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Abstract:
The quantummoleculardynamicsapproach,ann-bodytheoryto describeheavy ion reactionsbetween100 MeV/n and2 GeV/n, is reviewed.We

startout with a surveyof thepresentstatusof nuclearmattercalculationsandof kinetic theoriesasfar astheyareof importancefor ourapproach.
We thenpresenta detailedderivation of thequantum moleculardynamicsequation,discussthe variousapproximationsnecessaryto derivethis
equationand to make actual calculationsfeasible.The calculationspresentedaim at the solution of two of themost interestingquestionsof
contemporaryheavy ion physics: What causesa nucleusto fragmentinto manyheavypieces,and can we determinethenuclearequationof state
from heavy ion reactions?We first makedetailedcomparisonswith amultitudeof experimentaldata,which yield unexpectedlygood agreement.We
thenproceedto detailedinvestigationsof thesequestions.We find that fragmentationattheseenergiesis triggeredby thedensitywavecausedby
the projectile while travelling throughthetarget.We reproducethe“squeezeout” and the“bounceoff’ predictedby hydrodynamicalcalculations
andrecentlyseenin experiment.Thus thereis hopethat thenuclearequationof statecanbeextractedfrom heavyion experiments.However,very
careful multiparameterexperimentsare necessarybefore one can achievethis goal.

1. Introduction

One of the most challengingquestionsWhich presently are addressedin nuclear physics is the
behaviourof nuclearmatter under extremeconditions. The correctanswerhasconsequenceswhich
reachfar beyondthe scopeof nuclearphysics.The explosionmechanismof supernovae,the interior
structureof neutron stars and the formation of matter during the evolution of the early universe
strongly dependon the propertiesof hadronmatterover a wide rangeof densitiesandtemperatures.

Unfortunatelytheseastrophysicalobjectsareremotein spaceandtime so that their usefor studiesof
the nuclear matter equationof stateunder extremeconditionsis quite difficult and the conclusions
drawn dependon a ratherlimited set of observationsof theserare naturalevents.The only possible
candidatesfor a systematicstudy of the nuclear matter propertiesin the laboratoryare high energy
heavyion experiments.Herethe systemmaybe dominatedby thesurfaceandthe influenceof the short
reactiontime mustbe addressed.Furthermoreit hasto be investigatedwhetherequilibrium is reached
in thesereactions.

Theseexperimentsbecamepossibleat the beginningof the seventies.At that time the BEVALAC at
the LawrenceBerkeleyLaboratoryin Berkeleyandthe Synchrophasotronin Dubnastartedto deliver
highly acceleratedheavyions.

Previouslyheavyionswith energieslargerthan20 MeV!n wereonly availableas part of cosmicrays.
The technicalcomplicationsto measurereactionsof thesenaturalbeamsandtheir rarenesssetstrong
limits to the numberof eventsrecorded.Fromacceleratorexperimentsonecould expectan increasein
the numberof eventsof severalordersof magnitudeaswell as aclear setup for multiparameterevents.

The previouslyavailableprotonbeamsneithercompressthe systemsubstantiallynor do theydeposit
a large amountof energyin the target.The interaction of protonswith heavyions was successfully
describedin the frameworkof the Glaubertheory [1], which assumesthat the incomingprotoncrosses
the targeton a straight line anddepositsaround400MeV/c momentumin the transversedirection per
collision with a target nucleon.Thus the target doesnot receivea substantialexcitationenergy.

Heavy ion projectiles were expected to allow one to explore large regions of the density—
temperature(p, T) plane. Theoretical calculations predictedthis plane to be full of structure.A
pictorial view of the differentspeculationsis shownin fig. 1. It also containstrajectoriesof heavyion
reactions and supernovaexplosions.At moderate temperatures(T~15MeV) a liquid—gas phase
transition is predicted. Speculationsabout density isomers at p = 3p0 and the occurrenceof pion
condensationat about the samedensitywere advanced.Finally, for very high densitiesandtempera-
tures one expectsthe transition to the quark—gluonplasma.Testingthesespeculationsseemedto be
possible in the now availableexperiments.
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Fig. 1. Phasediagramof nuclearmatter. We seethetheoreticalpredictionsof what may occurat high densitiesand high temperatures.The only
experimentallyknown point is p = p

0. T = 0. Also displayedarethe trajectoriesof a supernovaexplosion and of a heavy ion reaction.

The first — inclusive— experimental results were rather disappointing. It seems that heavy ion
experimentsbetween250 MeV/n and 1 GeV/n could be well describedby the participant spectator
model. In this model nucleons in the geometricaloverlap of projectile and target form a globally
equilibratedsourceof particleemissionwhereasthe rest of the matter— the spectators— remainscold
andundetected,beingeitherat restin the laboratorysystem(targetspectators)or at 0 = 0°(projectile
spectators).Henceall observablesaredeterminedby the expansionof a thermalizednucleargas. Even
the formationof light compositeparticleswas obtainedin thesemodelsapplying a coalescenceformula
to the single particle spectra.For a discussionof thesethermalmodelswe refer to a recentreviewof
Csernaiand Kapusta[21.

The moreexclusiveexperimentswere performed,the moreit becameobviousthat this was a highly
idealizedpicture of thecollision. Determiningthe centralityof thecollision with a multiplicity trigger, it
turned out that only centralcollisions of a heavy projectile—targetcombination lead to an almost
completestoppingand thermalization.The lighter the projectile andthe moreperipheralthe reaction
was, the strongernon-equilibriumcomponentsappeared.This generalbehaviourwas confirmed when
someyears later the experimentalgap betweenlow energyheavy ion accelerators(EIah <20MeV/n)
andBEVALAC energies(Elah > 250MeV/n) was closedby thenew machinesat CERN, Michigan State
University and GANIL.

The general feature which emergedfrom the analysis of thesereactionsshows that equilibrium
situationscan only be found at very low and very high energies.In betweenwe see a wide rangeof
energieswhereprojectileandtargetdo not equilibrateandthusthe measuredquantitiesreflect directly
the dynamicsof the heavy ion reactions.At low energieswe find compoundnuclearreactionswhere
collisions are almost absentand hencethe meanfield keeps the nucleonstogether long enough to
equilibrate. At high beamenergies,on the contrary, frequentnucleon—nucleoncollisions causethe
thermalizationwhereaseffectsof the meanfield aresmall. Resultsof kinetic theory indicate that about
threecollisions pernucleonaresufficientto producea Maxwellian spectrum.SincePauli blocking is no
longer severeat very high energies,the meanfree pathA is roughly given by A = 1 /up 2 fm, whereu
denotesthe free nucleon—nucleoncross section. Hence we should expect equilibration at central
collisions of heavy projectile—targetcombinations.Indeed,an almost completeequilibration is seen
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experimentally.Between thesetwo extremesthe Pauli blocking of the collisions is neither strong
enoughto avoid emissionduring the meanfield equilibration time, nor is it weakenough to allow a
sufficient numberof nucleon—nucleoncollisions before the systemdisperses.

Hence intermediateand high energyheavy ion reactionsoffer a unique possibility to study the
evolution of nuclear systemstowards equilibrium, the details of the reaction mechanismand how
nuclearforces act in the densenuclearenvironment.Two observablesemergedas the most exciting
onesfrom the presentexperiments:multifragmentationandthe collective flow of nuclearmatter.

Multifragmentation,i.e. the productionof low and medium mass fragments5 < A<30, hasfirst
beenobservedin protoninducedcollisions with heavytargetsand beamenergieswell beyond5 GeV.
Thesefragmentshavereceivedthe name“deep spallationproducts”but their productionwas never
explainedin physical terms. They are much more copiouslyproducedthanexpectedfrom compound
evaporationmodelsand hencethey point to a new reactionmechanismwhich is absentat low beam
energies.When heavyion projectileswere availablefor the first time the experimentsindicatedthat
thesefragmentscannotcomefrom an equilibratedsource.Emulsion data revealed[3] that severalof
thesefragmentswere producedsimultaneouslyin centralcollisions. The form of the massyield curve
triggeredthe suggestionthat thesefragmentspresentevidencefor a liquid—gasphasetransitionandthat
their yield is directly connectedwith the critical exponent. This conjecturecauseda lot of interest
althoughit was neversubstantiatedby a detailedtheoreticalanalysisof all measuredquantities.

The flow of nuclearmatterin heavyion collisions has beenpredictedby hydrodynamicalcalculations

[41.It is causedin nearly central collisions where nuclear matter is first compressedand the
compressionalenergyis releasedafterwards.The compressionalenergystems from the longitudinal
motion but the releaseis isotropic thus acceleratingparticlesalso transversely.Experimentallyit has
beenfirst observedby the Plastic Ball Group [5—8].This observationof flow demonstratesclearlythat
the meanfield still plays an importantrole for the dynamicsof the reactionat beamenergiesaround
1 GeV/n andthat nuclearmatteris compressedin the courseof thereaction.More exciting,however,is
the relation betweenthe flow andthe nuclearequationof state.Thus measurementsseemto offer an
experimentalhandleon the equationof state,i.e., on the compressibilityof nuclearmatter.

Flow of nuclearmatteris a collective phenomenon.Nucleon—nucleoncollisions tendto destroythe
alignmentof themomentumof the collision partnersandhenceweakenthe collectiveflow. On theone
hand,nucleonswhich suffer violent two-bodycollisions usually end up at different regionsof phase
spacecomparedto those nucleonswhich go with the flow and are unscattered.On the otherhand,
nucleonswhich suffer violent two-body collisions are less likely to end up as part of a fragment.
Combining both observationswe can expect that complex fragmentsprovide an even better tool to
study the collectiveflow thanemittedprotons.

To pin down the nuclearequationof statefrom relativistic heavy ion collision dataseveralreliable
independentmodels should be employed to follow the evolution of the system. The predicted
observablesfrom such time dependenttheoriesmust then be comparedwith data by adjustingthe
equationof state.

Theoreticalinvestigationsof heavyion collisions can havetwo startingpoints. Eitheronecan invent
simple phenomenologicalmodelswhich describeone or anotheraspectof the reaction, or onehasto
find reasonableapproximationsto the time dependentn-body Schrodingerequation

ill m/i~”~Iat= H~~/i~’~. (1.1)

Here çii~ is the n-body wave function and ~ the n-body Hamiltonian.The first approachhasthe
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advantageof being clearly definedandquite simple. Indeed,many of the gross featuresof heavyion
reactionshave beenunderstoodby suchmodels.The abovementionedparticipant—spectatormodel is
an excellentexample. It hasthe disadvantagethatthe complexreactiondynamicscannotbe studiedin
suchsimplemodels.Consequently,theresultsmay stronglydependon theparticularchoiceof the input
and the assumedreaction dynamics. An example of theseproblemsare the models which try to
understandmultifragmentation.Starting from quite different, almost opposite, assumptions(which
rangefrom global equilibriumto processeslike shatteringof glass,from a liquid—gasphasetransitionto
percolationof a lattice) almostall modelsproducethe sameform of massyield curve. Conversely,it is
hard to make sure that the agreementbetweenmodel and experimentreally revealsthe underlying
physics. For a discussionof thesemodelssee ref. [91.

The secondapproachsuffers from the complexity of the equation,which cannotbe solved in a
straightforwardmanner.Hence reasonableapproximationsare required.Before starting to solve the
time dependentequationa close inspectionof the solutionsof the time independentequation

EtI/”> = ~ (1.2)

is advised. This equationwas widely used to study the nuclearmatter propertiesas well as binding
energiesand root meansquareradii of finite nuclei. One hasto keep in mind, however, that this
equationis only valid as long as the mesonsdo not haveto be treatedasparticlesthemselvesbut only
appearas potentials.

One of the most surprising results was, that in spite of the strength of the nucleon—nucleon
interaction, nucleons at low energiescan be describedin the Hartree—Fockapproach. Here the
nucleonsmove in an averagepotential

(a~VM’~a)= ~ ((a,b~v~2~a,b) — (a,b~vt2~b,a)), (1.3)
E(b)<EFer~i

which is generatedby all other nucleonsand no explicit two-body interaction is required.~12~refers
hereto the two-body interaction.The single particlewavefunctionsarethensolutionsof theone-body
Schrddingerequation with the potential VMF and the n-particle wave function is just the Slater
determinantof the single particlewave functions.Attempts to usepotentialsfitted to nucleon—nucleon
scatteringdata failed becausethe two-bodyterm diverges. By employingeffectivepotentialsobtained
by summingthe one-holegraphs,i.e., by solving the Bethe—Goldstoneequation,this problemcan be
resolved[10]. Even better agreementwith nuclearmatterpropertiesis obtainedemployinga density
dependentlocal interaction vMF = U(p). The validity of such an approximationcan be verified by
comparingtheseresultswith the original resultsbasedon two-body interactions.For actualcalculations
a renormalizedform of the densitydependentpotentialis usedwhichgives properbinding energiesand
saturation density. Both quantities could not be reproducedsimultaneouslyby a nonrelativistic
potential based on scatteringdata. Nevertheless,density dependentpotentials seemto be a good
startingchoice to describethe dynamicsof nucleus—nucleuscollisions.

In the energyregimeEIab >25 MeV/n, which we areinterestedin, the two colliding ions usuallydo
not cometo global equilibriumin the courseof the reaction.Thiscomplicatesthe problemtremendous-
ly. If equilibrium is reached,the detailsof the dynamicson the way towardsit arenot reflectedin the
final observables.Here we haveto follow the details of the dynamics from the initial separationof
projectileand targetup to the final distribution of the remnantsin phasespace.
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The calculationof the time evolutionof two colliding nuclei in phasespacehasfirst beenperformed
successfullyin hydrodynamicalcalculations. Later also the Time DependentHartree—Fock(TDHF)
and the Boltzmann—Uehling—Uhlenbeck(BUU) equationswere solved. The validity of eachof these
approachesis limited to a certainenergyregime. However,theseequationshavein commonthat they
are one-bodyequations;henceall predictionsare limited to one-bodyobservableslike the double
differential crosssection for protonsor (n — 1)-body observableslike the linear momentumtransfer.
(Here the termsone-bodyand (n — 1)-body have to be takenwith a grain of salt.)The formation of
fragments is beyond the scope of thesemodels. The results obtainedwith theseapproacheshave
recently beenreviewed[4].

Here we presenta microscopicdynamicaln-body theory tailored to describe the formation of
fragmentsin heavyion collisions [11—19].It is dubbed“quantummoleculardynamics”(QMD), sinceit
is essentiallya quantalextensionof theclassicalmoleculardynamicsapproachwidelyusedin chemistry
andastrophysics.We will see,however,that this extensionis not straightforwardalthoughthe formal
structureof theequationsis quite similar. Startingfrom the n-bodySchrödingerequationwe will derive
the time evolutionequationfor the Wigner transformof the n-bodydensitymatrix. This will showthat
the time evolution is determinedby the real andimaginary parts of the transitionmatrix (or — if the
blocking of the intermediatestatesbecomesimportant— the Bruckner g-matrix). We discussthe
approximationswhich are necessaryto solve the final equationwith presentday computers.These
approximationsinclude:

(a) the assumptionthat the scatteringof the nucleonscan be treatedas if they were free, thus
allowing us to usemeasurednucleon—nucleoncrosssections;

(b) the assumptionthat interferencebetweentwo differentsequencesof collisions vanishes;
(c) the assumptionthat collisions areindependent;
(d) the replacementof the realpart of the transitionmatrix by aneffectivepotential,which is easier

to handle and can be directly comparedwith the results of nuclearmatter calculationsand with the
effectivepotentialsused in one-bodytheories;

(e) the assumptionthat the fermionicnatureof the nucleonscan be mimicked andthat calculations
with antisymmetrizedwave functions,which requirean orderof magnitudemore computertime and
havenot evenbeentried so far, do not give substantiallydifferent results.

To establishthe validity of our approachwe presentextensivecomparisonswith the results of
one-body theories. The differenceswe find are rather small and are expected from statistical
fluctuations.

The emphasisof the QMD approachresidesin actual calculations,which allow a detailedcom-
parisonwith experimentaldata.Here our interestsareconcentratedon two topics: theunderstandingof
multifragmentationand the extractionof the nuclearequationof state.

For the first topic we performedcalculationsfor almostall high energyfragmentationdata.We find
remarkableagreementnot only with single particleobservablesbut alsowith fragmentationdata.These
include the total crosssection for fragmentproduction,the multiplicity of fragmentsin a single event
andthe transversemomentumthe fragmentsgainas a consequenceof the bounceoff. This agreement
gives us confidencethat we can useour approachto investigatethe central question,namely what
causesa heavy target to break up into fragments?We find that at the energiesconsideredthe
multifragmentationis causedby a high densityzonedueto the traversingprojectile. We could not find
any evidencefor a liquid—gasphasetransition.On the contrary,the investigatedsystemsneverreached
completelocal or global equilibrium.

Although in principle the nuclearequationof stateshould be obtainedby nuclearmattercalcula-
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tions, it turns out that the uncertaintiesdueto higher ordertermsandto thelargely unknownbehaviour
of mesonsand resonancesin nuclear matter are so large that reliable predictionsare not presently
within reach. It is thereforea challengingpossibility to infer the nuclearequationof state from heavy
ion reactions.For this purposeone follows the strategyof employingvarious potentials,which yield
different equations of state in nuclear matter, and investigating their influence on observables.
Unfortunatelyit turns out that the effects areof the sameorderof magnitudeas thosecausedby small
variationsin other input quantities,such as a changein the nucleon—nucleoncrosssection due to
in-mediumeffects, or a slightchangeof the momentumdependencesof the nucleon—nucleonpotentials
withoutchangingthe equationof state.Thereforemanyobservableshaveto be measuredsimultaneous-
ly in order to disentanglethesedifferent effects. We will report on the presentstatusof this project.

Although in principle the dependenceof the equationof stateon the input parameterscan also be
investigatedin one-bodytheories,this approachhas a large drawback.Experimentallysingle particles
and fragmentsare measured.Both react differently to changesof the input parametersand havea
differentprobability to be detectedevenfor the sameenergy/nucleon.In one-bodytheoriesthereexist
only single particles. Hencea direct comparisonwith experimentis not possibleand unfortunatelythe
effects observedby varying the parametersare of the same size as the uncertaintiesin relating
experimentsto the one-bodytheories.Thus in this caseatheory which is able to describethe formation
of fragmentsis againsuperiorto one-bodyapproaches.

This paperis organizedas follows.
In chapter2 we startwith a reviewof the nuclearequationof stateobtainedin nonrelativisticand

relativistic nuclearmatter calculations.We discusswhy it is essentialto disentanglethe densityand
momentumdependentpartsof thenucleon—nucleonpotentials,whichdeterminethe equationof state.
We give the presentstatusof differentnuclearmatterapproachesanddiscussthe currentresultsfor the
opticalpotentialat high densitiesand temperatures.

In chapter3 we review the kinetic equationswhich are or which can be employedto describethe
dynamicsof heavyion collisions on the one-bodylevel. The quantalone-bodyequationscan be derived
from the n-body von Neumannequationin analogy to the BBGKY hierarchy in classicaltransport
theory.We will show which approximationsare madeto obtain the TDHF, the intranuclearcascade
andthe BUU equations.

In chapter4 we discussthe derivationof the QMD equationfrom the n-bodySchrodingerequation.
We investigatein detail the approximationswhich arenecessaryandthe rangeof validity of the QMD
approach.We motivate the choice of the initial distribution, and finally discuss the independent
scatteringapproximationandthe presentstatusof the attemptsto solvethe time evolutionequationfor
fermionicsystems.

Chapter5 is devotedto the descriptionof the numericalrealizationof the QMD model. We discuss
the inputs from nuclearmatter calculationsand presentin detail how the equationsare solved. We
reporton the testsperformedand compareour resultswith thoseof one-bodytheories.

In chapter6 we presentcalculationsof fragmentproductionand confront them with experimental
data. We take advantageof the additional information availablein the calculation, i.e., we studythe
coordinatespacedistribution as afunction of time to investigatethe impactparameterdependenceof
the reactionsandto study correlationsbetweenthe initial and final distributionof the nucleons.

In chapter7 we presenta detailedcomparisonof our proton data with experimentsand with the
resultsof one-bodytheories.We investigatedifferentsuggestionsof observablesbeingsensitiveto the
nuclearequationof stateand discussthe influenceof the equationof stateon particleproductionand
the collective flow. We also investigate how variations of the cross section and the momentum
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dependenceof theinteractioninfluencethe observablesandwhetherthis mayspoil the informationon
the equationof state.

Finally, in chapter8 we summarizethe resultsandpresentthe conclusions.

2. The nuclear equation of state

One can think of threedifferentsourcesto obtaininformation aboutthe nuclearequationof state
(EOS):

(1) astrophysicalmeasurements,in particular the explosion of supernovaeand the stability of
neutronstars;

(2) giant monopolevibrations;
(3) high energyheavy ion collisions.
Up to now the key quantity “compressibility” extractedin thesethreedifferent approachesstill

differs by a factor of two. Someauthorsclaim that their modelsfor supernovaeneeda soft equationof
state(EOS)with acompressibilityof K 140MeV in order to makethem explode[20].A stiffer EOS,
i.e. a larger value of K, does not allow sufficient energyto be storedduring the collapsephaseand
hencethe subsequentexplosiondies out on the way to the surface.

Early analysesof giantmonopoleresonancesseemedto yield a compressibilityof K 200 MeV [21].
Recentmore refined experiments,however, lead to much larger values (K 300 MeV) [22]. A still
higher compressibility,K 380MeV, hasbeendeducedfrom 4’rr data [23,24].

The discrepancybetweenthe resultsobtainedin thesedifferent fields maybe lesssurprisingif one
keeps in mind the quite strong assumptionsmade in the calculations of heavy ion reactionsand
astrophysicalphenomenaas well as the different time scalesand/or momentumspacedistributions
involved:

(1) The iron core of the progenitorstar could be smaller [25]than estimatedpreviously [26]. Then
promptsupernovaeexplosionswould occurevenwith a stiff EOS [27].

(2) The supernovaexplosionscould be due to mechanismsotherthanthe prompt bounce,e.g. by
late shock revival due to neutrinoheating[28].

(3) The timescalesinvolvedin the two processesarequite different(i03 s versus1022 s), so that a
softeningof the neutronmatterequationof statedueto processesin ~3-equilibriumcould beimportant
[29].

(4) The angularmomentumof the progenitor,which should play an importantrole in the prompt
collapse,has been ignored in most calculations.Up to now almost all conclusionsare basedupon
one-dimensionalhydrodynamicalcalculations [30]. Recent calculations presentevidence that the
collapseof a rotating star can yield a quite different scenariocomparedto a staticcollapse [31].

(5) The momentumdependenceof the interactionscould provide an additional repulsionin heavy
ion collisions, which could help to producethe largeobservedtransversemomentumtransfer[13,32—
35].

(6) The in-mediumscatteringcrosssectioncould besmalleror largerthanthe free crosssection.Up
to recently nuclear matter calculations predicted a reducedin-medium cross section [36,37] for
momentalarger than the Fermi momentum.Now it seemsthat a better descriptionof the pion
polarizationmayenhancethe crosssection[38,39].

(7) In monopolevibrations [21,22] the nucleonsoscillatearoundtheir equilibrium density.How-
ever,the changein densityis lessthana tenthof apercent,whereasin heavyion collisions weexpectto
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obtain more than twice nuclear matter density. So it seemsquite unrealisticto extrapolatethe EOS
from thesesmall densityvariationsto very high densities.

All informationbeyondthe sparseastrophysicalobservationson rareeventslike, e.g., SN1987Ahas
ultimately to be obtainedfrom nuclearcollisions simply becausethereis no otherreliable sourceof
experimentalinformation. This situationmakesit not only worthwhile but compulsoryto try to extract
information on the nuclearequationof state(EOS) from heavyion experiments.This, however,is a
very complicatedtaskand henceonly aboutthe first stepstowardsthis ultimate goalcan be reported.
The main ~‘omplicationsare:

(1) The propertiesof finite nuclei are quite different from those of nuclear matter. Even in the
heaviest nuclei most nucleons“feel” the surface.This makes it difficult to relate resultsof nuclear
experimentsto propertiesof nuclearmatter.

(2) High densiii~scan be obtainedin heavyion collisions only for very shorttimes(of the orderof
10 fm/c). Such a time spanmaybe too short to allow possiblephasetransitions,which mayoccurat the
samedensiLy hut on a longer time scale.

(3) Nuclearmattercalculationsarenot able to reproducethe known nuclearproperties.Even the
mostsophisticatednuclearmattercalculationswith potentialsadjustedto nucleon—nucleonphaseshifts
are not able to describethe experimentalfacts on the binding energyat saturationdensity and the
optical model potentialsmeasuredin proton—nucleuscollisions. Modelling high energyheavy ion
collisions requiresknowledgeof thesepotentialsnot only at nuclearmatterdensityandzero tempera-
ture but also at high densitiesand high temperatures.Evencalculationswhich agreeon ground state
propertiesandopticalpotentialsat normal nuclearmatterdensitiesgive vastly different resultsat high
densitiesandtemperatures.

