelling along the
tilted water surface.

It is important to emphasize, however, that the for-
mula (2) was not expected to properly describe the
actual waves in the experiment, which clearly do not ful-
fill the initial assumptions of the model: the fluid is not
inviscid (otherwise shear, the driving mechanism of the
instability could not even take place), the amplitudes
are not small compared to the effective water thickness
h′, and h′ is not uniform. Yet, the fact that the formula
yields a fairly good collapse of experimental data from
very different geometries (Fig. 4)—even if not along the
y = x line—does indicate that the basic underlying
assumption of gravity wave propagation holds.

In the kh′ � 1 (long-wave) limit the phase veloc-
ity c = ω/k from (2) reduces to the non-dispersive
relationship c0 =

√
g′h′, whereas the kh′ � 1 (short-

wave) approximation yields csw =
√

g′/k. The ques-
tion may then arise of whether, and to what extent the
observed wave dynamics can be described in terms of
these limits. The inset of Fig. 4 shows the nondimen-
sional (observed) phase velocities c/c0 of the polygonal
waves from all set-ups as a function of their relative
wavenumber kh′. When expressed with these variables
the long-wave approximation (c = c0) is represented
by a constant (black dashed) line at unity, the short-
wave limit follows the 1/

√
x hyperbola (blue dashed

curve). The full dispersion relation of the linear the-
ory is marked by the solid red curve. The data points
scatter below the theoretical curves—as expected from
the aforementioned results—but nevertheless exhibit a
clear decreasing trend. This, and the fact that they are
all located in the kh′ > 1 domain indicate that the
long-wave approximation is inadequate, but it is also
visible that in this interval the short-wave limit already
gives practically the same (over-) estimate as the full
formula.

As mentioned earlier, the selection of h′ in this config-
uration is somewhat arbitrary, and is therefore clearly
a source of uncertainty. This fact is also expressed by
the horizontal error bars in Fig. 4, whose endpoints cor-
respond to alternative definitions of h′, where—instead
of its average distance r̄—the minimum and maximum
radii of the contact line was considered in determin-
ing h′. Taking the lower limit of this interval for each
experiment would only increase the slope of the linear
fit from 0.42 to 0.47. For the data points to reach the
y = x line in the main panel of Fig. 4—or the nondimen-
sional phase velocity curve in the inset—a completely
unrealistic value of h′ would be required. Therefore, we
can state that this mismatch cannot be solely blamed
on the problem of h′ selection, but nonlinear effects may
also be taken into account.

Periodic solutions of the weakly nonlinear
Korteweg–de Vries (KdV) wave equation [14] and
its improved version, the Benjamin–Bona–Mahony
(BBM) equation [20] (exhibiting better short-wave

behaviour) are referred to as cnoidal waves, which
propagate at the following wave speed:

c = c0

[
1 +

H

mh′

(
1 − 1

2
m − 3

2
E(m)
K(m)

)]
, (9)

where, as before, c0 =
√

g′h′, H marks the wave height
(the difference between crest and trough elevation),
and K (m) and E (m) are the complete elliptic integrals
of the first and second kind, respectively. The elliptic
parameter 0 < m < 1 of the solution also determines
the shape of the waves via the cn(m) Jacobi elliptic
function (hence the name “cnoidal”). The waveform
for m = 0 corresponds to sinusoidal waves, whereas
the m = 1 limit represents non-periodic solitary wave
solutions. For m < 0.82 the velocity is below the lin-
ear long-wave limit (c < c0) and decreases with the
decreasing m [21].

The phase speed in the limit of infinitesimal wave
height can be derived from the BBM cnoidal solu-
tion’s formula for wavelength λ(H/m; c;h′;K(m)),
from which H /m can be obtained and substituted into
(9), yielding a function c(λ;h′;m;E(m);K(m)), which
can then be expressed with k as well, since k = 2π/λ.
Taking the first-order Taylor series expansions of K (m)
and E (m) [22], one gets a c(kh′) relation in the nonlin-
ear small-amplitude limit which reads as

c =
c0

1 + 1
6 (kh′)2

. (10)

Comparing this formula—shown with a green solid
curve in the inset of Fig. 4—to the experimental data
points we find a manifestly better agreement than in
the case of linear wave theories, despite the fact that
(10) does not take wave amplitudes into account either.
This observation implies that the effect of nonlinearity
in the dynamics of the polygonal waves may contribute
more to the 0.42 correction factor than the uncertainty
of the depth scale h′.
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