(4) Only in extremecases(central collisions in heavy projectile—targetcombinations)[17] do the
light particles reach a global equilibrium. Usually we face situations far from equilibrium. This
complicatesthe theoreticalcalculationstremendously;e.g., relativelysimple equilibrium Pauli blocking
in the g-matrix calculation cannotbe applied. Furthermore,dynamicalmodels which require local
equilibrium like fluid dynamicsor hydrodynamicscan only be applied with caution. They do not allow
oneto investigatewhethera discrepancybetweentheory andexperimentis due to the assumptionsof
equilibrium kinematicsor due to a wrong parametrizationof the potentials.

So the determinationof the propertiesof nuclearmatterunderextremeconditionsrequiresnot only
a detailedcalculationof the dynamicsof the system but also furtherprogressin calculatingthe static
propertiesof finite nucleiunderextremedensitiesandtemperatures.Ultimately only a combinedeffort
can lead to success.

2.1. The nuclearequationofstate

The propertiesof nuclearmatterin equilibrium can be describedby two variables,the densityp and
the temperatureT. The pressureP, i.e. the equationof state,can beobtainedfrom thesevariablesvia
the thermodynamicalrelations.In nuclearphysicsone usuallydefinesthe energy/baryonE, which is a
functionof p and T. E is connectedto thepressureby therelationP = p2 ~ HereS denotes
the entropy. The compressibilityK is defined as K = 9p 0PIäp~~consi.In order to disentanglethe
changeof the staticenergy/baryondueto cold (T = 0) compressionfrom the energydueto an increase
of the temperature,we define [4,40]

E(p,T)=ET(p,T)+Ec(p,T=0)+Eo, (2.1)
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whereE~is the compressionalenergyandET is the thermalenergy.ET consistsof the kinetic energy
abovethe degenerateFermi gasandpossiblyof a potentialenergy(if momentumdependentpotentials
are used).Only a single point of this two-dimensionalsurfaceE(p, T) is known experimentally:At
normal nuclearmatter density kFermi 1.36fm’, the binding energyper baryon is E0 = —15.75MeV
andthe pressureequalszero.

2.2. Nonrelativistic nuclearmattercalculations

The energyper nucleonin nuclearmatter andultimately the equationof state,i.e. the dependence
of the bindingenergyon thedensityp andthetemperatureT, shouldin principle be calculatedfrom the
underlyingnucleon—nucleoninteractions.This hasbeenattemptedusingtheBrucknerg-matrix[10,41]
approach,but was not completelysuccessful,as we will see.The sameis true for the opticalpotential,
which describeshow an incoming proton reactswith the target nucleus,which is consideredas a
one-bodyobject, thus reducingthe (n + 1)-bodyproblemto a two-bodyproblem.

The retardedGreen’sfunction, which describesatthe sametime the propagationof a particleadded
to the medium and of a hole punchedinto the medium (of momentumk and energyE), is given by

G~(k,E) = E— k
2/2m—M(k, E) + ~ (2.2)

wherethemassoperatorM(k, E) is a function of the Brucknerg-matrix.Theg-matrixis definedvia the
Bethe—Goldstoneequation,

~ b~a,b)(a,b~
g(E) = V + V E —e(a)— e(b)+ ~ g(E). (2.3)

If E is lessthantwice the Fermi energythe imaginarypart of the propagatorcan be omittedbecauseit
does not have a pole. We will discussthe consequencesin chapter3. Here V is the elementary
nucleon—nucleoninteraction;usually a multiparameterfit to nucleon—nucleonscatteringdata such as
the Reidsoft core potential [42]is usedin theseapproaches.The sumruns over all unoccupiedstates

a, b) and e(a) is the single particle energyof the statea,

e(a)=a212m+ReM(a,e(a)). (2.4)

The massoperatorM(a, e(a)) can be expandedin g [41]. The second-orderapproximationreadsas

M(a, E) = M
1(a, E) + M2(a, E), (2.5)

M1(a, E) = ~ n(j)(a, j~g(E+ e(j))Ia, j) + (a, j~g(E+ e(j))Ij, a) , (2.6)

M2(a, E) = ~ J,1,k — n(k)] [(1, jjg(e(l) ~ e(j))Ik, a)]2

(2.7)

Here n( j) is the occupationprobability of the single particle statej. The single particle energye(a)
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dependson M(a, e(a)). M(a, e(a)) in turn dependson the singleparticle energye(a),so that we haveto
determineM(a, e(a)) self-consistently.The massoperatorM(a, e(a))can be identified with thecomplex
optical model potential,

M(a, e(a)) = V(a) + iW(a), (2.8)

which is the potentialfelt by a particle that entersnuclearmatter.This potentialcan be measuredin
proton—nucleusreactions. This allows us to check the validity of the approximationsnecessaryto
calculatean opticalpotentialfrom the nucleon—nucleoninteraction.Actual calculationsshow[41] that
for particle energiesbetween0 and 200MeV the real part of the optical potential can be quite well
approximatedby

V(k, p) = V~(p)+ (ak2I2m)p/p
0, (2.9)

with a = 0.3. k is the protonmomentumand m the proton mass.Comparingnow eq. (2.9) with the
resultof eq. (2.2) wefind that the main influenceof the surroundingnuclearmatteron a particleis the
changeof its massfrom m to

m*= k
2 m (210)

2[k212m + (ak2/2m)p/p
0] 1 + 0.3p/p0

The momentumdependenceof the opticalpotentialcontainsa genericmomentumdependenceof the
potentialas well asthe nonlocalityof the potential.By inspectingthe Schrodingerequation,onecansee
that the latter can also be expressedas a momentumdependence.

The extraction of the nuclear matter propertiesfrom nucleon—nucleonpotentials adjusted to
nucleon—nucleonscatteringdata [42], however, failed in nonrelativistic calculations. They yield a
saturationdensityof nuclearmatterabouttwiceas high asexperimentallyobserved.Also, whenapplied
to finite nuclei, theseforcesdo not reproduceexperimentalfacts[43]. Fordifferentpotentialswhich are
adjustedto nuclearscatteringdatathe extractedbinding energiesand rootmeansquareradii fall on a
line, the Coesterline, which doesnot matchthe experimentalpoint. Eventhe inclusionof three-body
correlations [44] does not cure this problem,which seemsto be intrinsic in nonrelativisticnuclear
mattercalculations.The most probablereasonfor this will be discussedin the nextsection.

In order to enforcesaturationat normalnuclearmatterdensitya phenomenologicalforce hasto be
invoked.FriedmanandPandharipande[45] introduceda repulsiveinteractionin aform which can also
be expressedas the density dependenceof the two-body potentialv~.For densitiesclose to nuclear
matterdensity

i~EIA~~V~ap°°3.6(pIpo)
2[MeV] (2.11)

yields the correctbinding energyof —15.75MeV/n of nuclearmatter.Calculatingthe energy/ nucleon,
i.e. the equationof state

E 11 if / 3.6\
(2.12)

we obtain a quite low compressibilityas can be seenby inspectingfig. 2.
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p/p0
Fig. 2. Nuclear equationof state as predictedby different theories.We display the compressionalenergyobtained in the phenomenological
approachof FriedmanandPandharipande[45].which is verycloseto that of Horowitz andSerot147], aswell asDirac—Brücknercalculationsby ter
Haarand Malfliet [36]. For the sakeof comparisonwe also display the hard equationof stateusedin VUU and QMD calculations164].

The phenomenologicalintroductionof such aterm excludes,however,the approachfor high energy
heavyion collisions.In the ground statethe equationof state is a function of the densityonly, because
the Fermi motion yields termsproportionalto (p/p0)

213. Thus from comparisonat the single point (at
zerotemperatureandnormal nuclearmatterdensity) whereoneknowsthe binding energyonecannot
disentanglethe static from the kineticpart of the equationof state[seeeq. (2.1)], i.e. momentumand
densitydependentpotentials.To haveboth theseparts separatedis essentialfor the descriptionof
heavy ion collisions. Herewe haveinitially a large relativemomentumbetweenprojectileand target
nucleonsand hence a momentumdependentpotential would act quite differently than a density
dependentpotential.This will be discussedin section2.4.

2.3. Relativistic nuclearmattercalculations

Relativistic nuclearmattercalculations[36,46—48] usuallystartout from a Lagrangiandensitywhich
describesbaryonst/i, scalarmesons4 and vectormesons

L = Ifr[y,~(ia~— g~V~)— (m —

+ ~ — m,~42)— ~ — ~V~)2 + ~ — ~F~VF’~. (2.13)

Mesonswith pseudoscalarand pseudovectorcouplingareneglectedbecausetheydo not contributein
the meanfield approximationin spinsaturatednuclearmatter.The motivationfor this approachcomes
from the experimentalobservationthat nucleon—nucleonpotentials,fitted to nucleon—nucleonscatter-
ing data,exhibit a strongattractiondueto the exchangeof a scalarparticleat mediumrangeandstrong
repulsionat short rangedueto the exchangeof a vectorparticle. The parametersof this theory,i.e. the
massesandthe couplingconstants,can be determinedfrom experiments.

The equationsof motion of theseinteractingfields havenot beensolvedsofar. Furtherapproxima-
tions havebeenmade.The mostcommonlyusedapproximationis themeanfield approachof Serotand



246 J. Aichelin, “Quantum” moleculardynamics

Walecka[461.They assumethat the time and spaceevolutionof the mesonscan be neglectedand the
actualmesonfields can be replacedby their meanvalues,

40=(g~/m~)(t/J41J)=(g5/m~)p5, (2.14)

= (g5/m~)(t/j
tt/j)= (g

5Im~)p. (2.15)

Here p~is the scalardensityandp is the baryon density.With theseapproximationswe calculatethe
energydensity

= p+ ~(m_m*)2 ~ + B
2+ IFd3kyk2+m*2, (2.16)

A 2m
5 2g5 p 2mv p (2ir) p 0

wherethe densityp, the scalardensityp5, the baryoncurrentB andthe effectivemassm* aregiven by

= (2~ Jdk, (2.17)

= (2~ f d~k~2m2, (2.18)

B = (2~)~Jd3k Vk
2 m*2’ (2.19)

m* = m — (g~/m~)p
5. (2.20)

For later usewe define U = g~/m~and V= g~/m~,with couplingschosenin order to reproducethe
binding energyat normal nuclear matter density. For nuclear matter (degeneracyfactor y = 4) this
meanfield ansatzyields a very stiff equationof state(K = 500MeV). This approachcan be extendedto
finite temperaturesand to termsproportional to ~ and ~ [49]. The higher order terms allow a
softeningof the equation of state in agreementwith the known nuclear matter properties.They
introducetwo new parameters,which can be fixed by optical model experiments[49] and by the
compressibilityextractedfrom monopolevibrations.

Recentlyit was pointedout by Brown et al. [50]that the failure of the nonrelativisticnuclearmatter
calculationsis mostprobablydueto a processwhich is embeddedneitherin a nonrelativistictheory nor
in a relativistic meanfield approach.A strongly repulsivedensitydependentcontributionto the particle
potentialis causedby the virtual productionof a nucleon—antinucleonpair via a scalarinteraction.For
p

2 < M this term contributesto the single particle energyby [51]

= (U2/M)p2/2m. (2.21)

Assumingthat U = —400MeV p/p
0 the energyper nucleonis changedby [51]
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(2.22)

where(p2) 0.6P~ermiis the averageFermi momentumsquaredat normalnuclearmatterdensity.This
term revealsa quadraticdensitydependenceandhencethe sameform — andeventhe samenumerical
values— as the phenomenologicalterm of FriedmanandPandharipande(eq.2.11). A comparisonwith
the experimentalvaluesof the optical potential clearly demonstratesthat the virtual pair creation
accountsfor almostthe entireenergydependence.However,this shouldbe verified by moreelaborate
calculationssince it would imply that all the othercontributionsto the momentumdependenceof the
potentialhaveto cancel.

The othercontributionscan bestbe discussedusingthe [51,52] “Schrädingerequivalent”potential
of the Waleckameanfield theory.The Dirac equationof a particlewith energyE interactingwith the
medium via a meanscalarfield U and vectorfield V is

(E—Vp)’y
0—7.p—m—Up5=0. (2.23)

We multiply the equationwith

(E—Vp)y0—yp+m+Up5 (2.24)

and we obtain the quadraticequation

(E — Vp)
2 — p2 = (m + Up

5)
2. (2.25)

ReplacingE by e + m and identifying the asymptoticmomentumk~
0~= + 2mewith p

2 + 2mV(e),
we finally arrive at

fri \2 — (~J\2~~P
5 ~vp) 6

V(e)=Vp+Up~+ 2m +Vp—, 2.2

with p5 = (E/m)p. The energy/nucleonis then given by

2 r 2E
3PF 11 3PF 1 (2.27)

wherethe factor1/2 comesfrom the conversionof the potentialto the potentialenergyfor a two-body
potential.

We see also that relativistic calculationsyield a repulsivepotential which is proportionalto the
kinetic energyof the particlesandproportionalto the density.Taking the valuesof the original mean
field theory U = —420MeV and V= 330 MeV we evenend up quantitatively with the nonrelativistic
dependenceof eq. (2.9), V(k, p) = V,~(p)+ 0.3Tp/p

0,whereT is the kinetic energyof the particle.The
valueof the coefficient of proportionalitya as well as the linear dependenceof the secondterm on the
densityhavebeenconfirmed recentlyby moreinvolved Brflckner—Dirac [36,47] calculations.

Horowitz and Serot [47] advanceda renormalizedtheory wherethe one nucleonloop corrections
were takeninto account.Theseloopsarevery repulsivethus lowering the valueof the attractivescalar
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potentialto roughlyhalf of the original meanfield value. A smallerscalarpotentialincreasesthe value
of the effectivemass,which was too low at high densities(m* /m = 0.2 at p = 4p0). Therepulsivevector
potential is lowered in magnitudeas well. Both together reproducethe binding energyat normal
nuclearmatterdensityquite well. This calculationyields a quite soft equationof state (compressibility
K = 200MeV), a valuewhich is almost identical to the oneobtainedby FriedmanandPandharipande
[45] in their phenomenologicalnonrelativisticcalculation. Ter Haarand Malfliet [36]publishedresults
of a Bri.ickner—Diraccalculationwhichincludethe productionof the ~(3, 3) resonancebut theydo not
renormalizethe one nucleonloop. Their resultsagreealmost completelywith the original meanfield
values,in the quantitativevaluesaswell as in their dependences.Thus theyobtaina veryhardequation
of statewith a compressibilityof 500MeV. Both calculations,however,do not agreewith experiment.
In a recently publishedanalysisof Ca(p,p’) data Cooperand al. [53] found a quite strongenergy
dependenceof both the scalaras well as the vectorpotential.Both lose strengthalmost linearly with
increasingenergies.In meanfield calculations,wherethe mesonicdegreesof freedomarenot treated
dynamically, both fields have to be constant. So obviously one has to go beyond the mean field
approachto explain the data. First successfulattemptsto includethe dynamicsof the mesonfield were
reportedby Cussonet al. [54] and more recently by Feldmaieret al. [55], who solved the Euler—
Lagrangeequationsderivedfrom the Lagrangian(2.13).However,a detailedcomparisonbetweendata
and theory hasnot been madeup to now.

Applying themeanfield conceptto relativistic heavyion collisions severaladditionaldifficulties arise
[51]:

(1) Projectile and target are moving in the centreof mass system.In a moving systemthe scalar
density is decoupledfrom the vectordensitybecausep~equalsp/y. In heavy ion collisions projectile
nucleons“feel” the potentialnot only from the otherprojectilenucleons— wherep p~— but alsofrom
the target nucleons— where i > — and vice versa. The resulting repulsion adds to the energy
dependencealreadypresentas one can see from eq. (2.26).

(2) The vector potential,which hasonly a fourth componentin the rest system,now getsother
components.The vector field carries a sizeable fraction of the total momentum and hence the
momentumof the nucleonsis lowered.

(3) We exploredensitiesmuchhigher thannormalnuclearmatterdensities.During equilibrationthe
density increasesand the energy is storedin mesonicdegreesof freedom.None of theseproblemsis
satisfactorilysolvedso far.

Due to these circumstancesit is premature to use the result of one specific relativistic or
nonrelativisticnuclear matter calculation as input of a dynamical calculation. Consideringthe men-
tioneddifficulties we cannotexpectto relate the specific form of the nucleon—nucleoninteractionwith
the results of a dynamicalcalculation. Ratherthan aiming at deriving the nucleon—nucleonpotential
from heavyion experiments,we havethe moremoderategoal of obtaininginformation on theequation
of statein nuclearmatter.We startwith a parametrizationof the nuclearequationof statewith as few
parametersas possibleandadjustthe experimentalenergydependence.This operationalpoint of view
ensuresthat we get the correctinfinite matterproperties.The dependenceon the parameterschosenis
easyto handle. If we reduceour n-body theory to a one-bodytheory, the averagepotentialcoincides
with a nonrelativistic local density approximation to the g-matrix. This approximation has been
successfullyused in time dependentHartree—Fockcalculations.Recently it hasbeenshown that this
approachremainsreasonablealso at high beamenergies[56].

Sincewe want to solve an n-body theory we haveto employ nucleon—nucleonpotentialsand not a
meanfield. There are an infinite numberof effectivenucleon—nucleonpotentialswhich yield a given
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equationof state.We takeonewhichis easyto handlenumerically,i.e. a local interactionin coordinate

spacesupplementedby a Yukawaand a Coulombpart. Hence the total interactionreadsas
Viol = a83(r

1 — r2) + /3ô
3(r

1 — r2)6
3(r

1 — r3) + V~0~1(r1— r2)

+ VYUk(rt — r2)+ Vmdi(Pl —p2)6
3(r

1 —r2). (2.28)

Vmdi standsfor the momentumdependentinteraction.The parametersarevaried to allow the studyof
differentequationsof statewithout changingthe ground stateproperties.

This procedureresultsin the following strategy:Ratherthan performingstraightforwardcalculations
with nucleon—nucleoninteractionsadjustedto scatteringdata and making predictions,we have to
performthe calculationwith a variety of reasonablesetsof parameterswhich all givethe correctground
stateproperties.We first haveto searchfor observableswhicharesensitiveto differentinteractionsand
investigatethen whetherone set of parameterscan satisfy all the experimentalobservations.Further-
morethis can helpto determinewhich additional observablesshouldbe measured.Oneof the major
obstaclestowards this goal is the observation that momentumdependentinteractions and density
dependentinteractionscan produce,at least qualitatively, the samephenomena.

2.4. Momentumdependentversusdensitydependentinteractions

In this sectionwe will explainwhy momentumdependentand densitydependentinteractionscan
producesimilar effects for someobservables.

As long as the projectileandtargetdo not overlap,therelativemomentumbetweenthe interacting
nucleonsis rathersmall. Thereforemomentumdependentinteractionsdo not play an essentialrole.
Now let us assumethat projectile and target hit at a semi-centralimpact parameter.As soonas the
nuclei overlap,particlesof very large relative momentaare positionedclosely in configurationspace
(fig. 3a).

Here projectile nucleons“feel” a very strong repulsivepotential due to the neighbouringtarget
nucleons and vice versa (fig. 3b). Outside the overlap region we find either projectile or target

be am

(a) (b)
Fig. 3. Transversemomentumcausedby momentumdependentforces. (a) The reactionin the beam—impactparameterplane. (b) The potential
alongthex axis.We seein theoverlapregiona strong repulsiveandoutsideit anattractivepotential. Hencetheparticleswant to leavetheoverlap
zone by gaining transversemomentum.
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Fig. 4. Pictorial display in the in-planebounce off causedby compression.We see that theforward moving particles have opposite transverse
momentumto thebackwardmoving particles. Also displayed is the squeezeout, theenhancedemissionof light particlesperpendicularto the
reactionplaneclose to mid-rapidity. Both effects are causedby compressionandhave been predictedin hydrodynamicalcalculations14].

nucleons,andthereforethepotentialis still attractive.Consequentlythereis a strongpotentialgradient
perpendicularto the beamdirection,i.e. in the direction of the impactparameter.This causesa strong
force which tries to sweepparticlesout of the overlapzonequite earlyduring the reaction.This force
transfersan appreciableamount of transversemomentumto the particles. So we expect a finite
transversemomentumtransfer.This transversemomentumcausesthe systemto expandradially, thus
decreasingthe density.Hencewe obtainalower maximalcompression.In this moredilute systemfewer
collisions can occur sincethe meanfree path has increased.Observableswhich are connectedto the
numberof nucleon—nucleoncollisions should reflect this lower number. Also we should see a strong
beamenergydependenceof the observables.

If we employ a static interactiononly, we havea densityof abouttwicenuclearmatterdensityin the
overlapregion when the nuclei start to overlap. For realisticpotentialsthe differencebetweennormal
and twice nuclear matter density is small as comparedto the additional difference due to the
momentum dependentinteractions. Therefore we do not have large transversemomentaat the
beginningof the interaction.We ratherexpectmoreequilibration anda higher centraldensity.Hence
more energy is stored in compressionalenergy. During the expansion this energy is released.
Consequentlyparticles from the compressionzonepick up their transversevelocity later than in the
caseof momentumdependentinteractions.A pictorial view of this processis displayedin fig. 4.

Since the mean free path is shorter in this case,all observablesconnectedwith the numberof
collisions should be different from the valuescalculatedfor a momentumdependentpotential.

Hence finite transversemomentumtransfer is obtainedin both cases.However, it remainsto be
checked,andthis is oneof the goalsof the detailedcalculation,whetherthe two differentassumptions
can quantitativelyproducethe sameresult. This questionwill be investigatedin chapter7.

3. Kinetic equations

All information abouta quantaln-bodysystem such as two colliding nucleiwith A~projectile and
n — A~target nucleons— if we neglectparticleproduction— is containedin the n-bodydensitymatrix,
whose time evolutionis given by the von Neumannequation.As a boundaryconditionthe solution of
this equation requires the knowledge of the unknown initial correlationsamong all nucleons and
therefore only a formal solution is possible. This formidable task has not been tackled so far.
Furthermore,a completesolution probably is so complicatedthat it doesnot helpto understandthe
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physicswhichgovernsthenucleus—nucleusreaction.So it is not only compulsorybut alsofor the benefit
of understandingif one concentrateson reasonableapproximationsto the quantal n-body equation.

A variety of approximationshave been suggestedand applied so far to investigateheavy ion
reactions.Their validity dependson the energyrangeand the desiredinformation. Onecanstart out
from the intuitive picture that a nucleuswhich interpenetratesanothernucleuscan be describedas a
superpositionof quasi-particles.They movein an averagefield generatedby all the othernucleonsand
undergohard stochasticscattering,which changesthe quantumstateof the considerednucleon.This
picture emergesfrom the structureof potentialsfitted to nucleon—nucleonscatteringdata and their
action in nuclearmatter. They showa strong repulsive core and a long rangeattraction. In nuclear
matter the long rangeattractionof all the fellow nucleonscan be describedas a meanfield. The short
rangerepulsionis highly suppresseddueto the Pauli principle andcan be understoodas a scatteringof
the particlesinto unoccupiedstates.Low momentumscatteringandhencelong rangecorrelationsare
forbiddensincethe stateswhich can be reachedwith low momentumtransferarealreadyoccupiedand
hencePauli blocked. So betweensubsequentcollisions the particlesmoveon meanfield orbitals.

The classicalequationof motion approach[33,57,58] lacksstochasticcollisions. It is assumedthat
classicalpotentialsactamong the nucleonswhich areconsideredas classicalparticles. This approach
will be discussedin section3.1.

The validity of the different approximationsmadecan bestbe judged if one introducesdifferent
length scales.For this purposewe define:

meanfree path: A = 2—10fm,
length of the system:L = 5—15fm,
rangeof the hard core interaction:a 0.4fm,
lengthof the de Broglie wavelength:A 1 fm at the Fermi energy.
Unfortunately in nuclei all ratios of these length scales are of the order of unity. So any

approximationwhichis basedon the ratio of two lengthsbeingsmall is closeto the limit of its validity if
applied to nuclearphysics.

If A ~ A we are in the classical regime (althoughthis is not quite true since we havediffractive
scattering). This approximation is best for Elab � 200 MeV/n, where the energyper nucleon in the
centreof masssystemis large as comparedto the Fermi energy.This is the energyregimewherethe
classicalmoleculardynamicsapproach[33,57,58] has beenapplied to heavyion collisions.

If A~ L we are in the domain where fluid or hydrodynamicalequationscan be applied [4, 59].
However, theseequationsare derivedunderthe assumptionof local equilibrium and smalldeviations
from local equilibrium, respectively.Thereforethey rely completelyon the assumptionthat in heavy
ion collisions the time for local equilibrationis short. Since A is decreasingwith energydueto the less
effective Pauli blocking, this approachis bestsuited to high energycollisions of very heavynuclei.

If a~ A and A ~ A we are in the dilute limit. This is the domain of the Boltzmannequation,the
Boltzmann—Uehling—Uhlenbeckequation[60—65]andthe cascadecalculations[66,67]. All assumethat
subsequentnucleon—nucleoncollisions are independent.Between collisions the particles move on
straight line trajectories (in cascade calculations) or on curved trajectories (in Boltzmann-type
calculations)underthe influenceof a meanfield.

Finally, at very low energieswe find A> L; dueto the Pauli principle mostof the statesinto which
the particlesmayscatterare alreadyoccupiedandhencethe effective crosssectionis quite small. At
beamenergiesof afew MeV/n we canexpectameanfree pathof ~10 fm [68].In this extremelimit one
mayneglectcollisions completelyandthenarrivesat the time dependentHartree—Focktheory [69—71]
(TDHF).
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Formally the Boltzmann—Uehling—Uhlenbeckequation,TDHF, cascadecalculationsand hydro-
dynamics representjust different truncation schemesto the n-body density matrix. This will be
discussedin sections3.2 and3.3. Someof the resultsobtainedwith theseapproacheshaverecentlybeen
reviewed[4].

3.1. Classicalmolecular dynamicsapproach

A classical n-body system is described completely by the n-body phase space density
f~(p

1,. . . , p,,, r1,. . . , r~,t), whose time evolution is given by the Liouville equation

(0/at)f~(t)= (H, f~(t)} = ~ (~. V f(n) + ~. . V~f~). (3.1)

Here (a, b} denotesthe Poissonbracketandwe havemadeuse of Hamilton’s equations.
The classical moleculardynamics approachis directly modelled to solve the Liouville equation

numerically, using a Monte Carlo sampling procedure.For heavy ion collisions the calculations
[33,57, 58] areperformedas follows: Initially the positionsandmomentaof all n nucleonsarechosen
randomlyin a sphereof radiusR = r0A~

3andR = r~A~3,respectively.Hencethe n-body phasespace
densityis the productof deltafunctionsin phasespace.During the nuclearcollision the nucleonsare
propagatedusing Hamilton’s equations,

r
1=V~H=p1/m+V~,V(p ,p~), (3.2)

p1= —VH=F, (3.3)

wherethe force F1 is given by F1 = ~VrU. with U1 = ~ V~.Finally, physically meaningfulobservables
are obtainedby averagingover many ~unsof different initial configurations.

Hence,the ClassicalMolecularDynamicsapproachis a true n-body theory,whichkeepstrackof all
correlationsamongthe particles. It is alsoable to treat nonequilibriumsituations,which appearat the
earlystageof a heavyion collision.

In this approachall essentialquantumeffects have to be mimicked by the properchoice of the
potential. In order to give the calculationsa predictivepower, the classicalnucleon—nucleonpotential
V~,simultaneouslyhasto take care of

(1) the properbinding energy/nucleon,
(2) the measuredscatteringcrosssection,
(3) the stability of the nucleusfor a time spanrequiredfor a nucleus—nucleuscollision.
Especiallythe secondpoint is hardto mimic in classicaltheoriesbecauseit reflects typical quantum

featureslike Pauli blocking and diffractive scattering.
In practice [33,57, 58] the potential is chosenas a sum of an attractiveand a repulsive Yukawa

interaction. Hence four parametershaveto be adjusted(two rangesand two strengths).The cross
section is calculatedwith the weight factorappearingin the calculationof the viscositycoefficient from
the Boltzmann equation. This weight factor emphasizesthe transversemomentumtransfer more
strongly than the total crosssection.

Actual calculationshaveshownthat the potentialcannotfulfill the above-mentionedrequirementsto
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a degree which allows quantitative comparisonwith experiments.There is not enough room to
accommodatethe Pauli principle, andprobably moreimportant, for stronggradientsof the potentials
Hamilton’s equationsare a poor approximationto the evolution of the quantumsystem. Here the
quantal featuresmust be implementedvia short range stochasticscattering[72], as we will see in
chapter4. Usually the stability leavesmuch to be desiredbecausedue to the huge fluctuationof the
potential it is almostimpossibleto initialize the nucleuscloseto its ground state.So the particlesare
emitted rapidly. Hence the classical moleculardynamics approachwas mainly used for schematic
studiesandneveralloweddetailedcomparisonwith experiments.The only recentuseof this modelwas
an investigationof the possibility of a liquid—gas phasetransition in expandingnuclei [73].

3.2. Densitymatrix, reduceddensitymatrix and their timeevolution

In this sectionwe will review the definition of the n-body density matrix and the reduceddensity
matrices.We will startout from the quantumvon Neumannequation,whichis equivalentto the n-body
Schrödingerequation.It describesthe complete time evolution of a quantalsystem.We proceedby
defining reduceddensitymatriceswhich act in a subspaceonly. Their time evolution can be definedin
very close analogyto the classicalBBGKY hierarchyequations[74]. We derive the equationfor the
time evolution of the one-bodydensitymatrix, which dependson the two-body densitymatrix. This
generalfeaturethat the equationfor the rn-bodydensitydependson the (m + 1)-bodydensity,whichis
true for all reduceddensitymatrices,requiresfor actualcalculationsa truncationof the (m + 1)-body
densityinto productsof at most rn-bodydensities.This will be discussedin section3.3.

N-body densitymatrix. Let ~~k) beinga n-bodystatevectorof an isolatedn-bodysystemwith the
quantumnumber k. Then the complete information about the n-particle system is containedin the
n-body densityoperator

p~= J~k)(~k~, (3.4)

which readsin coordinatespaceas

(n)
1 ‘ ?\_ ( \ *1’

~ ~T1,. . . ,T,~,T1,. ~l•fl) k’f1,~ ~Tfl) kkTl,. . . ,Tn

The expectationvalue of an operatorA can be definedas

(A) = (~kIAI~k)

= J ~*(r; . . . , r~)A(r1, . . . , r~, r, . . . , r~)~(r1, . . . , r~) d
3r

1 . d
3r~d3r~. d3r~

= tr[Ap]. (3.6)

For an isolatedsystem the densityoperatoris a projectionoperator,

(p~)2 = p(fl) , (3.7).

with Tr[p2] = 1. A systemwhose densitymatrix satisfiesthis condition is said to be in a pure state.
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If the systemis not isolatedbut, for example,in contactwith a heat bathit is useful to extendthe
abovedefinition and definethe densitymatrix of a systemin a mixed stateas

(n)

= k ~ (3.8)

wherek runsover the completeset of basisstates cI~k) andWk describestheprobability that thesystem
is in the state I’Dk). We normalizeWk by requiring ~k Wk = 1.

Reduceddensity matrix. We define reduceddensitymatricesby

(k) n! (n)

= (n — k)! tr(k+l n)P (3.9)

If we normalizetr~1 n)P~”~= 1, we obtain for the expectationvalue of the k-body operatorA~,

/ A(k)\ — 1 (k) (k)
~‘~‘ ~‘ — lcT 1(1 k) ~O

However,otherdefinitions can also be found in the literature.

Time evolution of density matrices.The time evolutionof the n-bodydensityoperatoris given by the
von Neumannequation

i(aIat)p”~(t)= [H, p~(t)] . (3.11)

HereH is the Hamiltonian,which is assumedto consistof the kinetic energyandtwo-body interactions
only,

H=~,T1+~~V,1. (3.12)

One defines the Liouville operatorsL1 = [T1, ] and L11 = ~ ] and expressesthe von Neumann
equationby

-~-p~(t) = —i (~L1 + ~ Lti)p~(t). (3.13)
lit 1=1 i,j=1

j5~i

To obtainthe timeevolutionfor the k-body densitymatrix we integrateover(n — k) particlesand,due
to the cyclic invarianceof the trace,arrive at

~ p(k)(t) = —i (n tr(k+l.., ( L~+ ~ Ljj)p~(t)

i,~i

= —i (n k)! tr(k+l L~+ ~ L~1+ ~ ~ L~1)P~(t). (3.14)
J5~i
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Since by definition the density operatoris symmetricin its variableswe can simplify this expression
further,

~ (k)(t) = —i (n tr(k+l L1 + L1~+ (n — k) ~ LIk+l)p~(t). (3.15)

i�i

This is the generalform of the evolution equationof a reduceddensitymatrix. We observethat for
two-body interactionsthe time evolution of the reducedrn-body density matrix dependson the
(m + 1)-body density matrix. The same feature is observedin classical physics for the BBGKY
hierarchyequations[74], i.e., the equationsfor the time evolutionof thereducedphasespacedensities.
In order to obtaina solutiononehasto truncatethe(m + 1)-bodydensitymatrix to productsof at most
rn-bodydensitymatrices.

The first two equationsof this hierarchyread as follows:

~ p~(t) = —i[L1p”
1(t) + tr(

2)L17p
t21(t)], (3.16)

~ p~2~(t) = —i[(L
1 + L2 + L12)p

t2~(t) + tr(S)(L
13 + L,3)p~

3~(t)]. (3.17)

The sumover all particlesi + 1,. . . , n cancelsjust the different factorsin front of the tracestr~
1 .n)

and tr(1+I

3.3. Different truncationschemes

In order to solve the time evolution equationof the rn-body density one has to truncate the
(rn + 1)-bodydensitymatrix. In this sectionwe will review threedifferent truncationschemesof the
two- andthree-bodydensitymatrices,which lead to differentone-bodyquantumkinetic equations.The
first approachreducesthe time evolutionof the one-bodydensitymatrix to theTDHF equationwritten
in the densitymatrix formalism.The secondapproachdescribesthe time evolution of the one-body
densityif the rangeof the interactionpotentialis small comparedto the meanfree path,i.e. the dilute
limit. In contrastto the TDHF equationthe potentialdoesnot haveto be smooth.We introducetwo
different time scales, tco11~the time betweentwo subsequentcollisions, and t1~,1, the duration of the
interaction.If tcoII ~‘ ç~1,we can assumethat betweenthe individual nucleon—nucleoninteractionsthe
densitymatrix is diagonalin momentumspace;then the n-body densitymatrix is just the productof
one-bodydensitymatrices.With this approximationthe equationturns out to be formally very similar
to that of the classicalBoltzmannequationwith vanishingpotential.

The third approachmakesa specific ansatzfor the three-bodydensitymatrix anddescribesthetime
evolutionof the one-bodydensityin a smoothlyvaryingself-consistentmeanfield with short rangehard
core interactions. This reduction schemewas widely used in the so called Boltzmann—Uehling—
Uhienbeck(BUU) or Vlasov—Uehling—Uhlenbeck(VUU) calculations. In the further derivationwe
will set /1=1.

Time dependent Hartree—Fock equation. In the time dependentHartree—Fockapproach[69,70]
(TDHF) the two-body densitymatrix is approximatedby the antisymmetrizedproductof the one-body
densitymatrices,
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(2) — (1) (1) — (1) (I) — (1) (1)
PTDHFPI p2 p2 p1 — 12P1 P2 . 3.18)

This methodto approximatetwo-body densitiesby the product of one-bodydensitiesis called the
Stosszahlansatzand goes back to Boltzmann, who via this method obtainedthe classicalBoltzmann
equation.With this ansatzfor eq. (3.16) we can performthe trace over particle 2 and arrive at the
familiar TDHF equation,

(li/8t)p~~(t)= —i[T + U, p~
t~(t)], (3.19)

where U is obtainedby performing

~ (2) 1—[U + U ~)1t\1_1U (5)
12’ PTDHFJ — ~ dir exch’ ~O

1 i,, jj — ,

This approximationis valid, as we will see,if 1/12 ~ V12G+medV i.e., if the Born approximationis
valid. ~ is the in-medium Green’s function, which we will discusslater. These requirementsare
quite reasonablyfulfilled in low energyheavyion collisions providedoneuseseffectiveinteractionsand
not the Hartree—Fock(HF) termswith apotentialadjustedto nucleon—nucleonscatteringdata. Due to
the hard core the HF matrix elementsdiverge.The remedyis to replacethe bare nucleon—nucleon
interaction by an effective interaction, usually the Brucknerg-matrix [10]. It is an infinite sum of
scatteringsof two nucleonsin a nuclearmedium, i.e. a sumover all ladderdiagrams. In chapter4 we
will seethat this approximationschemegives indeedthe right low densitylimit. The contributionof the
different diagramsis proportionalto (akF)~,wherea is the rangeof the interaction,kF is the Fermi
momentumand n is the numberof hole lines. Hence at low densitiesthe g-matrix can be obtained
systematicallyemploying(akF) as the expansionparameter.The g-matrixobeysthe Bethe—Goldstone
equation,which we met alreadyin the nuclearmatter discussion(eq. 2.3),

(ab~g(E)~cd)= (ab~V~cd)+E (abjV~rnn)G+m(mn~g(E)~cd), (3.20)

wherethe in-medium propagatorG+ med is defined as

321
— E—e(m)—e(n)+ie

e(n) is the single particle energyof the state n and V includesdirect and exchang~terms. Q12 is the
Pauli projectionoperator,which allows scatteringinto the unoccupiedstatesonly. It is takenas

= (1 — p~’~)(1— ~~)) . (3.22)

If the starting energyE is smaller than
26F we cannothavea singularity in the propagatorand can

ignore the ir in the denominator.The solutioncan be obtainedin analogyto that of the Lippmann—
Schwingerequation.For the wave function we find

= cd) + E —H
0 g(E)~cd), H0~ab)= (Ea + Eb)~ab). (3.23)

In contrast to the solution of the Lippmann—Schwinger equation the secondterm disappearsfor larger
distances,
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lim (r1, r2[!1’;~d) = (r1, r2~cd) , (3.24)
In nsI_~0c

if E<26F.
The solution showsthat at largedistancesthe particlesdo not feel the hardcoreinteraction.Hence

the correlations induced by the hard core potential are short ranged. For limIr~nj...~o(r1, r2~P’Cd)

vanishes,andhencethe matrix elementsremain finite despitethe hard core.The g-matrixturns out to
be a smoothfunction, which for practicalpurposescan be expressedas a function of the local density.

Actual calculationsusually startfrom the Schrödingerequation,with a meanfield U, in which the
nucleon—nucleonpotential is replacedby the real part of the g-matrix,

U1= ~ ((i,b~Reg~i,b)+(i,b~Reg~b,i)). (3.25)
E(b)<EFermi

U~hasto be calculatedself-consistently.The time evolutionof the single particle orbital t~ with the
quantumnumbersa in the self-consistentmeanfield U, is given by the one-bodySchrädingerequation

(T,+ ~ (3.26)

Here T, is the kinetic energy.The n-bodywave function is just the Slaterdeterminantof the one-body
wave functions.

The first TDHF calculationsfor heavyion collisionswereperformedin the seventies[69]. Later also
axial symmetricandfull three-dimensionalcalculationswereadvanced[70]. In thesecalculationsa local
densityapproximationto the g-matrix is usedwhich hasbeenprovento be quite accurateevenfor light
nuclei, and which simplifies calculationstremendously.In this approximationU, is given (in nuclear
matter)by

rn \ — ~ + 3~ 2 + ~ + ~ ‘~ ~2 (3 27
IJ~I.,P)— 4t0~ 16~3P 80 ~‘~t J&2JP1~Fermi~

with parameterst0 to t3 adjustedto reproducenuclearmatter properties[70]. For finite nuclei the
energydensityis supplementedby termsproportionalto the gradientof the densityandthespin density
[4,70]. We observethatthe parametrizationof the potentialhastermsproportionalto p andp

2 as well
as a momentumdependencewhich is proportionalto the kinetic energy.The samestructureof the
potentialwill be recoveredbelow when the Boltzmann—Uehling—Uhlenbecktheory and the quantum
moleculardynamicsapproachare discussed.

TheseTDHF calculationswerequite successfulin describingfusioncrosssections,scatteringangles,
deep inelastic collisions and momentumtransfer at EIab ~ 5 MeV/n. Due to the lack of two-body
collisions this approachfails as the energyincreasesand hard coretwo-bodycollisions can occur.

Many attemptshavebeenmadeto extendthe TDHF approachby including a collisionterm [75, 76].
However,alreadyin first-orderperturbationonehasto evaluateoctupoleFockspaceoperators.Hence
theseattemptshaveneversucceededin producingcalculationswhich allow detailedcomparisonwith
experiments.

Cascade calculations. The secondapproximation,which describesalmostthe oppositesituation,was
developedby Snider[77].He considersthe situationswherelong rangeinteractionsamongparticlescan
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be neglectedandcollisions (i.e. rapidly changingshort rangecorrelations)play the dominantrole for
thetime evolutionof the densitymatrix. The averagenumberof particlesin the phasespacevolume h3
is assumedto be small so that the Pauli blocking of the collisions can be neglected.

Following Snider, we introduce two different time scales, the time between two subsequent
collisions, ~ and the durationof the interaction,t

1,~1.This implies two length scales,the meanfree
path A and the range of the potential a. We expand the Green’s function, which describesthe
propagationof the particlebetweenboth scatterings,in a power seriesin a/A and keeponly the first
term.This is equivalentto assumingthat the particlemoveson shell betweenthe scatteringeventsand
that the crosssection for doublescatteringis proportionalto the squareof that for single scattering.

We transformthe two-body density matrix into the interaction representation.Then it does not
changedue to the kinetic motion of the particles. Then formal scatteringtheory is applied with an
adiabaticswitching of the interaction. In the abovementionedapproximationoutsidethe interaction
radius the densitymatrix is that of free moving particles.Hencethe n-body densitymatrix is just the
productof one-bodydensitymatrices.Møller operatorstransformthe densitymatrix from outsideto
inside the scatteringrange,so the two-bodydensitymatrix at the interaction time t is approximated by

p~
2~(t)= f11~(t— tP)p~t)(tl)p~l)(t1)filt(t — t’) . (3.28)

We choosethe zeroof our time scalein which we measuret~
1~as the macroscopictime t where the

collision occurs. The Møller operatorQ + is definedas

= lim lim rf en” e~t”~ dt”
n—nO t’—.—~

0

= ~ lim lim _rf ent” e~t~n) (~e~” dt” = 1+ G~(EjVfY. (3.29)
~ n—nO

For thelast stepwe haveintroduceda completesetof asymptoticbasisstates.The Green’sfunction G
is given by

G~(E)=1Lrn (3.30)

If t~0~1~ t1~1,wecan performthe limit t’ —~—oc in eq. (3.29),althoughon the macroscopictime scalet~0~
this is a small time spanduringwhich the one-bodydensitymatrix doesnot vary substantially.Hence
we can neglectretardationeffects and replacep(t — t’) by p(t).

The transitionmatrix is connectedwith the Møller operatorby the relation

T=VI.’2~ . (3.31)

We apply this relation to our eq. (3.28) and obtain

(a/at)pW(t)= —i tr(2)[T12p1 (t)p2(t) — p~(t)p~~(t)T~2

+ ~ — ~ (3.32)
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We recall that

G~(E)— G~(E)= —2iri~(E— H0). (3.33)

We normalizethe planewavestatesby 5
3(p — p’) and give someresultsof the scatteringtheory,

VreiUtot(P) = —2(2ir)3 Im(p~T~p), (3.34)

dff(p, p’)Idfl = (2ir)4~t2j(p’~TIp)~2. (3.35)

Vrei is the relative velocity betweenthe scatteringpartners,~.t is the reducedmassand~ is the total
crosssectionfor particleswith the relativemomentump. Sincep is diagonalin momentumspace,we
can easilyperformthe traceover the secondparticle and arrive finally at

~ p(l)(p
1, t) = C J d

3p d3q VreiP~’~(Pi— q + p, t)p~’~(P
1— q — p, t)

lit (

21T)

1 do(q—+p)x (o3(p — q)~t0t(p)— — q) ~ dQ (3.36)

The right hand side of this equationis, up to a normalizationfactor, exactlythe collision term of the
Boltzmannequationintegratedover coordinatespace. The time evolution of the one-bodydensity
matrix of a systemof particleswhich interactby short rangeinteractionshasthe formal structureof a
collision integral. The systemdescribedby this equationbehaveslike a quantumbilliard system,
quantumin the sensethat we do not have a uniquerelation betweenscatteringangle and impact
parameterasin classicalphysics.The crosssectioncan be takenfrom experimentandonemayinclude
alsoinelasticprocesses.

In practice[66,67] the form of the scatteringtermis just takenas a guidelineandimplementedin a
classical environment. Particlesare initialized with sharp momentaand definite positions and are
randomly distributedover a sphereof nuclearradiusas in the classicalmoleculardynamicsapproach.
They areboostedandthenmoveon straight line_trajectoriesuntil anucleon—nucleoncollision occurs.
Whenevertwo particlescomecloser than r V0exphT, the nucleonscollide with a scatteringangle 0,
which is chosen randomly under the constraint that the averageover many equivalent collisions
reproducesthe experimentallymeasuredcrosssectiondOexp/dO. Thus the stochasticityof the scattering
andthe productionof particlesare the only quantumfeaturesin this approach.

This approachdescribessuccessfullyinclusiveprotonspectraat highbeamenergies(Elab >500MeV/
n), predictsthe observedpion yield to within a factor of two [78] and makespossiblethe study of
reactiondynamicsin detail. The averagenumberof collisions [66] andthe productionof entropy [79]
were amongthosequestionswhich were investigatedin this approach.The limit of this approachis the
lack of any meanfield. So particlescannotform fragments.This rulesout a straightforwardapplication
to peripheralor low energyreactionswhereclustersareobservedin the final state.Furthermore,dueto
the lack of anyrepulsive potential, the averagedensityobtainedin thesecalculationsfor high beam
energiesis much larger than that obtainedin more realistic approaches.Pauli blocking can only
approximatelybe included by forbidding scattering into phasespace regions which were initially
occupiedby target or projectile.
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Boltzmann—Uehling—Uhlenbeckapproach. The cascadereductionof the densitymatrix is certainly
not appropriatefor intermediateenergynuclear physics, where the nucleonsoutsidethe hard core
interactionradiusarenot free but movein the slowly varying field generatedby all the othernucleons.
For particlesmoving in an externalpotentialthis approachwas first consideredby Nordheim[60] and
Uehling andUhlenbeck[61]. If we want to treatthe meanfield asgeneratedby all the othernucleons
andnot by an externalsourcewe haveto start from the three-bodydensitymatrix. Besidesthe particle
under consideration,we need a secondparticle as a scatteringpartner and a third particle which
generatesthe field in which the first two particlesmoveoutsidetheir hardcoreinteractionradius.This
situationis similar to that of the scatteringof a deuteron,which also requiresa three-bodydensity
matrix approach.For the lattercaseRemler[80,81] hasintroducedthe following approximationto the
densitymatrix:

(3). + (2) (1) +t + (2) (1) +1-P — 13 t3Pi2 P3 13 23 23Pl2 P3 23

A is the exchangeoperator. This is the first-order approximation to the full three-particle Møller
operator‘

0U3 for p~[82]. RecentlyBotermansand Malfliet [83] haveproposed the sameapproxima-
tion to describethe hard scatteringof two particleswhich movein a slowly varying field. The potential
betweenthe pairs (1, 3) and (2,3) is assumedto be sufficiently smooth to approximatethe Møller
operators12~andQ~by 1, i.e., to apply the Born approximation,whereasthat between1 and 2 is
consideredas strong. In chapter4 it will be shownthat such asplitting of the nucleon—nucleonpotential
in a weak longrangeandastrongshort rangepart is not necessary,evensomehowmisleading.Pursuing
this approachwe seethat as in the TDHF approachthe trace overparticle3 producesjust a meanfield
U, in which the particle i moves,

tr(
3)[V13 + ~“23,P 123] = [U1 + U2, ~~22)] , (3.38)

where U, is given by (i = 1, 2)

U. = tr(3)V3A13p~. (3.39)

Recalling now our evolutionequation(3.17) for the two-body densitymatrix,

(i9/lit)p~
2~(t)= —i[(L

1 + L2 + L12)p~
2~(t)+ tr(

3)(L13 + L23)p~
3~(t)], (3.40)

we see that the approximation(3.37) closesthis equationon the two-body level,

(aIat)p~2~(t)= —i[T
1 + T2 + V12 + U1 + U2, pt

2~(t)] . (3.41)

Performing the trace over particle 2 and neglectingretardationeffects (as discussedin the above
derivationof the cascadeequations)we obtain

(liI8t)pt1~(t)= —i{[ T
1 + U1, p

t1~(t)]+ tr(
2)[V12, p~

2t(t)]} . (3.42)

Comparingeqs. (3.19), (3.36)and(3.42)we seethat the lastequationdescribesa particlewhich moves
in a self-consistentmeanfield andundergoeshardcore two-body scattering.To evaluatethe collision
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term we proceedas abovebut now takeinto accountthe fact that the nucleonsmove in a meanfield
betweensubsequentcollisions.

If we want to take into accountthe Pauli blockingwe haveto replacethe transitionmatrix by the
Brucknerg-matrix, the solution of the Bethe—Goldstoneequation(eq. 3.20). Thenonecan write the
time evolutionof the one-bodydensityin a completelyequivalentform to eq. (3.32) [83],

= [T1+ U1, p’’~(t)]+ tr~1~[gp~’~(t)pY
t(t)— p~’1(t)p~~(t)gt]

(1) (1) t —med +med (1) (1) I-+ tr(,)[gp
1 (t)p2 (t)g G0 — G0 gp1 (t)p2 (t)g ] . (3.43)

The exchangeoperatoris absorbedin theg-matrix.As in the cascadeapproachweassumetwo different
time scales.Because~‘eapproximated11 by 1 in the derivation, we can apply this approachonly to
slowly varying potentials,i.e., wherethe Born approximationis valid. The propagatorsthen can be
approximatedby a deltafunction for energyconservationas is the casefor free scattering.With these
approximationswe now obtain anequationwhich describesthe time evolutionof theone-bodydensity
matrix in a smoothmeanfield, generatedby all theotherparticles,and ashort rangeinteraction,which
is describedby an effectivecrosssection.It differs from the free crosssection in the Pauli blocking of
the final and intermediatestates. Furthermore,the energydenominatorsof the Green’s function
contain now also the potential energy.For a different approximationschemewe refer to chapter4.

In practice [62—65]eq. (3.43) is solvedwith the testparticlemethod.This was developedby Wong
[711in order to calculate time dependentHartree—Fockequations.In this approachthe particlesare
initially placedat randomin asphereof the projectileor the targetradius,as is donein the cascadeor
the classicalmoleculardynamicscalculations.They havesharpmomentaandpositions.Thenprojectile
andtargetareboostedtowardseachother. Applying a fixed time stepthe positionsandmomentaof all
particlesare updatedvia Hamilton’s equations,

p.(n+(

)

m - (3.44)

= —V~H—÷p,-(n+ ~)= p.(n — ~)— V~U~(n)~t, (3.45)

wherethe potential is calculatedself-consistently.
In principle, potentialandcrosssectionshouldbe obtainedfrom the real and the imaginary part of

the g-matrix calculation with realistic nucleon—nucleoninteractions. However, the nonrelativistic
approachesdo not give the right saturationdensityof finite nuclei,as shownin chapter2. At relativistic
energies,wherenuclearmatteris compressedsubstantially,the realpartsof thedifferentapproachesto
the g-matrixhavedifferencesin the compressionalenergyof the orderof 100MeV for the samedensity.

Thereforea reliableinput for the Boltzmann—Uehling—Uhlenbeckequationis not at hand.For the
imaginary part of the g-matrixthe situationis evenworseat theseenergies.An actualcalculationof the
g-matrixsuitedfor the calculationof heavyion collisions hasto takeinto accountthe highly nonthermal
environmentat the beginning of a heavy ion collision. Here the Pauli blocking of the intermediate
statescannotbe calculatedwith an averageoccupationprobability as for a gas at a temperatureT.
Ratherone has to take into accountthat initially thereare two well separatedFermi spheres,out of
which particlesare scattered.Graduallythe momentumspacearoundmid-rapidity gets filled, which
influencesthe blockingprobability. Only very late in thecourseof centralcollisions of heavynuclei can
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the distributionof nucleonsapproximatelybe describedby a single thermaldistributioncentredaround
mid-rapidity.

Due to thesedifficulties onetakesan operationalpoint of view: it is assumedthat eq. (3.43)has the
properform. Onetakesfor the meanfield a Skyrme-typepotential,which was alreadyemployedin the
TDHF calculations(eq. 3.27),

U = U(p) = ap/p0+ 13(p/p0)
5 (3.46)

The density is calculatedvia a spacefixed grid with cells of size 1 fm3 [63] or via a comoving sphere
aroundthe test particles [64].

Beyondthe pion thresholdthe experimentallymeasured(elasticor inelastic)scatteringcrosssection
is employed,

do’idQ = dUexp/dQ. (3.47)

Scatteringdoesnot take place if the final stateof the scatteringpartnersis alreadyoccupiedby other
nucleons.

At lower energies,wherethe experimentalcrosssection is severalhundredmillibarns, an isotropic
40mb cross section [63,64] or a density dependentsuppressionfactor K with u= K(p)u~

5~ [65] iS

employed.
Thisoperationalpoint of view hasthe advantageof a verycontrolledequationof state,sincetwo out

of the threeparametersof eq. (3.46) are fixed by the requirementthat in nuclearmatter the total
energyhasa minimumat p = p0 with a binding energyof 15.75MeV/n. The only free parameteris
hencedeterminedby requiring a specific compressibility.Ratherthanextractingthe equationof state
from the highly involvedg-matrix calculation, this approachoffers the opportunity to testhowstiff the
EOS has to be in order to reproducethe experimentaldata. Hence effectively the compressibilityis
treatedas a free parameterof the theory.

All actual calculationssuffer from huge density fluctuationsoccurringduring the simulation of the
individual nucleus—nucleuscollisions. In order to dampenthesefluctuationsone typically solves 100
collisions in parallel and averagesthe potential over all thesesimulations. This reducesstatistical
densityfluctuationsto a tolerable15%.

The BUU modelwas first developedat Michigan StateUniversity by Bertsch,KruseandStockerin
order to test the conjecturethat in relativistic heavyion collisions the pionscan serveas a measurefor
the compressionalenergyand henceof the nuclearequationof state[62,64]. Laterimprovedversions
were usedto investigateheavyion reactionsatenergiesas low as25 MeV/n [63]. In this energyregime,
wheresingle particlespectrashow that no equilibriumis achieved,the model offeredfor the first time
thepossibility to investigatethe space—timeevolutionof the reaction.The remarkableagreementof the
results with experimentswas taken as evidencethat the essentialphysics is containedin the BUU
equationdespitethe manyapproximations.Thesecalculationshelpedto understandthe protonspectra,
the origin of the Fermi jets,the linear momentumtransferandout of planecorrelations.In recentyears
this modelhasalso turnedout to be a successfultool to study the creationof particleslike pions [84],
photons [85], kaons [86], deuterons[87], and etas [88], especially its dependenceon the nuclear
equationof state.For reviewswe refer to refs. [4, 89].

Recently it hasbeenverified that the solutionof the classicalBoltzmannequationemployingthe test
particlemethod is indeedequivalentto the analyticalsolution asfar as the single particledistribution is
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concerned[90]. It was neverinvestigated,however,how far the successof the BUU modelin heavyion
physicsdependson the fact that the testparticlemethodinducesmanybodycorrelations.In the limit of
vanishingpotentialsthe testparticlemethodis equivalentto thecascadecalculationsif one choosesone
testparticlefor eachnucleon.In thiscasethe test particlemethodsolvesthe n-bodyandnot aone-body
equation. The mean field, as calculated in the BUU approach,reducesthesecorrelations in an
uncontrolledway. It is not strongenough,however,to washout the correlationscompletely.Suppose
we changethe momentaof all particlesof onesimulation of a cold nucleusat t0. Thenmost of these
particleswhich hadscatteredat t1 will scatteragainat 2(t~— t1) dueto an only moderatechangeof the
meanfield generatedby all the othersimulationswhosemomentahavenot beenchangedat t1. Hence
theseparticlesarecorrelated,which shouldnot happenin a one-bodytheory.The procedureto makea
real one-body theory out of the BUU model is easily seen: At each time step the one-particle
distributionfunctionfW hasto be generatedfrom the testparticles.Thenone choosesagainrandomly
testparticlesaccordingto the distributionfe). This methoddestroysall correlationsin each time step.

Forpracticalpurposesonewould like to keepthesecorrelationsbecausetheyarephysical.Theprice
one has to pay, however, is that the BUU approachcannotbe comparedin detail with systematic
approximationsto the von Neumannequationin the framework of the BBGKY hierarchy[91].

Although somecorrelationsare presentin the BUU approach,its predictivepower is limited to
one-bodyobservables.Many of the most challengingproblemssuch as correlationsbetweenemitted
particles and the formation of clusters in the exit channel cannot be addressedand even for the
one-bodyobservablesthereremainsalwaysthe problemof how to deal with the measuredcomposite
particles.

Fluid dynamicsand hydrodynamics.The BUU/VUU calculationscan be used to calculatethe time
evolution of mean values like the density p(r, t), the averagevelocity u(r, t) and the temperature
T(r, t). Underthe assumptionof local thermalequilibrium, i.e., whenthe collision termhasestablished
a locally stationarymomentumdistribution, the time evolution of the meanvaluesp, u, T is given by
the Eulerequations.Certainlythesearehighly idealizedassumptionsfor a heavyion collision. A more
realistic descriptioncan be expectedfrom the Navier—Stokesequations,which treat small deviations
from equilibrium. The transportcoefficients, i.e. theviscosity andthe heatconductivity, which appear
as an input in the Navier—Stokesequations,as well as a judgementaboutthe validity of this equationat
certainimpactparameters,can be obtainedfrom the Boltzmann—Uehling—Uhlenbeckcalculation.

Hydrodynamicalcalculationsarewidely used.In thesecalculationsviscosity andthermalconductivity
are just treatedas parameters.A detaileddescriptionof this approachto heavyion collisions is given in
ref. [4].

4. On the derivation of the quantum molecular dynamics approach

In chapter3 we have seenthat a quantumsystem of distinguishableparticles obeysthe cascade
equationsif the meanfree pathis largecomparedto therangeof the nucleon—nucleonpotential.Then
the particlesmove on shell betweensubsequentcollisions and the scatteringamplitudescoincidewith
thoseof free particles.The pure fact that nucleiareboundshowsthat theseconditionsarenot fulfilled
in heavy ion reactions.

In adensersystemwe observethat during acollision the collision partnersare interactingwith other
nucleons,and hence are not in momentumeigenstatesbefore, during and after the interaction.
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Furthermore,the amplitudesof differentcollisions may interfere, and the on shell approximationfor
the propagationbetweenthe collisions may not be valid.

In this chapter we investigate the above-mentionedtopics. We start in section 4.1 with the
investigationof the most simple situationwherethe particlesare not in planewave statesprior to
scattering:the collision of a projectileon a boundtargetparticle. We find that undercertainconditions
the collision can be treatedas a collision betweentwo free particles, and verify that one of these
conditionsis met in heavyion collisions.

We want to formulateour approachin phasespacecoordinates.This amplifiesthe understandingof
the highly complicatedheavy ion collisions. How quantummechanicscan be transformedinto phase
spacecoordinateshasbeenshownby Wigner [92].In section4.2 we presentthe basicdefinitionsfor this
transformationand show how the SchrOdingerequationis formulatedin this approach.We displaythe
closeconnectionbetweentime dependentperturbationtheory,formulatedwith wave functions,andthe
solution of thetime evolutionequationof the Wigner transformof the densitymatrix. In section4.3 we
discussscatteringin the Wignerdensityformalism.We will derive theequationsfor potentialscattering
andtwo-body collisions. In this sectionwe will presentour basicequation.In section4.4 we extendthe
work presentedin section4.1 and investigatethe interactionbetweensystemsof boundparticles. We
discusswhich approximationscan be justified, andpresentthe equationsthat areapproximatelysolved
in the quantummoleculardynamics approach.Finally we outline the method of solution and the
approximationsrequiredto makecalculationsfeasible.In section4.5 we give reasonsfor our choiceof
the initial phasespacedistributionof the nucleons.

Section 4.6 is devotedto the secondof the above-mentionedtopics. We calculate the total cross
section for a sequenceof scatteringsand find that thereexists a “formation time” and a “formation
distance”below which a scatteredparticle does not interact with the next one as it should in the
independentcollision approach.This alsoshedslight on the recentcontroversyabouttheexistenceof a
formation time in nuclear reactions at much higher energies.Furthermorewe show that in the
quasi-freelimit the interferenceterms vanish becausetwo different sequencesof scatteringslead to
different final states. With increasingwidth of the final state in momentumspacewe observethe
occurrenceof interference.However,dueto kinematicalconstraintsthe interferencetermdoesnot play
a decisive role in heavyion collisions at the energiesof interest.

To treatnucleonsas fermionsis beyondthe limits of all availablekinetic theories,whicharesuited to
describemedium and high energyheavy ion collisions. The quantummoleculardynamicsapproachis
no exceptionto this. As in all the otherapproaches,it assumesthat the essentialquantumfeaturescan
be mimicked and do not require the calculation of the time evolution of antisymmetrizedwave
functions. Recently this commonbelief was questioned.It is arguedthat a fermionicsystemdoesnot
obeyHamilton’s equations.In section4.6we will discussthis topic andshow that thenon-Hamiltonian
dynamicsis dueto the methodapplied andis not a consequenceof the fermionicnatureof the particles.

Much of the materialpresentedin this chapterhasbeendiscussedby variousauthors.Many detailed
calculationsof in-medium effects of an interactingmany body systemcan be found in ref. [93]. The
applicationof the Wigner transformsto — usually high energy— heavy ion collisions was developedin
the seventies.Details, especiallyconcerningthe high energy limit (eikonal approximation),may be
found in refs. [80,94—97].

4.1. Scatteringon a boundparticle

In this sectionwe startwith the simplestsituationin which the free particletransitionmatrix hasto
be modified: the scatteringof a projectileparticleon a particlethat is boundin afixed potentialcentred
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at the origin. We will call this boundparticlethe targetparticleandrefer to it with the index T. The
quantitiesconnectedwith the beamparticlewe will denoteby P. We will show in this sectionthat under
certain conditionsthe scatteringon a boundparticle can be describedby the free particle transition
matrix, andwill also demonstratethat oneof theseconditionsis metin mediumandhigh energyheavy
ion collisions. We will assumethat we can apply nonrelativistickinematics.

Descriptionof thescattering.The targetparticleis boundby the potentialU(r1). Its HamiltonianHT
is therefore

HT=—~--V~+U(rl)=TT+U. (4.1)

Initially the target particle is in its ground state xo(r1), which is the solution of the SchrOdinger
equation,

HTXO(rl) = W0~0(r1). (4.2)

W0 is the binding energyof thetargetparticle. After the scatteringthe targetparticlemaybefree or in
an excitedstatex~’which is an eigenstateof the sameSchrOdingerequationwith the energyeigenvalue
W~.The projectileparticle is initially (t—~_co) free. It is describedby a planewave

= (2’n)
312 e’I’~’2 (4.3)

which is the solution of the projectile SchrOdingerequation,

12 P

Hp(p~(r
2)= T~~t~(r2)= —~—— V~p,,(r,)= ~— ,(r,). (4.4)

For simplicity we assumethe massesof targetand projectileparticleto be the same.The initial stateof
the combinedtarget—projectilesystemis the direct productof the projectileand targetstates,

—3/2 ip’r,
e -~0(r1), (4.5)

and satisfiesthe SchrOdingerequation

(HT+HP)çbO~=(T~+TT+ U)t~0~ze(p
2I2m+W

0)4.0. (4.6)

The interactionbetweenthe projectileandthe targetparticle is given by V(r1 — r2). For simplicity, but
without losing the generalityof the derivation,we neglectany interactionbetweenthe projectileand
the binding potential. The asymptoticscatteringstate ~P0,,can be obtainedby solving the Lippmann—
Schwingerequation,

~p~0p+ WO+p
212m—HT—HP+ieTb~oP, (4.7)

Tb=V+V 1 T . (48
b
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Tb = (p ‘n Tb p0) representsthetransitionmatrix from the initial state(p, 0) to the final state(p’, n).
If the target particlewere initially free (with momentumPT)’ the scatteringwould be describedby the
free particle transitionmatrix,

T=V+V , 1 . T. (4.9)
p~./2m+p’i2m—TT— T~+ir

Thus the fact that the target nucleonis boundis manifestedby the appearanceof the potentialenergy
operatorin the denominatorand by the appearanceof W~insteadof the kineticenergyterm. In more
complicatedsituationsthis term encapsulatesthe full complexityof the n-bodysystem.

In order to reducethe complexityof the manybody systemcontainedin eqs. (4.7) and(4.8),Chew
[98]introducedthe so-calledimpulseapproximation,in which the boundstate transitionoperatorTb is
approximatedby the free scatteringtransitionoperatorT. This approximationis valid if one of two
quite different criteria are met:
— the binding energyof the boundparticleis small comparedto the beamenergy(weakbinding limit),
or
— the potential is smooth(quasi-classicallimit).
In the extremecaseof a constantpotential Tb and T coincide.

Thefirst criterion hasfrequentlybeenusedto justify the calculationof proton—heavyion collisions at
high beam energiesin the impulse approximation.For our purposethe secondcondition is more
importantbecausein cold or moderatelyexcitednuclei the gradient of the potential is such that this
condition is fulfilled.

Impulseapproximation.We will now derive the limits of validity of the impulseapproximation.For
this purposeit is useful to define

~
(4.10)

U=(X~U~X0), R=W11—p~/2m.

With thesedefinitions we can write the boundstate transitionoperatoras

Tb=V+V 2 2 1 . Tb. (4.11)
pT/2m+p/2mTTTP+RU+le

Tb differs from the free scattering transition matrix of particles with momentump and PT by the
presenceof the term R — U. Under the aforementionedconditions this term is small as we will
demonstratenow. Employingthe operatoridentity

A+BAABA+, (4.12)

we can expandthe propagatorand obtain

Tb = T+ TG~(U—R)G~T+O(U—R)
2. (4.13)
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G~is definedas

G~= 1 . (4.14)
0 p2

112m+p
2/2m—TT—TP+ie

In order to justify the impulseapproximation,i.e. the approximationof Tb by T, wehaveto showthat
the correctionterm

z~=TG~(U—R)G~T (4.15)

is small comparedto T. Theremay be two situationsin which this happens:either both U and R are
smallquantities,or (U — R) is small. In the first case— the weakbinding limit — we can assumeU to be
zero becausea finite U lowers the correction.If we assumethat the particlesmove on shell between
collisions, one finds for the correctionterm [93]

T(~ f.R), (4.16)

wheref is the scatteringamplitude.Aiming at correctionsof the orderof 10% for R= 10 MeV, we need
projectile momenta of the order of 2 GeV/c.

Wenow investigate the second condition, i.e. the validity of the impulse approximation for smoothly
varying potentials.If we take U as rigorouslyconstant,Tb coincideswith T becausethe boundparticle
is alsoin a momentumeigenstate,andweobtainR = U. Thus intuitively it is obviousthat for smooth
potentialsthe boundparticleshavea narrow width in momentumspace.

In order to estimateLI for a smoothlyvarying potentialwe assumethat we can approximate

(U—R)G
0T~[U,GOT], (4.17)

which implies

(xo~UIxo)~(k~U~k’) forkmk’, (4.18)

and zero otherwise.If we further assumethat the momentumtransferdue to the potential is small
comparedto that due to scattering,and hence

[U,T]~0, (4.19)

we obtain

(U—R)G0T=[U, G0]T~G0[T~, U]GOT. (4.20)

To obtain the right hand side of this expressionwe haveused the identity

1 1 1 1
(4.21)
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The last expressioncan be easily verified using the matrix representationof the operators.The
commutatorcan now be approximated,

[TT, U]~—~—[V2,U]m~—-~, (4.22)

wherea is the rangeof the potential.
Collecting the termswe obtain

Tb~T+
2~2U(TG~T)=T(1+LI), (4.23)

with

3 ~ 3 3

(ij~TG0T~mn)= J [(1 /2m)(m
2+ n2 _12_ k2) + ir~3 d 1 d k. (4.24)

Employing the residuetheorem we can evaluatethis integral and obtain[93]

LI = fU~ T. (4.25)
ap

For typical valuesf= 1 fm, U = 40MeV, a = 3 fm andp = 300MeV/c we obtain

LI~1/15.

Although the weakbinding conditionis not fulfilled in this case,we only expectcorrectionsof theorder
of 10% (due to the smoothpotential) if we use T instead of Tb. For more energeticparticles the
correctionsdecreaseas p3, henceat p = 500MeV/c we havecorrectionsof the order of 1%.

Next we calculatethe wave function of the final statein the impulseapproximation.It is definedby
the Lippmann—Schwingerequation

= 4~ + 2 1 T4
0 . (4.26)

°~ 0~) 14
7~)+p/2m—TP—TT—U+ie p

Similar to the above caseof the transitionmatrix, we can expandthe propagatoraround the free
particle propagator,

1
p~./2m+R+p2/2m—TT—Tp—U+iE

= 1 [~((U - R) 1 ‘ )fl]~ (4.27)

p2/2m+p~./2m—TT—TP+irn p2/2m+p~-/2m—TT—TP+iE

If the impulseapproximationis valid,we can truncatethe expansionafter the leadingterm andobtain
finally
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~0P0P+p2!2m+p2/2rnTT+ir
T~0P~

or, in matrix representation,

(k, kT!~1’)= (k, kT~OP)+ I p~I2m+p2/2rn—k2/2m—k~/2m + i~~(k + kT P PT)dPT.

Thus in the impulseapproximationthe particlesscatteras if theyarefree. The only reminderof the
fact that the particles are bound is their wave function. The bound particles are not in momentum
eigenstates, but have a momentum distribution x

0(p)~
2.The impulse approximation will be the

essential tool when we derive the time evolution equation for nucleus—nucleus collisions. However,
before that it is necessaryto give an introductioninto the Wigner density formalism.

4.2. Wignerdensities

Definitions. We want to studythe time evolutionof anucleus—nucleuscollision. This can beachieved
by solving the n-body Schrodingerequation.However,evenif we succeed,the resultwould remain
ratherunclear.We are used to understandingthe motion of particlesin the coordinatesof the phase
space(P, r, 1) but the Schrodinger equation would yield observables which depend on coordinate space
or momentumspaceonly. Onecan overcomethis lack of intuitive understandingby introducingWigner
densities[92]. Theyaredefinedas Fourier transformsof the densityoperatorp(r, r’) and depend on the
phase space coordinates P and (r + r’)12. The Wigner densities allow us to formulate quantum
mechanics in a languagevery close to classicaltransport theory,and thereforegive a quite intuitive
understandingof the time evolution of the reaction.

The Wigner transformof the SchrOdingerequationhasthe same form as the classicalcontinuity
equation.In the classicallimit it is formally identical to the Vlasov equation,which describesthe time
evolution of the single particle phase space density in an external potential. One of the major
advantages of this formalism is the possibility of writing the time evolution equations as a Taylor series
expansion in Ii. Therefore a smooth transition to the classical limit exists. Furthermore, as a full
quantum theory formulated in classical phase space, this approach provides much insight into quantum
phenomena and how they can be understood in terms of phase space observables.

We start by quoting the basic relations. The Wigner transform 0” of an operator 0 is definedby

Ow(P,R)=f d3r
3 e~(R—r/2IOIR+rI2) f d~ e~(P—pI2~OjP+pI2). (4.29)

(2’iT) (21T)

Consequently, the Wigner transform of a commutator [0, R] is given by

[0, A]w = f d
3r e~(R— r/21[O, A]IR + r12) = —2i0”~(P,R) sin(A12)A”~(P,R), (4.30)

(2 ir)

where AAB is defined as
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AAB=VPA•VRB-VPB•VRA. (4.31)

The expectationvalue of the operator0 is given by

(R~o~R)= f 0~v(P,R) d3P, (4.32)

(P~o~P)= I 0w(P,R) d3R. (4.33)

This is the connectionto measurablequantities.If we identify 0 with the density operator, we see that
its Wigner density has just the properties of the classical phase space density. Identifying 0 with the
density operator we obtain for its Wigner transform, usually called the Wigner density,

f(R,P, t) =1 d3p e~’~(P+p/2(t))(~(t)~P—p/2)
(2IT)

= I d3r e~(R + r/2 (t))(~i(t)~R— r/2). (4.34)(2

For later purposes we define

f(P, p, t)~(P+pI2~/i(t))(i/i(t)~P—p/2), (4.35)

the density matrix in momentum space representation. By integration over the coordinate and
momentum space we obtain the density in momentum and coordinate space, respectively,

f d3R f(R,P, t)= (P~(t))(~(t)IP)= ~(P, t)~2, (4.36)

I d3Pf(R,P,t)= (RI~(t))(~(t)lR)= k~(R,t)~2. (4.37)

However, whereas a classical phase space density can never be negative,the Wigner density is not
positive definite. For further details we refer to the review article of Carruthers and Zachariasen [99].

The equation for the time evolution of the one-body Wigner density of a particle moving in a
potential V(r) can be obtained by employing the SchrOdinger equation,

f(R, P, t) = -i I (2)~e( (P +p/2)2 - (P _P12)2)f(pp, t)

- f d3r e.r(R + r/21[V, I ~(t)) (~(t)j]IR- r/2)
(2ir)

= — . V,~f(P,R, t) — ~ J d3d3P’ e~’~T[V(R+ r/2) — V(R — r/2)]f(P’, R, t).
m (IT)

(4.38)

Formally we can write the time evolution equationof the Wignerdensityas
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+ .VR)f(P,R,t)=IdPKI(PP,R)f(P,R,t). (4.39)

So far we havenot gained anything. The solution of this equation is completelyequivalentto the
solution of the Schrödingerequation.

Beforewe proceedto scatteringprocesseswe take a closerlook at the function K1 definedin eq.
(4.39),

K1(P — P’, R) = ~ I d
3r e~’~[V(R + r/2) — V(R — r12)]. (4.40)

i/i (2IT/1)

Wehave restored II herefor reasons which will soon become obvious. This function can be evaluatedin
two different ways. Either we can write it as the Fourier transform of the potential,

K
1(P — P’, R) = sin(2(P — P’) RI/i) V(2(P— P’)), (4.41)

with

V(p)= (2~)~I e’~V(r) d
3r,

or one can expand the potential into a Taylor series around R,

K
1(P—P’,R) = sin(/lV~V~I2)V(R)5(P—P’). (4.42)

The last form is especiallysuitablefor the semiclassicallimit. We seethat K1 can be viewed as a series
with the expansion coefficient !1V~. V,~,. Hence the SchrOdinger equation is equivalentto the classical
Vlasov equation,

(~-+ . vR)ji~~,R, 1) = [V~V(R)]V~f(P, R, t), (4.43)

provided /IVR . V~,is small compared to 1, i.e., if the potential and the momentum distribution are
smooth.TheVlasov equationdescribesthe timeevolutionof the phasespacedensityof particleswhich
move on classical orbits specifiedby the Hamilton equationsaR/at= P/rn and liP/at = —VRV.

Wesee that in the Wigner formalism the quantum equation is just a Taylor expansion around the
classical equation in the parameter II. The validity of the classical approximation depends on the
gradients of the potential and the phase space density, which are correlated. The classical limit is valid
when the potential is slowly changing.Hence therangeof validity is determinedby the sameparameter
as that of the impulse approximation.

The relation between Wigner densities and time dependent perturbation theory. To demonstrate the
close connection between the SchrOdinger equation and eq. (4.39) and in order to see how the Wigner
transformation helps to understand quantum mechanics, we solve both in parallel using the Green’s
function method. The Green’s functions are the solutions of the following equations:

(~-+ .~. v~)G”’(P,R — R’, t — t’) = ~(R— R’)~(t— t’), (4.44)
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/ a
~i/i~—+ _~__L)G~(r— r’, t — t’) = ~(r — r’)~(t— t’). (4.45)

These equations have the solutions

G”‘’(P, R — R’, t — t’) = ø(t — t’)ô(R — R’ — (P/m)(t— t’)), (4.46)

G~(r— r’, t — t’) = ~9(t— t’) ~ I (2)~ e exp[(_i hk2 — E)(t — t’)]

—i / m \~3/2 /imlr— r’12\
= �~(t—t’) ~ ~2ITih(t—t’)) exp~2/1(t—t’))~ (4.47)

The solution of the time evolutionequationsis given by

f(P, R, t) = f
0(P,R, t) + I dt’ I d

3P’ K(P — P’, R — (P/m)(t— t’))f(P’, R — (P/rn)(t — t’), t’),

(4.48)

~i~(r, t) = ~(r, t) — ~Jdr’ I dt’ J (2)~~ exp[(_i ~2 — e)(t — t’)]V(r’)~(r’, t’).

(4.49)

Here f
0(P, r, t) and 4(r, t) are the solutions of the homogeneous equations.

If we assume that the potential is time independent but disappears for r—* oc and ~(t) and ~/i(t) thus

have a trivial time dependence, q5(t) = t’/E e~
tand ~/i(t) = ,Pr e~’, the time dependence drops out

completely and we end up with the Lippmann—Schwinger equation,

= + GO~(E)V~= 4~E+ G~(E)T(E)çb
6. (4.50)

This equation is the quantum description of the scattering of aparticlein a potentialV and contains
exactly the same information as eq. (4.48).

Of course a similar simplification does not show up in the Wigner density formalism, since this
approach describes the space—time structure of the reaction. So scattering does not take place between
different quantum states but at different points in phase space. Howquantum mechanics works in phase
space can best be discussed if we expand to second order:

f(P, R, t) =f0(P, R, t) + I dt’ Id3P’ K(P — P’, R — (PIm)(t — t’))f0(P’, R — (PIm)(t — t’), t’)

+ J dt’ J d~’I d
3P” f d3P’K(P — P’, R — (PIm)(t — t’))

K(P’ — P”, R — (PIm)(t — t’) — (P’/m)(t’ —

f
0(P”, R — (P/m)(t — t’) — (P’/m)(t’ — t”), t”) . (4.51)
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Now the Wignerdensityapproachallows avery intuitive interpretation[72,99]: The time evolution
of the quantum particle interacting with a potential proceeds by alternating quantum and classical steps.
In the classical step the particle moves on the classical trajectory determined by Hamilton’s equations.
The quantum step K(P, R) makes the particle jump in momentum space at a given space—time point.
This jump transfers a point in momentumspaceinto a momentumspacedistribution, i.e., it acts as a
random force. Thus the higher order terms neglected in eq. (4.43) act as a random force. Since they are
proportional to II we see that the Wigner formalism displays quite nicely the quantum fluctuations
around the classical path, which cannot be neglected if the gradients of the potential are strong, as they
are for the nucleon potentials which have a hard or soft core. Thus strongergradientsnot only yield
stronger forces but also larger fluctuations around the mean trajectories. This is one of the reasons why
classical molecular dynamics fails in describing heavy ion collisions. Wewill see in the next section that
there also exists a closed solution of the time evolution equation of the Wigner density. This equation
will have exactly the structure discussed above.

4.3. Scatteringin the Wignerdensityformalism

General discussion.We are now prepared to calculate the scattering of particles in the Wigner
formalism. Being interested in the time evolution of the scattering event, we would like to be able to
define the beginning and the end of the scattering. Hence we have to give up the plane wave
approximation, which we used for simplicity in section 4.1, and have to return to the formulation of the
scattering in terms of wave packets. These we define for the scattered and the incoming waves as

dp g(p)e~Pt~(r)=~ dp g(p)~(r,t),
(2ir) (2ir)

(4.52)

~(r, t) = I (2~)~2g(p) e’~,

where E~equals p212rn. A very convenient choice, which we will use later, are the Gaussian wave
packets known under the name coherent states,

g(P) = (2L/ir)314 e~~’°~~2”e”~°. (4.53)

The Wignerdensityof coherentstatescan easilybe calculated,

f(P, R, t) f d3q ~i~.(R~vPt)g(p + q12)g*(P — q12)
(2IT)

= ~ e~~’~’0)221.~e_~_R0_ t)°/21~ (4.54)

v~.is defined as P/rn. We start now to derive the time evolution equation of the Wigner density for
potential scattering. Webegin by recalling the solution of the SchrOdinger equation in the Wigner
formalism (eq. 4.38),
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+ ~ R, t) = • f (~)3 e{(P + q/2~V~(t))(~(t)IP- q/2)

~ . (4.55)

f(P, R, t) denotesthe Wigner transformof ~i(t)) (~i(t)~.

Potentialscattering.Wenow discuss how to apply the Wigner density formalism to scattering events.
Due to causality the wavefunction I ~I’k)obeysthe well knownrelation

(4.56)

We now insert this relation in the aboveeq. (4.55) and replace~i(t) by eq. (4.56) wheneverV is not
actingdirectly on ~i. Performing the time integrationover dt’ we obtain

(~-+ . ~ R, t) = ~ I d3pd3kd3k’ g(k)g*(kl) e”~e~~t

~ [(P+p/2IV~k)(~kIP—PI2) — (P+p/2I~k)(~Jk,IVIP—p/2)

+ (P+p/2IVI~k)(~Jk,IVIP_p/2)(E— E — E — E —. (4.57)
k P+p/2 16 k’ P—p/2 16

Wenow make use of the relation between the potential and the transition matrix TI~)= VI~!~)and
define

g(k)g*(kl)= f
0(k + k’, (k — k’) /2) = I e~’~f0(R, k + k’) d

3R, (4.58)

and obtain finally

(~+ . vR)f(R, ~, t) = ~ I d3pd3Qd3qe~”f
0(Q,q,

x [(P +pI2ITIQ + q12)6(P —p/2 — Q + q/2) — (P —p/2~T
tIQ— qI2)~(P +p/2 — Q — q/2)

+ (P+pI2ITIQ + q/2)(Q — q/2jTt~P—p/2)

( 1 1

X ~ ~ + q/2)2/2m — (P + pI2)2/2m + ir — (Q — q12)212rn— (P — p/2)212rn — ie~ (4.59)

f
0 is the time evolved free wave packet, correspondingto P in the Lippmann—Schwingerequation
(4.50).
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This is ourseminalequation.Its structurewill not changewhenwe proceedto two-body scatteringof
bound scattering partners in the impulseapproximation.As we haveseenin section4.1, in the impulse
approximation the free particle transition matrix is used, and only the wavefunction contains the
information that the particle is bound. For the above equation this means that only the Wigner density
f0 carries this information.

Unfortunately eq. (4.59) is far from being transparent. Therefore we will discuss now the meaning of
the different terms. If we set the right hand side equal to zero we have just the time evolution equation
for free particles. The right hand side contains the description of the scattering. It consists of two terms
linear in T, and a term which is quadratic in T (13). The linear terms are proportional to the real (Ii)
and the imaginary part (‘2) of the transition matrix, respectively. Westart with the interpretation of the
linear terms. For this purpose we perform the integrations and make use of the relation (4.58). For I~
we arrive at

11(P,R, t) = 16Jd
3P’ sin(2(P — P’) . R) Re T(2(P — P’)) f

0(P’, R, t). (4.60)

The physics of the first term is revealed by comparing (4.60) with eq. (4.42). Both expressions have
exactly the same structure. In our case the potential is replaced by the real part of the transition matrix,
which acts on the Wigner transform of the freely propagated wave packet f0 and not on that of the full f.
Thus the real part of the transition matrix acts as an effective potential. If the effective potential is
sufficiently smooth, we can expand the expression in terms of /I analogously to the discussion following
eq. (4.42), and obtain

11(P,R, t) = [~T(R)] V~,f0(P, R, t). (4.61)

Thus in the quasiclassical limit, which is also the limit where the impulse approximation is valid, the real
part of the transition matrix acts as a force.

To discuss the term which is proportional to the imaginary part of the transition matrix it is best to
assumea specific from of the transitionmatrix. Sincewe ultimatelywant to deal with nucleon—nucleon
collisions we choose a Gaussian form,

(plT~q) (A+iB)c~”~~
2, (4.62)

which fits nuclear scattering data for beam energies larger than 100MeV[100]. Using eq. (4.62) the
second term can now be cast into the form

1
2(P, R, t) = — ~ f d

3P’ cos(2(P — P’) R) e4~’)Saf
0(Pl,R, t)o~05. (4.63)

Here we have made use of relation (3.34). The meaning of the term becomes even more evident if we
perform the integration over d

3R. Then 1
2(P, t) is proportional to the product of the total nucleon—

nucleon cross section for point particles and the form factor, i.e. the Fourier transform of the spatial
distribution of the particle. Having an overall minus sign it describes the scattering of particles out of
the phase space cell at (P’,R).
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Now we cometo 13. The Gaussianform of the scatteringamplitudeallows us to expressthe squareof
the transitionmatrix in eq. (4.59) in the form

(P + pI2~ TIQ + q/2)(Q — q/2~T~IP— p/2) = I (~ITIQ) 2 ~~a(P~~)
2/2 ~ (P~Q) ~~(P~)2/2

(4.64)

For P. q <p2 and Q. q< Q2 the difference of the propagators is just equivalent to the energy
conserving5-function 6(E

0 — Er). Substitutingtheseexpressionsin 13 we find

11(P, R, t) f d
3p d3Qd3qe~’~f

0(Q,q, t) e~ ~)
2/26(E— EQ) (Q~P). (4.65)

(2ir) dQ

We see that the term quadratic in T describesthe scatteringof particles into the phasespacecell at
(P,R).

Thus the equation which describes the time evolution of a quantum particle which traverses a
potential has the same formal structure as the classical Boltzmann equation. Besides terms which
describe the free streaming of particles, we have in the semiclassical limit an effective potential as well
as a gain and a loss term, which describe the scattering into and out of the considered phase space cell.
This is a remarkable result because in classical physics this situation would be described by the Vlasov
equation, which has a quite different structure. This result teachesus two things:

(1) The analogy between the classical Boltzmann equation and the time evolution equation of
quantum wave packets can only be formal. Obviously collisions can be quantum features without any
classical analogs.

(2) In a quantum equation strong potential gradients, such as those caused by the hard core in
nucleon—nucleon potentials, do not cause a strong force as in a classical equation. Rather they show up
as a random force or, what amountsto the same,as a crosssection.Thus classicalmoleculardynamics
with two-body nucleon—nucleon potentials is conceptually wrong if applied to a system which is
dominated by quantum effects.

Two-bodyscattering. To deepenthe understandingof our seminaleq. (4.59), we proceednow by
treatingthe scatteringof two wave packetsin the sameformalism. In classicalphysicsthis situationis
described by the Boltzmann equation with vanishing potential term. Here we start from the two-body
SchrOdinger equation, which reads after a Wigner transformation

Ia P P
+ ~-‘—•VR+ ~ •VR)f(Rl~R

2~Pl~P2~t)

(4.66)

where K2(P1 — P, P2 — P~,R1,R2) is completely analogous to K1,

iK2(P1 — P~,P2 — P~,R1, R2)= I d r1 d T2 e~”i~h1~2~’2

(2IT)

x [V(R1+ r1/2, R2 + r2I2) — V(R1 — r1/2, R2 — r2/2)]. (4.67)
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Evaluating the transition matrix on the momentum shell, we can integrate over the centre of mass
coordinatesof the scatteringpartnersandobtainanequationwhichis formally completelyequivalentto
eq. (4.59). All phasespacevariables,however,nowrefer to the relativecoordinates,andm has to be
replacedby the reducedmass.The equationdescribesthe time evolution of the system in these
variables.The centreof massstreamsfreely.

Equation(4.59),with (4.67), describesthe time evolution of two colliding quantumparticles.If we
compare with the classical counterpart, the Boltzmann equation, we see a striking similarity in their
formal structure.

Both have a potential term and a gain—loss structure in the collision term, which depend on the
differential and the total cross section, respectively. This similarity justifies the use of these classical
equations as a starting point to describe heavy ion collisions as has been done in the BUU approach.

More important, however, are the differences: Whereas the Boltzmann equation is an integro—
differential equation, the quantumcounterpartis only adifferential equation,whichmakesthe solution
much easier. The T matrices act on the Wigner density of the freely propagatingwavepacket.Both the
classical and the quantum equations have a potential term. Its meaning, however, is completely
different. Following the derivation of the Boltzmann equation in the framework of the BBGKY
hierarchy, one sees that all two-body potentials have to be accommodated in the collision term. The
force term contains only gradients of external potentials. In the quantum equations the effective
potential is a two-body potential. Of course, one can argue that the two-body potential can be
expressed by an average potential and a residual interaction, where the average potential can be treated
like an external field. But this argument misses the essential point, namely that without any
approximation a potential term is present and uniquely determinedin the quantum equation.
Furthermore, the effective quantum potential is not the potential which enters the Schrodinger
equation,but the real part of the transitionmatrix. Hence for vanishingcollisions (e.g. due to Pauli
blocking at low beamenergy) the Hartree—Fockequationwith nucleon—nucleonpotentials(whose
Wigner transformis the Vlasov equation)is not the right limit. Ratherone hasto employ the realpart
of the transition matrix (or — if one wants to take care of the Pauli blocking of the intermediate
states — Bruckner’sg-matrix) as is done in TDHFcalculations. Besides that, a transition matrix or a
scattering amplitude is more easily obtained from experiment than a potential, which requires us to
solve an inverse scattering problem. In the nuclear case, the nucleon—nucleon potential has a hard core
whereas the transition matrix is rather smooth. Hence solving this equation is feasible.

Finally we want to mention that a straightforwardcalculationyields the well known form for the
optical potential [1]

Veff~T(0)p(r). (4.68)

In order to obtain this result one has to assume that the target nucleon does not recoil and that the
target radius is large comparedto the rangeof the transitionmatrix.

Scattering of two Gaussian wave packets.Before we proceed to investigate how the formalism
changes if at least one of the scattering partners is bound, we would like to make the physics contained
in eq. (4.59) still more transparent. For this purpose we solve eq. (4.59) for the case that initially the
relative motion of the scattering partners is described by the wave packet (4.54).This calculation can be
done analytically under the assumption that the increase of the width of the wave packet is small during
the collision,
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L(t) = L(0)~1+ (/lt/m)2/L2(0) L(0). (4.69)

If this is valid we can replace v~,by v,,
0 in eq. (4.54). Thusthe motion of the centroidof the distribution

is approximatedby

R0(t) = R0 + Vat. (4.70)

By a shift of the time axis we can chooseR0 to bethe minimal distancebetweenthe scatteringpartners
R01.R01 is thenequivalentto the impactparameter(with respectto the centroids)andis perpendicular
to P0. The calculationis lengthy but straightforward,andfinally, after integrationoverd

3R and dt, we
obtain

f(P, t = oc) = f(P, t = —oc) + I~(p)+ J~huhi~d(p), (4.71)

with

JIin(p) P
0 2L+a exp[—(P — P0)~. 4L] exp(_P~ 4L(L+a)) exp(_ 8LR~a)

~ ~ 2~a) cos(P.R012L+a)]’ (4.72)

quad 4/5
2IT3(A2 + B2) (4L\312 ( 2 2La ‘~ / R~

1

I (P)= (2L+a)P0 y-~-) exp~—P~2L+a)~~8L+4a

~I ~ 6(m — P) exp[—2a(P — rn)
2 + a(P— m)~]exp[—4L(m — P

0)
2]

x exp[—(2L + a)m~]cos(( +2L P — m) .R
0±). (4.73)

~ is the reducedmassof the scatteringpartners,andwe recall that theA, B, a andL are definedin eqs.
(4.62) and (4.54).

This equationdisplays quite nicely how onecan visualize quantumscatteringin the familiar phase
spacecoordinates,andwewill discussthis in a moment.Beforethat it is usefulto investigatethe limit
L —~cc~

In this limit the particles are in momentum eigenstates and described by plane waves. We recall

(A
2 + B2) e m)22a = TT* = 2 (4.74)

(2IT)/.L dIl

B = — P
11 ~ ~ot. (4.75)

2(2ir) p,

We notice that in this limit the sineterm of Jim doesnot contributeand the cosine term yields

Jiin(p) = — ~L 5(P — p0)°’~01. (4.76)

The quadraticpart gives
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Jquad(p) = 4ITLP2 6(P — P
0) . (4.77)

Hence as the final result we have, with f(P, t = _oc) = 8(P— P0),

f(P,t=oc)= 4~p2~(P_Po)~+(1_~L)~(P_Po). (4.78)

Westill have to clarify the meaning of the term 1/4ITL. It turns out to be the time integrated current,

I j.P0dt= ~ exp[—(R—R0)~/4L], (4.79)

where j is defined as

1
312P

j = (~—~) —~exp[(R — R
0 — P0t/~)

2/4L]. (4.80)

The last expressionis easyto interpret.As ~ oc, f(P) is finite at the surfaceof a spherewith radiusP
0.

The value of f is proportional to do’idQ, the probability of scatteringinto a momentumspacecell
around (P, 12). Hence the first term describes the scattering out of the initial state P0 into the possible
final states.The second term takes care of particle number conservation. Since the integral .f f d

3Phas
to be constant, the initial population of ô(P — P

0) has to be reduced by the number of scattered
particles. When we compare our final eq. (4.78) with (4.69)we notice that in the plane wave limit the
term proportional to sin((P — P0) . R0) has completely disappeared. Consequently, only localized
particles feel an effective potential, which acts in the semiclassical limit as a force. The scattering of
asymptotically free particles is completely described by cross sectionsas we expectfrom the solution of
the Lippmann—Schwingerequation.The force term will becomevery importantwhenweinvestigatethe
motion of particlesin a boundsystem.

Going back to eqs. (4.69) and (4.73) we now see how a phasespacepicture of quantumscattering
can emergewhich fully takescare of the uncertaintyrelation; for large relativedistancesbetweenthe
scatteringpartnerscollisions are exponentiallysuppressed.As one would assumeintuitively, particles
which are far apart do not scatter.The rangein which scatteringtakesplaceis given by the sumof the
widths of the Gaussian plus the width of the interaction. The exponentialsuppressionis modulatedby a
cosine term, which can make the terms negative for some values of P andR0~.Integrated over all
impact parameters R01 the result is positive, of course. The energy is conserved because the time
integration was performed from —oc to +oc. If there are many particles present this has to be modified.
This topic will be discussed in section 4.6.

Scatteringon a boundparticle in impulseapproximation.At the end of section 4.1 we saw that the
scattering of a beam particle on a bound particle can be described by

I (kkTITIpTp)(pTlxO) 3
2 2 2 2 . ~(k+kT—p—pT)dpT,

pT/2rn+ p /2m — k /2m — kT/2m+ 16

provided the impulseapproximationis valid.
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When we compare this result with I çli(t)) obtainedfor free particlescatteringwe observethat the
only differenceis in the term PPT) (PTIX0) d3pT, which would be equal to PPT) in the case of free
particleswhich asymptoticallyhavethe momentap, PT~Thus for the actual scatteringthe particlesare
treatedas free in the impulseapproximation.The only placewherethe binding becomesapparentis in
the term (PTIx

0). Wehave a distribution of momenta which we have to integrate over. In the Wigner
densityapproachthis is especiallyadvantageous.We only haveto replacethe Gaussianform of the
wave packetby the Wigner densityof the boundstate.The rest of eq. (4.59) remainsunaltered.

Projection onto a definitefinal target state. In eq. (4.81) it is not specified into which final state the
target particle is scattered. If we are interested in the time evolution of the beam particle under the
condition that the target particle is finally in the excited state n, we have to project onto the phase space
of the final state. Wequote only the final result here,

+ !~.~)f(Pi,Ri,t) —if d
3R

2d
3P

2 x~(R2,P2)[V,P~
2~]w’ (4.82)

where ~(2) is the two-particle density operator, x~is the Wigner density of the final state of the target
particle and the subscript Wstands for the Wigner transform integrated over the initial phase space
coordinates of both particles. In deriving this equationwe havemadeuseof the fact that

f d3r d3p (AB)~= f d3r d3p ~ (4.83)

The evaluationof this expressionfollows the samelines as we have discussedin deriving eq. (4.59).
Thus, as far as the impulse approximationis valid, the results are close to what one expectsfrom
intuition.

4.4. Scatteringon asystemof boundparticles

The scatteringof a beam particle on complex bound target systemswhich consist of many
constituentsis describedby the Lippmann—Schwingerequation,

c1’a = Xa + ~ (4.84)

whereV containsthe scatteringof the incident particle i with targetparticlesm,

V= ~ V; , (4.85)

and Xa is the initial statewave function, i.e., the product of the plane wave of the projectile and the
targetground statewave function,

iP ‘Rg
0 = 3/2 ~0(r1,. . . , r~)

(2ir)

The first term describesthe centreof massmotion.g is thesolutionof the targetSchrOdingerequation,
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H~gfl= (~— ~— V~+ U)g~= ~ (4.86)

whereW, = P2/2M
501 + w,, is the sum of centreof massand internal energyand U is the interaction

amongstthe target particles.The propagator

1 (4.87)
Ea~Tp—HT+ie

contains in the denominator the total target Hamiltonian and the kinetic energyoperator of the
projectile. Ea is the initial energy.

Wedefine the transition matrix t~,which describes the scattering of the beam particle on the target
particle m,

= V;m + V;m Ea — T~— HT — + i~ V;m = V;m + V;m~t~m. (4.88)

The superscript b stands for scattering on a bound particle. Watson [101]has shown that eq. (4.84) can
be solved by a set of coupled equations,

= Xa + ~ G~t~m~~m= Xa + ~ ~ (4.89)
m~”n

For the purpose of understandingthe structureof theseequationswe displaythe first termsof the
expansion,

Xa +~ G~t~’mXa+ ~ ~ (4.90)
Pn�n

The scattered wavehascontributionsfrom previouslyunscatteredparticles,as well asfrom thosewhich
have already undergone collisions with other target particles. Thus this generalized Lippmann—
Schwinger equation has for the incoming wave not Xa’ but an effective ~ which describes possible
previous scatterings.

If the impulse approximation is valid we can proceed along the same lines as in section 4.1. Wecan
replace the bound transition matrix t~ by the free particle transition matrix tlm~

tim = V;m + V;m 2 .~ . t~, (4.91)
pI2m+p./2rn— T~—TT+1e

wherep
212m is the kinetic energyof the beamparticle,p~I2mis the expectation value of the kinetic

energy of the target particle [seeeq. (4.10)]. To adapt our present problem to the discussion in section
4.1 we recall

Ea = W
0+p

2/2m, (4.92)

and define
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Ea — p212m— p~./2m. (4.93)

In analogyto eq. (4.13) we can expandthe propagatorin the transitionmatrix Tb,

1 — 1
p2/2m+p~/2m—T~—TT+~R—U+is ~p2/2m+p2~/2m_ T~—TT+is

x(1_(~R-U) 1 (494)
p2/2m + p~./2m— T~— TT + z~R— U + isJ~

U representsthe interactionof the targetparticlern with the othertargetnucleons.If this potentialis
sufficiently smooth[cf. eq. (4.26)] we can terminatethe expansionafterthefirst term,which meansthat
we can replacethe boundstatetransitionmatrix tb by the free transitionmatrix t.

We proceednow to the evaluationof ~‘m’ whichis the wave function of theprojectileparticleprior to
scatteringwith the target particlem. We denotethe initial momentumof the projectileby p, its final
momentumby Pf, and the momentumit has prior to scatteringwith the targetparticle m by p’. The
wave function of the incomingprojectile can be expandedin planewaves,

+ I d3p’ b
(Pf I ~a ) = (PfIXa) + J p~/2m— p~/2m— HT + + ~ ~ p’°)(p’~cl~). (4.95)

0 and n are the initial and final statesof the target.If the wavelength is small comparedto the mean
free path,we can evaluatethe propagatorby its asymptoticvalue, on the energyshell, andobtain, if the
targetnucleonhad initially the momentum(p~+ PT —

+ f 3 , 3 (PfP’rItim!P’Pf+PTP’)(P’I~11m)
(P

51 ~a)(PfIXa)+ j dp dpT 2 2 2 , 2

p~/
2m—p~/2rn pT/2m + (p~+PT —p )/2m — z~E+ is

(4.96)

zXEis the energyshift of the projectiledueto previousscatterings.If the targetnucleoninitially is not in
a momentumeigenstatewehaveto integrateover its initial momentumdistribution. In this limit each
scatteringis an isolated event, which can be evaluatedwith the free scatteringcross section. The
incomingwave hasa quite narrowdistributionin momentumspacearoundavaluep

1 which is specific
for a sequenceof previousscatterings.In order to comefrom one to the next scatteringcentreonly
momentain a narrow range around rrei, the relative vector of the scatteringpartners,are allowed.
Otherwisethe particlewould miss the potentialrangeof the next collision partner.For detailsof this
approximationand the first-ordercorrectionterm we refer to ref. [93].

We haveseennow that in theshort wave length limit A> 1/k (A is the meanfree path,k is the wave
numberof the particle)the scatteringof aprojectileon a boundsystemcan be approximatedby single
scatteringsbetweenprojectile and target constituents.Provided the binding potential is sufficiently
smoothwe areentitled to usethefree scatteringTmatrices.However,evenin this approachwe arestill
facedwith thefull complexityof the (n + 1)-bodyproblem. The boundstatewave functionof the target
nucleon,over which we haveto integratein order to obtain (p~

1qi,~), is a solutionof the n-body target
Schrodingerequation.We will not beable to solve this equation.Ratherwe haveto makean ansatzfor
the n-body wave function.
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The equation of the quantummolecular dynamicsmodel. We now have all the ingredients to
formulate the time evolution equation for proton—nucleus interactions in the impulse approximation. It
is straightforward to extend eq. (4.59) from two to N + 1 nucleons.Thenthe time evolutionequationis
given as

(~ + . ~ . . P~5~R1,. . . , RN+l, t)

= I~d
3p

1 d
3Q

1 d
3q

1 eiRm~f~(Qi,. . . ~QN+l’ q1,. . . , ~ t)[11(T) + 12(T) + 13(T)]. (4.97)

T is the sum of all possibletransitionmatrix combinations,

T= ~ + ~ ~ (4.98)
in kn’m”

i.e., all possible scattering sequences which may occur when the projectile i travels through the target.
The terms1~to 13 are defined as follows:

1~= (P1 +p1/
2,. ~ +PN+

1I2ITIQ1 + q1/2,. . . , ~ + q~+1/2)
N+ 1

X [I 6(P1—p,/2—Q,+q,/2),

‘2 = (P1 ~1/2’~ . ~‘~N+1 PN+J2ITIQ1 — q1/2,. . . Q~+~— q~~1/2)
N+ 1

x fl ô(P,+p1/2—Q,—q112),

1~= (P1 +~1/2’. ‘~N+1 +pN+l/2IGOTIQI + q1/2,. . . ~QN+i + q~f1/2)

X (P1 PJ
2’~. ~‘~N+1 PN+l/2IGOTIQ

1 — q11
2,. . Q~+~— q~~

1I2)*.

tim are the free scatteringtransitionmatrices and G~are the on shell propagators. If the potential
gradients are sufficiently small to employ the impulse approximation for scattering amongst target (or
projectile) nucleons as well, the extension to the equation which describes the nucleus—nucleus collision
is againstraightforward.The indexfor the momentumandcoordinatespacevariablesrunsnow from 1
to NT + N~insteadof N + 1, and T hasto be replacedby the sumoverall possiblescatteringsequences
of all projectileand target nucleons.

In the quantummoleculardynamics approachthis equationis solved in an approximateway by
meansof a MonteCarlo procedure.The detailsof this procedurewill be discussedin the nextchapter.
Here we only mentionthe essentialapproximations.The real part of 1~+ ‘2’ which, as we haveseen,
actsas an effective potential,hasbeenreplacedby a mucheasierto handletwo-bodypotential,which
in nuclearmatter can be easilyrelatedto the nuclearequationof state.It is a parametrizationof the
g-matrix (insteadof the transitionmatrix), which additionallytakesinto accountthe fact that nucleons
arefermionsandthereforecannotscatterinto phasespaceregionswhich arealreadyoccupiedby other
nucleons.
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The propagatorwhichdescribesthe time evolutionof the particlesin betweenthe scatteringeventsis
takenon the energyshell. Thus eachtwo-body scatteringeventconservesenergyand momentum.

If the particlesare in momentumeigenstates,as is approximatelythe casefor smoothpotentials,
termswith differentsequencesof transitionmatrix elementsin G~T andT~G~do not contributeto 13.
Thesetermsdescribethe interferencebetweendifferentpaths.In this limit the pathsaredistinguishable
and thereforedo not interfere. Assumea projectile nucleonscatterswith quasi-freetarget nucleons
1,. . . , N. In order to proceedfrom nucleon i to nucleoni + 1 it hasto havea definite momentumK1,
whichpointsin the direction of the relativedistancevectorbetweenthe targetparticlesi and i + 1. The
absolutevalue is given by requiring energyconservationfor each nucleon—nucleonscatteringevent.
Due to momentumconservationthe recoil of the targetparticleis fixed anduniquefor thissequenceof
scatterings.A differentsequencemeansa different momentumtransferto target particle i. Thus the
final state of the (NT + N~)-bodysystemis different and interferencecannot take place. We will
substantiatethis statementin section4.6. In this limit I~reducesto a sumof termswhichcontainsonly
absolutesquaresof transition matrices I T1JGO~T,k1

2. In the actual calculation it is assumed that these
termsare proportionalto productsof the crosssections.The limit of validity of this assumptionis also
discussedin section4.6.

The term proportionalto the imaginary part of I~+ ‘2 servesto conservethe norm, as we haveseen
eq. (4.78). Instead of calculating this term explicitly, it is much easier to replace it by norm
conservationin a Monte Carlo calculation.

As an initial condition we still have to choose the initial Wigner density f
0(R1,.. . ,RN+N,

P1,. . . , P,.,,, +N). We will discussour choicein the nextsection.We initialize the nucleiaccordingto our
choice of the initial distribution. Then we follow the space—timeevolution of all the particles, and
performthe scatteringwhenevertheparticlesaresufficiently close [cf. eq. (4.69)]. The scatteringangle
is chosenrandomly from a distribution which reproducesthe measuredfree scatteringcrosssection.
Thusin eachcalculationonespecific summandof T (eq. 4.98)is chosen.For the samef0 but a different
sequenceof random numberswe obtain a different scattering sequence.Performing very many
calculationswe obtain a distribution of different paths,whereeachpathis representedwith a weight
factor which correspondsto the probability that it occurs. Thus the Monte Carlo procedureis a very
convenientway of integratingout the 12~’integrationvariables,whereN is the number of collisions and
the 12 is due to the 12 phase space coordinates of the scattering partners.

4.5. Initial Wignerdensity

In the foregoing sections we have seen that under approximationswhich can be justified for
nucleus—nucleuscollisions the time evolution equationfor the n-body Wigner densityrequiresthree
inputs:

(a) the free nucleon—nucleoncrosssection;
(b) the effective potential between the nucleons given by the real part of the transition matrix;
(c) the initial n-bodyWigner density.
Whereas the first two inputs can be inferred from experiments,the last input is not at all

experimentallyaccessible.The most we can learn from experimentsare one- or, in a few cases,
two-body observables.The calculationsof the n-body Wigner densityfrom first principles is also far
outside the range of possibilities of present day nuclear matter calculations, as we haveseenin chapter
2. Thus one hasto startwith an educatedguess.The most onecan do is to makea choicewhich is in
agreementwith experimentallymeasuredobservablesand generallyacceptedtheoreticalpredictions.
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Especially our choice should reproduce:
(a) a one-body density distribution which coincides with observed density profiles;
(b) the uncertaintyprinciple;
(c) the relative wave function between two nucleons as calculated in the g-matrix approach; this

relative wave function approaches zero for small relativedistances,as we havediscussedin section3.3;
in a cold nucleus this is rather independent of the relativemomentumof the nucleons;thusthe nucleus
is similar to a lattice with wave function located around the sites.

One, but certainly not the only, ansatz which can fulfill these requirements is the assumption that the
n-body Wigner density is a product of n Gaussians,

f~(r1,. . . , r~,p1,. . . , p~,t) = exp{—[r1 — r10(t)]
212L} exp{—[p

1 —p~0(t)]
2. 2L}.

m=1 IT (4.99)

For a fixed time f~is theWignertransformof theproductof n coherentstates.The possiblevaluesof
L are quite limited due to conditions (a) and (b). If we choose L too large, we cannot reproduce the
nuclear surface; if L is too small, we are faced with unreasonably high momenta due to the uncertainty
principle. In this limited rangewe checkedthat the calculatedobservablesarerobustagainsta change
of L. As we have seenin section 4.3, the width of a coherent state increases as a function of time if
propagated with the free SchrOdingerequation.In our approach we keep the width constant, i.e., we
do not allow the spreading of the wave function. This is motivated by the observation that otherwise the
nucleus as a whole would spread in coordinate space as a function of time. Thus keeping the width
constant imitates in a crude way the influence of the potential on the wavefunction.

4.6. Interferencebetweensubsequentcollisions

Formation timeandformationdistance.Wehave seen in section 4.4 that the time evolutionequation
for the N-body system requires as input only the real part of the transition matrix and the
experimentally measured nucleon—nucleon cross sections, provided we are in the short wave length
limit AK> 1 (A is the meanfree path and K is the wavenumberof the particle). In this sectionwe
investigate in detail how large this product has to be in order to justify the approximation of
independent collisions. We will derive the exact result, and discuss the correction terms for AK not
being large. We find that the cross section vanishes if the distance between the scattering centres
approaches zero, independent of the wave number K. Hence we can talk about a “formation distance”
below which the scattered particle is not able to interact again. In this calculation it is assumed that we
can integrate over all possible time differences T between the two subsequent collisions. Then we
proceed by allowing only a finite r between the collisions in a manner similar to that of the kinetic
theories. For small r we observe a strong suppression of the cross section. Even if ‘r = R IUreI (R is the
distance between scattering centres, Vrei is the relative velocity of the particles prior to the first
collision), the total cross section has not reached its asymptotic value for parameters suited for a
nucleus—nucleus collision. Thus there exists also a “formation time”. This is the time a particle needs
after a collision before it can collide again with its full (asymptotic) cross section.

We will perform our calculation in the frozen target approximation because it allows for almost
analytical results without giving up the essential physics. Extending our calculation to three moving
particles described by Wigner densities is straightforward but the results are quite lengthy.
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Consideran incoming nucleonapproachingtwo potentialslocatedat R/2 and —R/2. Therearetwo
possibilities for double scattering. Either it scatters first with the potential at —R/2 and thenwith that at
R12. The amplitude for this processwe will denoteby A12. Or we havethe opposite sequenceof
scatteringswith the amplitudeA21. The incomingnucleonis describedby the Fourier transformof the
Wigner density, eq. (4.54), with the approximatedwidth (4.69),

f0(Q, q, t) = (2LIIT)
312e Q

0)
221~~_~2L/2 ~i~~(Ro_Qot/m) (4.100)

We calculate the total cross section with the help of our Wigner density formalism. The total cross
section is contained in the terms linear in the transition matrix jimn( T) [cf. eq. (4.76)]. In the limit L —~oc

the real part of I~(T) vanishes and we obtain

~ (4.101)

J~uad(~~*)refers to the term quadratic in the transition matrix (eq. 4.77) and Q
0 is the initial

momentum. Omitting the terms TT* the time evolution equation of the Wigner density of the
incoming nucleon reads as [seeeq. (4.59)]

~ .fd
3Qd3qd3pd3R ip~R

)— ‘J (2i~)3 e

x{(P+p/2~A
12+A21~Q+qI2)~(P—p/2—Q+qI2)

— (P —p/2IA~2+ AIIQ — q/2)ö(P+ p12 — Q — q12)}f0(Q, q, t). (4.102)

The operators for the different scattering sequences is given by

A12+A21=2mfd3lTi (P)~~I2. T2+T2(~ )~1~2. T1. (4.103)

The transition matrix for scattering on a scattering centre located at R/ 2 is obtainedby a translation
from scattering on a particle located at r = 0,

(mIT1In) = e _m)~R/
2(mITIn) , (mIT

2In) = em(~m).R/

2( TI) . (4.104)

We replace T
1 and T2 by these expressions and perform the integrations over d

3q, d3p and d3R,

3/2

f(P, t) = —i 32mJd3Q d3l (~) e~~0)221 e~0)221~

x ( (P1TI!) (11TI2Q —P) cos[(l — Q) R] ei2(~0~0uhn)

P2—!2

— (P1T~I1)(l~TtI2Q— cos[(1 — Q) . R] e12( (Root/in)) . (4.105)
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Weproceed by integrating over the time. Then we perform the limit L —~ substitute (mI TIn) =

(A + iB) e~m~~)U and obtain

J dt f(P, t) = —i l6rnIT ~ f d31 e2~02 cos[(1 — P) . R] 8(P—

< ~ — ~ (4.106)

Comparingthisresultwith eq. (4.78)we see that the total cross section of scattering on two potentials is
given by

= 4i~~)~f d3le2~i~~22 cos[(1 — P) R]( ~B)~ — ~4_~~B)2)) . (4.107)

The term 2 cos[(l — P) . R] can easily be identified as being proportional to the Fourier transform of the
spatial distribution of the two scattering centres. This allows a straightforward generalization of the
above expression. Defining

F(q) = Ref ~I~.Rp(~) d3R, (4.108)

where Re refers to the real part of the complex function, we obtain as the general result

= . 4~~~.2)2f d31e2~~~2F(P— ~)(~~~)2 — ~ (4.109)

In order to appreciate our result, and to make contact with the well known high energy limit, we
calculate the cross section in the high energy (Glauber) limit. In this limit the propagator G~is replaced
by

+ 2m 2m
= p2l2i~P(P1)+i~ (4.110)

This implies that the projectile doesnot changeits longitudinal momentum.
Backwardscatteringis impossiblein thislimit, andthereforeonly oneof the amplitudesA

12 and A21
has a finite value. Consequently, we have to replace in our expression

2 cos[(P — 1).R] —+ Re(J e~~°’~p(R)d3R) . (4.111)

Furthermore we assume that the imaginary part of the scattering amplitude is large compared to the
real part, A ~ B. We can now perform the integrations. Recalling the definition of the scattering
amplitude,

f(l—q)=4IT
2m(l~T~q), (4.112)
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we obtain

= 2B2 fd2q f(q)f(-q)F(q) ~ (~NN)2f d2q F(q). (4.113)

To derive the last expression we have assumed that we can replace f(q) by f(0) under the integral. This
is justified if (R2) 1/2~ a, where R is the distance between the scattering centres and a is the range of
the potential. Using J F(q) dq = 2IT(R2) we finally arrive at the well known result [1]

= —(o~)2(R2)/4IT. (4.114)

We come back now to our question about how the total cross section is modified due to double
scattering.To investigateits dependenceon the relative distance it is best to assume a Gaussian
distribution of the relative distance between the scatteringcentresin coordinatespace,

(4.115)

Consequently we have to replace 2 cos[(P — 1) R] by 2e~’~2iXR Again we assume the imaginary part
of the scattering amplitude to be large compared to the real part. Then we can perform the integrations
and obtain

,‘ NN\2
= 2 ~¼0tOt) El — ~ 4 116

tOt 4IT 8a+4~R~

First of all we see that the cross section due to double scattering has a negative sign. Therefore it lowers
the value of the cross section obtained from single scattering. This would be different if A ~ B.
Secondly, double scattering does not take place if the scattering centres are close to each other. There
exists a formation distance below which the projectile can only react with a reduced cross section. This
distance depends on the sum of the range of the effective potential and the distance between the
scattering centres. For large E~Rthe expression approaches a limit which is easy to interpret. Assuming
an isotropic cross section (a = 0) we have

= - (NN)2 (4.117)

(R2)112 is the average distance of the scattering centres in the reaction plane and ff
101(R

2)I
4ir = (R -2) dcr/dQ is just the probability that the scattering angle is such that the projectile hits the
second scattering centre.

Still more insight into the quantum mechanics of double scattering can be obtained by inspecting the
dependence of the double scattering on the time the projectile travels between the scattering centres.
We recall that the propagators in eq. (4.105) are obtained by assuming that the time between the
subsequent scatterings can vary between 0 and infinity,

2 ~
2 = I e~

2~”~e~2(1_t’)e1_’) dt’. (4.118)P —l +is
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If we allow a finite time difference only, the difference of the propagators in eq. (4.106) has to be
replaced by

2m — 2m — 4im sin((P2 —l2)T12m) (4 119

P2+12+is P2+l2—ie P2—l2

where r is the maximal allowed time between the scatterings. For r—~oc the left and right hand sides of
eq. (4.119) become identical. In order to calculate the dependence of the double scattering term on the
temporal distance we replace in eq. (4.106) the difference of the propagators by the right hand side of
the above expression. We integrate over the angles and obtain finally

u(r) = — (~)2 ~R + 2a J e 2 P2+12) sinh(2(~R + 2a)Pl) 2rn sin((P2—12)rI2m)1 dl.

(4.120)

In fig. 5 we display o-fr) for different values of (R2) as a function of time. o(r) is normalized to
o(r —~ oc). Thus the suppression due to the finite distance between the scattering centres has been
divided out. The time is displayed in units of r

0 = (R
2) “2mIP, the time it would take for a classical

particle to travel from the first to the second scattering centre. Wesee that only for a very large distance
(R —~ 6 fm) is the asymptotic value obtained around r

0. At smaller distances the cross section is
considerably reduced there. If the distance between the scattering centres decreases further we find an
oscillatory form, which only at very large times approaches its asymptotic value.

2.5 ~ I I I
INITIAL MOMENTUM p~—200 MeV/o

~71~6,4um~017T~

time t in units of ‘J(<R
2>)’/(p

1/m)

Fig. 5. On the formation time. Allowing only a finite time differencer betweensubsequentscatteringswe observea reductionof theasymptotic
crosssection for double scatteringo~(r—~0°). This reduction u(r) Io~(i~—~oo) is displayed asa function of ~for different distancesbetweenthe
scatteringcentres.~ is presentedin units of the time it would takefor a classicalparticle to travel from oneto the other scattering centre.
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We can conclude that the double scattering term has a negative sign if the imaginary part of the
scattering amplitude is large compared to the real part, and therefore lowers the total cross section,
which is a sum of single, double, etc. scattering. The double scattering is strongly reduced if the wave
length of the particles is not small compared to the distance R between the scattering centres. If we
furthermore limit the time the particle is allowed to spend between the scatterings, a further reduction
occurs for values of R around the nuclear mean free path.

Hence, for values of R and T which are typical for nuclear collisions, the independent scattering
approximation can hardly be rigorously justified, although the long mean free path at low energies due
to the Pauli principle works in our favour. The corrections, however, may be of the order of 50% and
yield a decrease in the effective number of collisions. At higher energies the mean free path is large
enough compared to the particle’s wave length to justify the independent collision approach. The only
excuse for using the independentscatteringapproachfor practicalcalculations lies in the fact that
calculation of the correction terms is beyond what is at present numerically feasible,and that careful
investigations have shown that the dynamics of the reactions considered here are not influenced by
quite different treatments of the collisions of nucleons with a centre of mass energy of around 50 MeV
[102].

Interferencein the quasi-free limit. In section 4.4 we mentioned that in the quasi-free limit the
interference term vanishes. In the quasi-free limit the knocked on target nucleon recoils as a free
particle. The recoil energy equals q2/2m,where q is the momentum transfer. Although we are not quite
in the quasi-free limit, the smoothness of the potential keeps the width of the wave function in
momentum space small. Thus the quasi-free limit can be considered as a first-order approach, whose
corrections have to be calculated. The disappearance of the interference term is caused by different
scattering sequences leading to distinguishable final states. Thus the scattering sequence can be
determined by measuring the momenta of all nucleons which are involved in the collisions, and there
are no indistinguishable alternatives which could interfere. In this section we will substantiate this
finding. Wereduce this problem to its easiest version: the scattering of a beam particle at two scattering
centres which are located at R /2 and —RI2, respectively. Wetake the simplification that the range of
the potential is small compared to the mean free path, so that the width of the coordinate and
momentum distribution of the scattering centres can be neglected. This is true for a wide range of
nuclear reactions. It allows us to approximate the propagator of the projectile between the subsequent
scatteringsin a way which avoidsthe otherwisenecessaryintegrationsover angles.As we haveseen,
there are two possible scattering sequences. Either the beamparticle scattersfirst with particle 1
(describedby the transitionoperatorT

1) andthenwith particle2 (describedby T2), or vice versa.The
amplitudefor theseprocessesaredenotedby A12 and A,1,

A11 = f (K~PIT~IK’P~)G~(K’P;I TJIKIPJ) d
3K’. (4.121)

K
1, K’ and K~describethe momenta of the beam particles before, in between and at the end of the two

collisions, respectively, and P1 and P are the initial and final momenta of particle i. G~is the
propagator of the beam particle between the collisions,

G~=K~+P~—P~—K’
2+is (4.122)
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In order to make use of the above-mentioned approximations we Fourier transform A~1,

A21 = I d
3r” d3r’ f

2(~’)g(~’— r’)f1(r’), (4.123)

with

ffr~)= fe (KfP2IT2IKP2)d
3K’,

(2IT)
(4.124)

f
1(r’) = 3/2 f e (K”P1 TIIKIP1) d

3K”,
(2ir)

iKIr’—r”I
g(r’—r”)=—~—1’’.”I (4.125)

Wedenote the range of the potential by a. f
2 (r”) and f1 (r’) are only different from zero in a region of

radius a around R /2 and —R/2, respectively. If a is small compared to R, we can replace Ir’ — r”I in the
denominator by R and approximate

KIr’_r”Isos ““I (r’ —~‘)(r’—i”)~ ~R.(r’_,1’)eeK2r(r’ ~ (4.126)

Performing the integration over r” and r’ we obtain

A2,= _4;m (KfP~ITIK2lP2)(K2lP~ITIK~Pl). (4.127)

Thus we have replaced the propagator

K~+ P~- + K’
2 + - 4~m ~(K’ — ~ + P~- P~RIR) - 4~m 6(K’ - K

21).
(4.128)

Particles which do not have about this momentum after the first scattering would miss scattering centre
2 and hence A21 would be zero. Thus this result is as expected by intuition. For A12 we can proceed in
the same way, but of course we have to replace P1 by P2 and R by —R in eq. (4.128). In this case we
denote the momentum of the beam particle between the collisions as K12.

In our normalization the differential cross section is given by

do’/dIl = [(2ir)
4/vo]1A

12+ A21J
2p(E). (4.129)

p(E) is the density of final states for a given energy E and v
01(2ir)

3 is the incoming flux. For evaluation
of the cross section we have to take the transition matrix on the momentum shell,

(KlITImn)=6(K+l—m—n)(KlITImn). (4.130)
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The square of the delta function which appears when evaluating eq. (4.129) is treated in the standard
way,

(~(m—n))2=~(0)~(m—n)1 fem°’~d3R~(m_n)= V 6(m—n)=6(m—n). (4.131)
(2ir) (2IT)

The last relation is due to our normalization.
Webegin with the calculation of the cross section for the direct terms 1A

121

2 and 1A

211

2,

d4 (4I~m)2 I(K
12P~f1IK1P1)V (21T) I(P~KtI~2IKi2P2)I2p(E)

= f(K1,P1~K12,P~)I
2( ~ ~ (4.132)

V
0

f is the scatteringamplitude for elasticscatteringand p(E) is given by

p(E) = 2m~(P~+ K~+ P~— P~
2— K~— P2)~(P

1+ K1 — K1, — P)

x ~(P2+K12—K1—P~)d
3P~d3PK~dK~

= 2mö(P~+ K~
2— K~— P~

2)~(K
12+ P2 — K~— P~)K~dKf d

3P~. (4.133)

Thusp(E) is the phase space for the last two-body collision for a given initial momentum K
12.

Finally we obtain for the quasi-free cross section, with Vf asrelativevelocity betweenthe partnersin
the second collision,

00F — do- ~ do- ~ ~ Vf 4 134
dli dl2~1)Q~ 2)[,R2~

which is the expected result. ~ denotes the scattering angle in the first collision, which directs the beam
particle to the second scattering centre, and t~2is the scattering angle in the second collision in order to
be finally observed in dll. The calculation of the term IA12 2 is completely analogous.

Nowwe proceed to the interference term. Performing the same steps as before we obtain

(A!2A~l)OF = ~(P1+ K~— K12 — P~)~(P2+ K12 — P~— K1)8(P2 + K~— K21 — P~)

x ~(P2+K21—P~—Kf)ITlT2I
2(m4IT2)2/R2. (4.135)

This product of ö-functions can only be fulfilled if K
12 K21. Since K12 points from target particle 1 to

target particle 2, and thus in the opposite direction to K21, this requires K12 = K21 = 0, a condition under
which the collisions do not occur.

If we give up the quasi-free limit, but assume that the target particles are represented by wave
functions ~ which have a finite width in momentum space, we can investigate under which conditions
the interference term becomes finite. To investigate this point we assume that we are still in the range
of validity of the impulse approximation. Then we can continue to use free transition matrices and can
neglect the potential energy terms in the propagators.

In section 4.3 we have investigated how to describe the scattering into a specific final target state in
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the impulse approximation. Here we make use of these results and calculate the interference term for
the case that the target particles 1 and 2 are scattered into final target states ~ and ~ If the target
particles initially have the momenta P1 and P2, we obtain for A,1A~,

A21A~2= ~

x (K21P~IT~IKfP~)(P’~Iw1) d
3P d3P~d3P~d3P’ (4ir2m)21R2

= ço~(K
12 + P2 — K~)~2(K~+ P2 — K21)~(K~+ P1 — K12)

x ~1(P1+ K21 — K1)(4IT
2mIR)2x product of T matrix elements. (4.136)

Thus the final cross section reads as

~ =[(2rr)41 v
0R

2]f(P
1,K—*P1+K1—K12,K12)f(P2,K12---*P2+K12 —Kf,Kf)

xf*(P2,Ki_~.P2+Ki_K2l,K2t)f*(PI,K2l_~~Kf,Pl+K2l_Kf)

X çc’1(K1 + P1 — K12) q~(P1+ K21 — K~)ço2(K1, + P2 — K~)co~(K1+ P2 — K21)

x 2m5(P~+ P’; + K~— K~— 2m(E1 + E2))K~dKf. (4.137)

E1 and E2 are the final energies of the bound particles. The contribution of the interference term to the
cross section is determined by the products ~ and ~ If the states c’~and~2 aresufficiently sharp
in momentum space this product approaches zero, as we have seen. If they are broad, i.e., if vastly
different arguments of ~ and ~* do not cause the product to disappear, then the interference terms
cannot be neglected. Unfortunately, in order to estimate the size of these terms, one has to know the
target wave function.

Wecan conclude that in the quasi-free limit interference terms do not contribute to the cross section.
Since all available kinetic models are based on the assumption of quasi-free scattering, they do not offer
the possibility of estimating this contribution. A reliable calculation requires the nuclear wave function
as an input, and hence is far beyond the present status of kinetic theories. From a practical point of
view two arguments can be given in favour of neglecting the interference term in a first approach. First
of all, inside the nucleus potential gradients are presumably small, and hence the wave function is
narrow in momentum space. Hence the condition for neglecting the interferencetermscoincideswith
that for justifying the impulse approximation, which was seminal for deriving any kinetic theory.
Secondly, in addition to what we have discussed so far, there are strong kinematical correlations. In the
laboratory system the scattering angle of the projectile is smaller than ~1ab = 90°if the target nucleon is
at rest initially. Thus only one of the two possible sequences of scatterings is kinematically possible. The
Fermi motion of the nucleons also allows scattering into larger angles. The probability for this is small,
however, even for an isotropic cross section in the nucleon—nucleon centre of mass system. Thus one of
the sequences always has a much higher probability.

These rather qualitative arguments have not yet been extended to quantitative calculations. This will
certainly be one of the future tasks in the development of kinetic theories.

4.7. Attemptsto treatnucleonsas fermions

Nucleons are fermions. Hence a nucleus behaves quite differently from a system of distinguishable
particles, and a reliable description of any nuclear system requires us to take these effects into account.
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Nobody, however, has yet succeeded in solving a properly antisymmetrized n-body system in which the
constituents can scatter. This is not only a matter of principle. Due to the n-body correlations the time
evolution equations for a properly antisymmetrized n-body wave function contain n! terms as compared
to one term for a direct product ansatz. Thus presently, even if the time evolution equations were
formally known, an exact calculation would not be feasible. What one can hope, however, is to find a
systematic expansion in which higher order correlations are proven to be small. Such an expansion is
not available yet although in principle it is known how to proceed [106].

Up to now one had to mimic those fermionic effects which are believed to be essential for a
reasonable treatment of the dynamics. These include the Pauli blocking of scatterings into already
occupiedstates, as well as the description of the ground state, which is — for a given Hamiltonian — quite
different from that of distinguishable particles. This mimicry has quite a long history. Already in the
classical molecular dynamics approach Wilets et al. [57] tried to mimic the Pauli principle by a
momentumdependent potential which keeps two particles apart from each other in phase space if their
distance becomes smaller than h. In the meantime Dorso [103]showed that indeed a Fermi distribution
can be obtained as the ground state of a system of distinguishable particles which interact by a properly
chosen momentum dependent two-body interaction. Also the influence of the Pauli potential on the
time evolution of the quantum molecular dynamics approach has been investigated recently [104,136].
All these approaches have in commonthat they neglect all higher than two-body correlations and even
these are introduced ad hoc, i.e. not derived from antisymmetrization. In principle, on the level of
two-body correlations the effect of the antisymmetrization was believed to be expressible as an effective
potential.

This common belief that quantal effects can be mimicked, at least in principle, has recently been
questioned by Feldmeier [105]. He claimed that the dynamics of fermions cannot be described by
Hamilton’s equations. This would invalidate of course all the above mentioned approaches, as well as
all kinetic theories applied so far to heavy ion reactions. Wewill therefore present his arguments, and
discuss the generality of his approach. His claim is based on the applicationof avariational principle
originally suggested by Kerman and Koonin [106].This variational principle is applicable to a system
whose wave function tp depends on time only via parameters. For these systems a generalized Lagrange
density can be defined,

135~(r0(t),p0(t), r0(t), p0(t)) = j d r ~i(H —1 d/dt)~/i (4.138)

where ~i is a parametrized trial wave function. The true motion will be obtained if the trial wave
function has sufficient freedom to reproduce the true solution. The main purpose, however, is to apply
this principle to restricted basis states. The time evolution equations for the parameters can be obtained
by requiring ~‘to be stationary with respect to variations of I~”)and (c(’I between fixed end points t1 and
t2,

(-~- -~ — _~_)~=o, (4.139)
dt 3p0 ap0

(~- -4-—-~-)~=o. (4.140)

dt ar1, ar0

Theseequationsarequite similar to the Euler—Lagrangeequations,andprobablythis similarity led to
eq. (4.138) being called a Lagrange density, although it depends on (r0, p0, ,~, 1i0) and not on (r0, ‘a).
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It has been shown that for a number of nonfermionic systems the correct time evolution of the system
can be obtained by applying this variational principle.

Feldmeier now applied this method to two freely moving fermions. As trial wave function he chose
an antisymmetrized product of states of the form

e’1 ‘°iO~(r—r,
0) —p/0t/ 2m]________ —(r—r.0—p1111m) /4L(t)~(r, p10, r10) = [VIT/2L 2L(t)]

312 e , (4.141)with a constant width L(t) = L. With L(t) defined as L + itl2m, eq. (4.141) is a solution of the

Schrfldinger equation for a free particle. The time evolution equation of the parameters are the same
for a constant as well as for a time dependent width of the above-mentioned form as long as the total
wave function is a direct product of coherent states. This is not true, however, for antisymmetrized
coherent states. The calculation of ~ for the product of two antisymmetrized coherent states is quite
lengthy but straightforward, and we obtain finally (after separation of the free centre of mass motion)

— (3~ . r,,~.p
0 — [r0 p~+ 2Ep~—2B(r0— 4Bp0)

2/16L2]Y\
1

— ~ P0+ i—~ ~, (4.142)

Y = ~ (4 143

3 p
2 p2 + [(r —4Bp )2/16L2]Y

H=—+——+ ° ° ° . (4.144)
4Lm 4m m(1 - Y)

p
0 and r0 refer to (p10 — p20)12and r10 — r20, respectively. Feldmeier now proved that there exists no

Hamilton function H which satisfiesHamilton’s equations,i.e., for which j,i0 = —aHIar0 and ,~=

8p0, with ~ and 1i0 given by eq. (4.140) and (4.139), respectively.
One can, however, take a different approach to the fermionic motion. Starting from the time

evolution equation of the Wigner density for two free particles,

~ (4.145)

we obtain immediately the solutions

f(r1, r2, p1, p2, t)= exp[—(r1 —r10—p1tIm1)
2I2Ljexp[—(r

2—r20—p2tIm2)
212L]

x exp[—(p
1 — p10)

2~2L — (p
2 — p20)

2~2L]. (4.146)

As can be easily seen, f is the product of two Wigner transforms of time dependent coherent states,

tfr(r
1, p1~,r10) = C’ exp[—(r1 — r10 — p1t/m)

2/(4L + 2it/m) + ir
1 p10] . (4.147)

After a lengthy calculationweobtainfor the antisymmetrizedWignerdensityof the relativecoordinates
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f(r, p, T
0, p0, t) = C{exp[—(r — — pt4t)

2/4L — (p — p
0)

2 . 4L]

+ exp[—(r + r
0 — ptI~)

2/4L— (p + p
0)

2 . 4L]

— 2exp[— r2I4L — p2 4L] cos(2r. p
0 — 2p (r0 + p0tI,tt))}. (4.148)

Wehave separated out the free motion of the centre of mass. p andr refer to the relative coordinates
and ,a is the reduced mass. For discussing the time evolution of the fermionic system, we neglect the
time dependence of the width of the coherent states, which corresponds to a replacement of pt/~trby
p0tlji. This can always be done by choosing the width at t = 0 sufficiently large or the mass sufficiently
heavy. This yields

fa(T p, r0, p0, t) = C{exp[—(r — — p0t/p~)
2/4L — (p — p

0)
2 . 4L]

+ exp[—(r + r
0 + p0tlji)

2/4L — (p + p
0)

2.4L]

— 2exp[—r2I4L — p2 4L] cos(2r.p
0 — 2p• (r0 + p0tIp~))}. (4.149)

The time evolution of the Wigner density in coordinate and momentum space is obtained by
integration over the complementary variable, and is displayed for the one-dimensional case in fig. 6.
There we have chosen the initial condition r0 = 2(fm) and p0 = 0.1(1 /fm). Wedisplay in this figure the
direct term, the exchange term and the sum of both. For large distances (t = 0) we see two separate
Gaussians in coordinate space and the exchange term has little influence there. In momentum space,
however, the exchange term acts strongly and generates two Gaussians out of the one peak made by the

0.8~ E r—o PU T (1/FM) e. 06 - T0 (FM/c)

~ ~
R(FM) P(i/FM)

0.6 - 1=10 (FM/C) - ~i’ 0.8 ~ (FM/C) ~

R(FM) P(1/FM)

60-
- 1.20 (FM/C) t’ç DIRECT 60 - 1=20 (FM/c) ,-

~ EXCHANGE /

40 - / — \DIRECT+EXCI-IANGE 40 - /

20 : \, 20

0 - __‘N.tY”~~L_ o _.kN..I.,Z’’~”.L._ I—4 —2 0 2 4 —4 —2 0 2 4

R(FM) P(l/FM)

Fig. 6. Time evolutionof two approachingantisymmetnzedGaussianwavepacketsin coordinateandmomentumspace.we displaythedensityand
momentumspacedensityasa function of therelativecoordinatesat threetimes:(a) beforethewavepacketsoverlapin coordinatespace,(b) during
an intermediatestepand(c) at thepointof maximal overlap.In the lastrow thesum of direct and exchangetermsis multiplied by afactor 100 in
orderto be visible.
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direct term. At 10 fm/c the direct term also overlaps strongly in coordinate space. The exchange term
separates the peaks in coordinate space. The widths of both peaks have decreased, and the width in
momentum space has to compensate for this in order to fulfill the uncertainty relation. Finally, when
the direct terms merge into one Gaussian, both the direct and the exchange terms increase in magnitude
tremendously. The peaks generated by the exchange term are still quite separated, and the width of the
peaks in momentum space has increased once more.

Inspecting eq. (4.149), we see that the centroids of the Gaussians obey Hamilton’s equations with
H = p~I2m,obviously in contradiction to Feldmeier’s results.

How can this happen? The answer lies in the fact that both the antisymmetrized product of coherent
states of the form (4.141) with a constant width L, as well as its Wigner transform (4.149), are not
solutions of the free particle Schradinger equation. Equation (4.149) was obtained under the assump-
tion L(t) L(0). We also see that in the samelimit, Y, defined in (4.143), approaches zero. It is a
drawback of the variational approach,however,that a conditionfor justifying the replacementof Y by
zero cannot be given. One can conclude that, if the trial wave function does not have enough freedom
to reproduce the true solution, the variational principle can yield equations of motion for the
parameters which cannot be formulated as Hamilton’s equations of motion. If one allows sufficient
freedom in the parameter space, in this case by allowing also the width to be a function of time, eq.
(4.148), one has to recover Hamilton’s equations of motion. The non-Hamiltonian dynamics is hence a
result of a specific choice of the parameters, and is not due to the fermionic nature of the particles
under consideration. As shown, it may yield quite unrealistic equations of motion.

Comparing the time evolution of the approximate solution, eqs. (4.142), (4.139) and (4.140), with
that of the full solution, we observe some quite unpleasant features of the former. At large relative
distances, when the fermions have passed each other, the interference term approaches zero and we
observe two spreading Wigner densities. There is no information that the fermions have passed each
other. The momentum distribution is as it was before the encounter. The approximatesolution
accelerates the approaching fermions, followed by deceleration. There is a net momentumtransfer. At
finite impact parameters we observe in addition an unphysical transverse momentum transfer [105].
These unpleasant results question the usefulness of the variational principle for fermionic systems if one
does not know the full solution beforehand. Thus one has not really made a step forward since the
introduction of the effective two-body Pauli potentials. Although they are at least partially successful,
they have a lot of drawbacks: they also produce artificial transverse momentum transfer when two
fermions pass each other, they yield effective masses which do not agree with nuclear matter
calculations, they modify the equation of state, and, last but not least, they convert a nucleus into a
lattice if they really aim at a complete hindrance of overoccupationof phasespacecells; this is because
the motion of one nucleon always leads to an overoccupationif all other nucleonsdo not give way
collectively.

5. The model

In this chapterwe describethe details of the quantum molecular dynamics model (QMD) and its
numerical realization [11—19].We give an account of the testsperformedand show how different
potentialschangethe stability of the nuclei.

The typical time for a heavy ion reaction, as we will see, is around 200 fm/c. For this time
noninteractingnuclei haveto bestable.Otherwiseonecannotbe surethat the resultsreally reveal the
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physics andarenot just numericalartifacts. The stability, andhencethe successfulsimulationof heavy
ion collisions, dependson the solution of two critical problems:how the initial configurationis to be
madeand how one has to evolve the AT + A~systemin time. We start with the first topic.

5.1. Initialization

Whenwe comparedquantal(TDHF) andclassical(Vlasov) meanfield systems[63,107] we foundan
almost identical time evolution of the nucleardensity for beamenergieslarger than 25 MeV/n. This
means,first of all, a justification for terminatingthe II expansionof the potential term in the time
evolution equation(eq. 4.42). Nevertheless,this is surprising becausethe initializations are quite
different. The initial densityof the first calculationis given by a Slaterdeterminantwhereasthe Vlasov
equation starts out from point-like particlesrandomly distributed in a sphereof radius r = 1.12A’~3.
This correspondsto a normal nuclearmatterdensityof 0.17nucleons/fm3.Fromtheseresultswe have
concludedthat, at the energiesconsideredin this work, the detailedform of the wave functionshasonly
a minor influenceon the time evolution of the bulk propertiesof the system,especiallyon the single
particle observables,if they fulfill the minimal requirementslisted in section4.5. Theyaredetermined
by the single particledensityand ratherindependentof the way the single particle densityis generated
by the densitydistributions of the individual nucleons.We cannotexpect to learn from thesedifferent
theoriesmuchabout two-nucleoncorrelations.Therefore,as discussedin section4.5, onehas to start
with an educatedguessfor the n-body Wigner density.As we haveseenthere,the descriptionof the
nuclear wave function as a product of n coherentstates,

exp{i[p
10. (r — T10) — p,~tI2m]} 2

~i,(r,p0, r,0, t) = [VITI2L 2L(t)]
312 exp{—{r — r

10 — p,0t/m] /4L(t)} , (5.1)

allows one to satisfy most of the experimental and theoretical demands on single particle distributions
and two-body correlations.L(t) is defined as L + itl2m.

The Wignertransformsof the coherentstatesare Gaussiansin momentumandcoordinatespace.In
thecalculation we keepthe width constant,L(t) = L. Thenthe Wigner densityreads

______ —ip’r * 3f(r, p, t) = j e I~j~(~+ r1212, t)t/i~(r—r12/2, t) d r1,
(2IT)

= exp[—(r — r~0— p10tIm)
2/2L— (p — p~

0)
2. 2L], (5.2)

where L = 1.08fm2, corresponding to a root mean square radius of the nucleonsof 1.8fm. The Wigner
representation of our Gaussian wave packets obeys the uncertainty relation L~r~zXp~= h/2.

As discussedin section4.5 the n-bodyWignerdensityis the directproductof theWignerdensitiesof
n coherentstates.As we discussedtherewe keepthe width fixed.

The one-bodydensitiesin coordinateandin momentumspaceare

p(r, t) = ~(r— rj)f f(N)(ri , - r~,p
1, - . . , PN’ t) d

3p
1 . . . d

3p~d3r
1 . . . d

3rN

= ~ 3/2 e , (5.3)
(2ITL)
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andequivalently

N
I (N) 3 3 3 3g(p,t)= 5(P~Pi)j f (r

1,. . . ,TN,Pl,... PN,t)dpl dPNd r1”~dr~. (5.4)
i= 1

A random choice of the centres of the AT+ A~Gaussians in coordinate and momentum space,
where the momentumis chosenbetweenzero and the local Fermi momentum,is not sufficient to
maintain the stability of the nuclei for a sufficiently long time span. Due to fluctuations, a limited
sequenceof randomnumbersdoesnot createthe groundstateof a nucleusbut rathera metastable
excitedstate,which decaysby emissionof nucleons.The time span for which the nucleushas to be
stableimplies an upperlimit to the excitationenergywhich can be tolerated.

Eigenstatesof a Hamiltonian have to fulfill the uncertainty relation. The variance~ 1Xp~of two
neighbouringeigenfunctionsis separatedby h, i.e., each level fills a volume of h

3 in phasespace.If a
systemis in thegroundstate,the phasespaceis denselyfilled up to amaximum valuein coordinateand
momentumspace. Loosely speaking,thereis no hole in the phasespace. It is this property of the
ground statewhich we employ to initialize the nuclei.

First we determinethe position of the nucleonsin a sphereof the radius r = 1.12A1’3. We draw
random numbersbut reject those which would position the centresof two nucleonscloser than
rmjn = 1.5fm. The nextstepis to determinethe local potential U(r) generatedby all the othernucleons
at the centresof the Gaussians.The local Fermi momentumis determinedby the relationpF(rjO) =

~2mU(r
10),where U(r10) is the potentialenergyof particle i. Finally the momentaof all particlesare

chosenrandomlybetweenzero and the local Fermi momentum.We then reject all randomnumbers
which yield two particlescloserin phasespacethan (T10 — r1~)(p,0— p10)

2 = dmjn~Typically only 1 out
of 50000 initializations is acceptedunder the presentcriteria. The computertime requiredfor the
initialization is short comparedto the time neededfor the propagation.

The acceptedconfigurationsare quite stable: usually no nucleon escapesfrom a heavy nucleusin
300fm/c, as we will see in section5.5. This procedurealsoensuresthat the nucleihavethe properroot
meansquareradii in coordinateandmomentumspace.Light nucleiare somewhatlessstable. Oneor
two out of ten nuclei lose a nucleonin the requiredtime span.To avoid the initialization of unstable
nuclei the following procedurecan be applied: We select a sampleof nucleiwhich have the required
stability. We then chooserandomlytwo Euler anglesand rotate the positionsof all nucleonsof one
nucleusaroundits centreof mass.The rotatednucleiarethenboostedtowardseachotheralongthe old
z-axis. Each set of Eulerangles yields a completelydifferent reactionwithout changingthe stability.

5.2. Propagation in the effectivepotential

Successfully initialized nuclei are boosted towards each other with the proper centre of mass velocity
using relativistic kinematics. The centres of projectile and target move along Coulomb trajectories up to
a distance of 2 fm between the surface of projectile and target. From then on we employ a generalized
version of the Ritz variational principle [106] to determinethe further time evolution of the system.

For that purposewe define a generalizedLagrangefunction,

~t~f4H_i ~ ~ (,~ ~ +~. ~_)]~d3r
1 . . .d

3r~. (5.5)

r,
0 p,0

i/i is the direct product of n coherent state wave functions and H is the total n-body Hamiltonian
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H = ~ T, + V, with V, and T, being the potential and kinetic energy of particle i. The Lagrangefunction
can depend on all parameters p10,. . . , p,~, r10,. . . , r,,0 andthe time derivatives of these parameters.
For a direct productof coherentstates~‘ is given by

(5.6)

The time evolutionof thecentroidsp,0 and~ = r,0 + p,0t/m is given by the Euler—Lagrange equations,

d a~ a5~ p,0
—--——-——0---* T.0+VU. (5.7)
dt op,0 Op,0 ‘ m ‘°

(5.8)
dt Or,0 Or10

Here we havedefinedthe potential U, as (~ V~).Thus the Ritz variational principle yields the same
time evolution of the parameters as one would obtain if one moves the centroids of the wave function
(eq. 5.1) accordingto the classicalequationsof motion given by the Poissonbrackets,

T1+ U1), (5.9)

= {~10, ~ = {r1~,T1 + U1}. (5.10)

This is remarkablebecausedueto the fixed width the underlyingwave function is not a solutionof the
Schrödingerequationfor a free particle. These differential equationsare solved using an Eulerian
integrationroutine with a fixed timestep ~t,

p10(n+1)=p10(n)—~U1(n+1I2)~t, (5.11)

T~0(n+ 1/2) = T10(n — 1/2) + 2 2 1/2 ~ + VpL~(n— 1/2) ~t. (5.12)
[p,0(n)+m,]

Static interactions. Following the discussionof chapters2 and 4 we replacethe real part of the
transitionor the g-matrix by a local Skyrme-typeinteraction supplementedby a long rangeYukawa
interaction,which is necessaryto reproducethe surface,and an effective chargeCoulombinteraction,
where all particlesof projectile andtarget havea chargeZ~/A~and ZTIAT, respectively.

Our total static interaction reads

Vtot = V~c+ VYUk + Vc0u , (5.13)

wherethe different terms are

Vb0c = t16(r1 — T2) + t2~(r1— r2)6(r1 — r3), (5.14)
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VYUk = t3 e_~1_r2~~m/(Iri— T21/m) , (5.15)

with m = 1.5fm and t3 = —6.66MeV. These parametersgive the best preservationof the nuclear
surface,as we will seein section5.5.

The total energyH, of particle i is the sum of kinetic and potentialenergies,

~ (5.16)

T, refers to the kinetic energyof particle i and the potentialsare definedas

U~= f f1(p1, T~,t)f1(p1, i~,t)V~
2~(T

1— r1) d
3r

1 d
3r

1 d
3p

1 d
3p

1, (5.17)

U~= f f1(p1,T1, t)f1( p1,r~,t)fk(Pk’ Tk, t)V~
3~(r

1, r1, rk) d
3r

1 d
3r

1 d
3rk d3p

1 d
3p

1d
3pk. (5.18)

~ and V~are the two- andthree-bodypartsof the interactiondefinedin eq. (5.13).
Performing the integrationone seesimmediately that the local part of ~ U~can be written as

~ U~= t
1,~fr,~) (5.19)

where the interaction density j~(T10)is

p(T10)= 3/2 ~ e0_nio)

2/4L. (5.20)
(4ITL)

The interaction densityhastwice the width of the single particle density. We can approximatethe
three-body part of V as a functionof p(T

10),

u~= t2 ~ fv~d
3R

1 d
3P

1 d
3R

2 d
3P

2d
3R

3d
3P

3 f1(R1, P1, t)f1(R2,P2, t)fk(R3,P3, t)
j,k j,k;j,k~i;j�k

= 3/2 ~ exp{[(TkO — T~0)
2+ (rko — ~o)2 + (T.

0 — T10)
2]/6L}

(2iTL) . 3 j,k;j,k�i;j~°k

3/2 ~ exp{[(T
10 — r10)

2 + (T
10 — rko)]/

4L}

(2iTL) . 3 j,k;j,k~ei;j~ek

t
2(4’zrL)

3”’2

= (2ITL)3~°’~~2(v+ 1)3/2 ~ (r
10) , (5.21)

with ii = 2. In spin saturatednuclear matter the three-bodyinteraction can either be viewed as a
genuine three-body interaction or as the density dependenceof the two-body interaction due to the
hard core, since we find

t2~(r1— T2)5(T1 — r3) = ~t2ô(T1 — r2)p((T1 + T2)/2) . (5.22)
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Thereforethis effective three-bodyterm is not in disagreementwith the calculationby Kümmel [44],
who found a very small genuinethree-bodycontributionto the binding energy.

The Yukawapart of the potentialenergyis given by

L/m
2

~ = ~ ~ {enuilm[1 — ~(VLIm — r
11/2\[L)] — enuj/m[1 — ~i(\[LIm + r11/2V

1)]),m
(5.23)

where cP(x) is the error function and r,1 is the distancebetweenthe centresof the ith and the jth
particle.

Next we haveto determinethe parameterst1 andt2. We start from the observationthat in nuclear
matter,wherethe densityis constant,the interactiondensitycoincideswith the single particledensity,
andU~,aswell as U~k,is directly proportionalto pip0. The three-bodypart U’

3~of the interactionis
proportional to (p/p

0)
2. If we adopt for U~3~the approximation (5.21) we can directly relate our

parametersto nuclearmatter properties.In nuclearmatterour potentialhasthe form

= a(pIp
0) + f3(pIp0)

2. (5.24)

This potentialhastwo free parameters,whichcan be fixed by the requirementthat at normalnuclear
matterdensity the averagingbinding energyis —15.75MeV andthe total energyhasaminimumat p

0.
The adjustmentof the two parametersfixes the compressibilityas well. In order to investigatethe
influenceof differentcompressibilitiesone can generalizethe potential to

UIOC = a(pIp0)+ f3(p/p0)
1. (5.25)

We now havean additionalthird parameter,which allows us to fix the compressibilityindependentlyof
the other quantities.This generalizationcan be translatedbackto the nucleon—nucleonpotential in a
uniqueway by identifying v in eq. (5.21) with ‘y. By varying thesethreeparameterswe can investigate
how different compressibilities, i.e. different equations of state (EOS), influence the observables.

The parametera containscontributions from the local two-body potential as well as from the
Yukawapotential. In nuclearmatterthereis no differencebetweenlocal andnonlocalpotentials.We
can alwaysexpandnonlocal interactionslike the Yukawainteraction,

—lr—rI/m

= t
3f d

3r d3r’ lr — r’l im p
1(r)p1(r’) = 4ITm

3t
3f d

3r p
1(r)p1(r) + O(V

2p)

= (4~L)312e~~°
0)

2/4L + O(V2p). (5.26)

Thus in nuclearmatter any combinationof t
1, t3 and m is equivalentas long as we keep

a=t1 —4’rrm
3t

3 (5.27)

constant.This is not the casewith finite nuclei. It turns out that (5.16) in the approximation (5.21) with
the valuesfor t1 and t2 obtainedfor the desirednuclearmatterpropertiesgives aboutthe right binding
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energyfor finite nucleialso.Consequently,if we wantto employ aYukawapotentialwith parameterst3
andm we calculateits contributionto the potentialenergyof particlei. This energyis thensubtracted
from the local two-body term by changingthe coefficient t1 to ti,. It is definedby the relation

t11p(T10) = t1,6’(r10) — E U~’~. (5.28)

Thusthe total potentialenergyremainsconstantindependentof the parametersof the Yukawatermwe
choose.The forceswhich determinethe timeevolution, however,dependstrongly on the choiceof the
parameters.

For the actualpropagation,as we would like to stress,the explicit two- andthree-bodyinteractions
(eq. 5.13) are used and not the nuclear matter potentials (eq. 5.25). This is important since the
equivalenceof both is only true in nuclearmatter,not in finite nuclei.

The parametersof the staticpotentialemployedare displayedin table 1.

Momentumdependentinteractions. It has recentlybeenemphasized[13,32, 33,35] thatnonequilib-
rium effects can play an important role in a realistic treatmentof heavy ion collisions. The most
pronouncedeffect can be expectedfrom the momentumdependenceof the nuclearinteraction,which
leadsto an additional repulsion[53] betweenthe nucleonswhen boostedas in heavy ion collisions.
However, as far as multifragmentationis concerned,the influence is small [18].

For the computationof momentumdependentinteractions(MDI), we parametrizethe momentum
dependenceof the real part of the opticalpotential in the following way [13]:

UMDI = t4 1n
2(t

5(p1— p2)
2 + 1) 6(T

1 — r2) , (5.29)

with the parameterst4 = 1.57MeV, t5 = 5 X i0~MeV
2. This term is substitutedfor the term propor-

tional to (p
1 — p2)

2 in the Skyrme interaction, which is in striking contrast with the data above
EIab � 150MeV/n. The parametrizationof the real part of the opticalpotential togetherwith the data
[53] is shown in fig. 7. The presentexpressionfor the MDI reproducesthe experimentaldata up to
energiesE 1 GeV/n.

In order to reproducethegroundstatepropertiesof nuclearmatterwith MDI onehasto readjustthe
parametersa, f3, y of eq. (5.25). In nuclearmatter at zero temperatureour potentialnow readsas
follows:

U a(pIp
0)+ f3(p/p0)~’ + 6 1n

2(s( p/p
0)

213 + 1) p/p
0, (5.30)

where the parametersare given in table 2. With theseparameterswe obtain for MDI the same
compressibilitiesK in the groundstateasfor thestaticpotentials(seetable1). Fromnowon we referto
the soft (hard)EOS plus MDI as SM (HM), respectively.

The equationof statefor all four setsof parametersdisplayedin tables1 and 2 is shownin fig. 8.

Table 1
Parametersof thestatic potentials

K (MeV) a (MeV) 13 (MeV) y EOS

200 —356 303 7/6 S
380 —124 70,5 2 H
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Fig. 7. Real partof theoptical potentialascomparedwith experimentaldata.The line is ourparametrization(eq. 5.29), thepointsareexperimental
valuesfrom ref. [53].

Table 2
Parametersof the momentumdependentpotentials

K (MeV) a (MeV) f3 (MeV) y iS (MeV) e EOS

200 —390 320 1.14 1.57 21.54 SM
380 —130 59 2.09 1.57 21.54 HM

160 I P I

H,HM
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100

80 S,SM/’
60

4
w ~.0

20

—20
I I I I I
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Q’Qo
Fig. 8. The equationsof statein our calculations.The density dependenceof the energyper particlein nuclearmatterat temperatureT = 0 is
displayedfor thefour different setsof parametersshownin tables I and 2.
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Note that all four equationsof stategive the samegroundstatebinding energy(E/A = —16MeV at
p = p0), but differ drasticallyfor higher densities.Herethe hardEOSleadsto muchmorecompression-
al energythanthe soft EOSat the samedensity.For infinite nuclearmatterat restthe inclusionof the
momentumdependentinteractionsdoesnot changethe compressionalenergy.We see no difference
betweenthe casesS and SM or betweenthe casesH andHM. This changesdrasticallyif oneconsiders
heavy ion collisions: the additional repulsiondue to the initial separationof projectile and target in
momentumspaceshifts the curvefor the SM andHM interactionsto higher energies.

5.3. Collisions

The scatteringof nucleonsin nuclearmatter in the low densityexpansionshould be describedin
termsof the Brucknerg-matrix (eq. 3.20),

g(E)=V+V E—e+ie g(E), (5.31)

wherethe PaulioperatorQ projectson unoccupiedstatesonly ande is the energyof the intermediate
state,e= p~/2m+ p~/2m+ U(p1) + U(p2). At high energiesthe influenceof the Pauli blocking is
smallandthe kinetic energyis largecomparedto the potential U. Thentheg-matrixbecomesidentical
to the transition matrix which describesthe scatteringbetweentwo free nucleons,and which we
discussedin the precedingchapter.We assumefor the time beingthat aboveEIab = 200MeV/n we can
neglectthe Pauli blocking of the intermediatestatesand include the Pauli blocking of the final state
only. Of courseit would behighly desirableto havetrue in-mediumcorrectedscatteringamplitudes.At
high energiestheseareonly availablefor an equilibratedenvironmentandamountto a 30% reduction
of the free cross section £Tfree [36,37]. Recently,however,also an increaseof the in-medium cross
sectioncomparedto the free onehasbeenput forward [38,39]. Thus presentlyit is hardto judgethe
direction of in-medium correctionsto the nucleon—nucleoncrosssectionon the basis of nuclearmatter
calculations.The influence of the Pauli blocking of the intermediatestatesin a highly nonthermal
environmentat the beginningof a heavy ion collision hasneverbeeninvestigatedin detail. From a
simple calculationof the blockedregion in momentumspaceone would estimatethat the size of the
effect wouldbe lessthan30%. For a detaileddiscussionof thesein-mediumeffectswe referthe reader
to ref. [17].

For the calculationspresentedin the next two chapterswe neglectthe blocking of the intermediate
states and the influence of the pion polarization and use the measuredfree elastic and inelastic
nucleon—nucleonscatteringcrosssection.Unfortunatelyit was recognizedonly recentlythat the widely
usedparametrizationof the nucleon—nucleoncrosssectionwhich is discussedin detailin appendixB of
ref. [89] is only a fit to the pp crosssectionandnot a weightedsum of the pp andpn crosssections.
Becausein the energyregimeof interestthe pn crosssectionis (about30%) largerthanthe pp cross
section,this parametrizationunderestimatesthe numberof collisions. We usethe comparisonbetween
calculationsemploying o~,and

0pp’ °pnto estimatethe influenceof changesin the crosssections.All
crosssectionswereparametrizedby Cugnon[66].The effectivecrosssection,however,is smallerdueto
the Pauli blocking of the final state.

Table 3 shows the combinationsof cross sectionsand equationsof state we employedfor the
calculationspresentedin the next two chapters.
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Table 3
Survey of cross sectionsand equationof states.Note that Pauli blocking in the final

state is alwaysapplied

Compressibility
(MeV) Velocity dependence Cross section Name Table

200 no o’~, S (SC) I
380 no ~ H (HC) 1
200 yes (—p) o-

1,~, SM 2
200 no o’~,o~, SF I
380 no o~,o’~,, HF I

For low energyreactions,below Elab = 100MeV/n, we employ an isotropic hard core crosssection
alreadyusedin BUU calculations[63,64] as well as a Brucknerg-matrixapproach.This topic will be
discussedin section5.5.

In section4.3 we havediscussedthe detailedform of the final stateof two scatteringnucleons.This
form, however, is too complicatedfor actual calculations. Insteadof calculating the final Wigner
densitiesfor a given impact parameter,which yields negativevaluesof the Wignerdensitiesin certain
phasespaceregions,we employ an impact parameteraveragedtransitionmatrix which yields only
positive values. Furthermorewe assumethat all particlescoming closer than r = \/~7~scatterwith
probability 1, whereasthosepassingat a largerdistancedo not scatter.This last conditionwas checked
quite extensivelyby Hartnack[102],who found that other possibleprescriptionsdo not influencethe
final observablesin a way not hiddenby statisticalfluctuations.

The scatteringangles of the single nucleon—nucleoncollisions are randomlychosenin such a way
that the distribution of the scatteringanglesof all collisions agreeswith the measuredor calculated
angulardistribution for elasticand inelastic collisions.

Inelastic collisions lead to the formationof deltaparticles,which can be reabsorbedby the inverse
reaction.We do not incorporatefree (s-wave)pionshere, unlike the VUU approach[64].

5.4. Pauli blocking

Whenevera collision occurs, we check the phasespacearound the final statesof the scattering
partners.For simplicity we assumethat eachnucleonoccupiesa spherein coordinateandmomentum
space. This trick yields the samePauli blocking ratio as an exact calculation of the overlap of the
Gaussians,but is muchlesstime consumingto calculate.We determinewhichfractionsP1 andP2 of the
final phasespacesfor eachof the two scatteringpartnersarealreadyoccupiedby othernucleons.The
collision is then blockedwith a probability

~block = 1 — [1— min(P1, 1)][1 — min(P2, 1)] , (5.32)

and, correspondingly,is allowed with probability (1 — ~block). Whenevera collision is blocked, we
replacethe momentaof the scatteringpartnersby the valuestheyhad prior to scattering.Careis taken
for nucleonswhich are closeto the surfaceof the many nucleonsystem,wherethe abovedescription
includes also portions of phase spacewhich are classically forbidden as a consequenceof energy
conservation.For a nucleusin its groundstate,whereall collisions should be blocked,we obtain an
averagedblocking probability (PbIOCk) = 0.96. This determinesthe low energylimit of our theory:
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aimingat no more than 25% artificial collisions, i.e. collisions which are due to an insufficient Pauli
blocking, we can only admit beamenergiesat which no morethan 84% of the collisions are blocked.
ThereforeElab= 20 MeV/n is at the moment the lower boundof the validity of our approach.

5.5. Numerical tests

Stability. Onebasicrequirementthatthe model hasto fulfill is the stability of nuclei on a timescale
comparable with the time span neededfor a nucleus—nucleuscollision. High energy collisions
(Elab > 500MeV/n) require less than 80 fm/c as far as single particle propertiesare concerned.
However, it turns out thatin order to investigatethe fragmentationprocessin heavyion collisions we
haveto follow the reactionfor a considerablylonger time. Unstablefragmentsareformedwhich have
an excitationenergynearthe particle emissionthresholdand hencethe time for particle emissionis
quite long, i.e. of the order of acompoundnucleuslifetime.

Figure 9 showshow a single nucleonmovesin the potentialgeneratedby all its fellow nucleonsin a
gold nucleus.For clarity we alsoshow a circle of the radiusof r = 1.3A”3. Onehasto keepin mind that
in the QMD approachthe surfaceis aconsequenceof the strengthof the mutual interactionsand it is
not automaticallya constantas a function of time. We see that the nucleonmoves quite a distance
during200fm/c. Wheneverit comesclose to the “surface” it is pulled backby the othernucleons.Thus
the nucleonsremainconfined in a sphere.

Figure10 showsthe time evolutionof therootmeansquareradiusof five nuclei rangingin massfrom
Li to Au.

In eachrow the time evolution of the radii of 12 differently initialized nuclei is displayed.For the
heavynucleiwe seeoscillationsaroundthe meanvalue, but no nucleonsareemitted.Light nucleiarea
little less stable. Oneor two of the nuclei emit one nucleonin the time spanof 200fm/ c becausethe
local densityapproximation is not very good for theselight nuclei. Nevertheless,we see that the
majority of the nuclei remainstable.As describedin section4.1 we can eliminatethe unstablelight
nuclei.

20 i I I I I

r 1 Time evolution of a single nucleonz if mj in the field of the other nucleons

10 - -

R -

.10 ~ -

R = 1.3 (igi)”~ [fm]

_201 lI.,III,,I I
-20 -10 0 10 20

x [fm]
Fig. 9. The trajectoryof a single nucleonin thefield of 196 othersis displayedfor atime spanof 200 fm/c. To visualize thesize of thesystemwe
show also a sphereof radiusr= 1.3 x i97hf~
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Fig. 10. Root meansquareradii of different nuclei as a function of Fig. 11. Binding energyper nucleonasa function of time for the 12
time. For eachnucleuswe displaythis radiusfor 12 differentinitializa- simulationsof the different nuclei displayedin fig. 10.
tions.

Figure11 displaysthebinding energypernucleonaveragedover all nucleonsfor the samesampleof
12 nuclei.

First of all we see that the binding energy fluctuatesarounda meanvalue. So we have energy
conservationon the average.However,the fluctuationsreach2 MeV/n, a largevaluecomparedto the
averagebinding energyof 8MeV/n. In order to appreciatethe size of the fluctuationsonehasto realize
that the potentialenergyis just the differencebetweenthe two largequantities,the attractivetwo-body
part(=~—350MeV atp = p0) andthe repulsivethree-bodypart (s~s300MeV at p = p0). Hencea 1 MeV/n
fluctuationmeansthat wedeterminethesepotentialsto an accuracyof one part in i0

3. Thelight nuclei
show morefluctuationsthan the heavierones.The many nucleonswhich haveto be initialized in the
caseof heavynucleigive a longerseriesof randomnumbers.This averagesout someof the fluctuations.
Thusenergyconservationis heremuchbetterthanin the BUU calculations,wherethe useof a grid for
the determinationof the potential energymakes energyconservationquite difficult. Employing a
fourth-orderRunge—Kuttamethodfor the time evolution the energyfluctuationscan be substantially
reduced;however, the CPU time thenincreasesby a factor of five.

The least boundconfigurationsin the casesof lithium and oxygen are those which emit particles
earliest(fig. 10). Discardingtheseinitial configurations,which have a low binding energy,allows a
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Fig. 12. Averagebinding energyof the nucleiasa functionof themassnumberA. The binding energyis obtainedby averagingthebindingenergy
for eachindividual simulationover thefirst 100 fm/c. Thenwe averageoverthe 12 simulations.The valuesarecomparedwith theWeizsäckermass
fonnulawithout symmetryenergy.

furtherreductionin the numberof unstablenuclei.This cut can be appliedwhenit is important to keep
light nuclei stablefor a long time.

In fig. 12 we showthe averagebinding energyper nuleonof our nuclei.Thesenumbersareaverage
valuesover the first 100fm/c andover all simulations.For low massesnot only the trendbut also the
absolutevalues are reproduced.At large massesthe binding energybecomesconstantand the nuclei
areoverboundby 1 MeV/n. We do not seea maximumin the bindingenergyin the region of iron as we
did not include the symmetrizationenergy.

More importantthan the reproductionof the root meansquareradius is the requirementthat the
nucleuskeepsits radial distribution. In fig. 13 we investigatethe radial distributionof a gold nucleusin
detail. We displaythe densityprofiles in timestepsof 30 fm/ c for two differentYukawapotentials:In
the upperfigure we see the distributionwith the Yukawa parameterschosenin our calculations.We
observethat the nuclearsurfaceis preservedfor almost300fm /c. To understandthe largefluctuations
in the interior, onehasto recall that therearevery few (aboutfour) nucleonsin this region.We will see
that thesefluctuationsaverageout as a function of time. In the lower figure with different Yukawa
parameters,weseethat the nuclearsurfaceis muchlesswell preserved,althoughthe rootmeansquare
radiusas well as the nuclearbinding energyare very close to thoseof the upper frame.

If we averagethe densityover the 12 nuclei and over the first 100fm/c we find a quite smooth
densitydistribution. It is displayedin fig. 14.

Our surfacethicknessis slightly too large as comparedto that extractedfrom electronscattering
experiments;however, the overall featuresare quite nicely reproduced.Due to the few nucleons
presentwe arenot able to avoid fluctuationsof thecentraldensity. In orderto makethe densityprofile
as accurateas possible we take care that between15 and 40 fm/c, when colliding nuclei reachtheir
maximaldensityandthe transversemomentumis built up, the centraldensityof asingle nucleusagrees
with the valuesobtainedin Hartree—Fockcalculations[108].In thesecalculationsthe centraldensityof
a static nucleusis around0.155nucleon/fm3andthus around10% lower thanthe centraldensitiesof
the BUU simulations.This is probably the reasonthat in BUU calculationsa higher maximalcentral
densityis obtainedcomparedwith QMD calculations.

g-matrixapproachversusisotropic crosssection. Oneof the shortcomingsof the BUU approachfor
low energyheavyion reactions,25 MeV/n < Elab<400MeV/n, is the lack of realisticcrosssections.At
high energiesthe replacementof the g-matrixwith the transitionmatrix is a reasonablechoice.At low
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Fig. 13. Radialdensitydistributionfor agold nucleusasafunction of Fig. 14. Radialdensitydistributionof the nuclei. We have averaged
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the Yukawaparametersappliedin thecalculations.The lower figure well asthe standarddeviation.
showsthis distribution for a different choiceof theseparametersin
orderto demonstratethedependenceof thesurfacefluctuationon the
Yukawa parameters.

energiesthe free cross section gets very large, but Pauli blocking in the intermediatestepsof the
Bethe—Goldstoneequationreducesthe observedcrosssection considerably.Due to the lack of any
calculationa 40 mb isotropiccrosssectionwas employedin the BUU calculations.Its size was inspired
by the hard core radiusof the nucleon—nucleonpotential but neverconfirmed by calculations.

Recentlya nonrelativisticg-matrix calculationbecameavailable[109]which could be employedto
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calculatethe requiredcrosssectionas a function of five differentparameters(the relativemomentumof
the collision partnersandthe Fermi seas,the densityof projectile andtarget at the point of collision
and the isospin). We obtain crosssectionswith a high anisotropy[110] which range between30 and
200mb.

Figue 15 showsa comparisonof the longitudinal andtransversemomentumtransfer,the numberof
emittednucleonsandthe numberof collisionsfor two differentcrosssections.The dotsarethe results
of an isotropic0eu = 40 mb, thecirclesthoseof a calculationwhereag-matrixcalculationwasemployed
to calculatethe in-mediumscatteringcrosssection.The resultsaredisplayedfor two different reactions,
84 MeV/n C + C and400MeV/n Nb + Nb. As far as observablesareconcernedthedifferencesbetween
the two crosssectionsareof the orderof 15%. Thusthesecalculationsconfirm recentresultsobtained
by Bertschet al. [111],who fitted the absolutevalueof an isotropiccrosssectionto experimental data
and found that u = 40 mb was a good choice. The only major differenceis the averagenumber of
collisions.This differencecan easilybe explained:nucleonswhichescapefrom the systemhavethe free
nucleon—nucleonscatteringcrosssection,which is very large if the scatteringpartnershavea small
relativemomentum.So mostof theseadditionalcollisions occurduring the laterstagesof the reaction
andhencedo not influencethe dynamicsof the reaction.

In is astonishingthat thesedifferent crosssectionsyield the samemomentumtransfer.However, a
closer inspectionshows that the key quantity for the dynamics,the averagemomentumtransferin a
nucleon—nucleoncollision, is very similar for both cross sections.So we observethat a large cross
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Fig. 15. Comparisonof global variables(numberof emittedparticles, final longitudinal and transversemomentumof all projectile-likefragments
and the numberof collisions) for two differentcalculations.The dots mark the resultsof a calculationusing an isotropic 40mbcrosssection,the
circlesare the result of acalculation whereag-matrix wasemployedto calculatethescatteringcross section.
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sectionwhich is moreforward peakedyields the sameresultas a smallermoreisotropiccrosssection.
The momentumtransferis almostcompleteonly in thecaseof Nb + Nb for the mostcentralcollisions,
b< 1.5 fm. We will discussthe longitudinal momentumtransferin moredetail in chapter7.

Comparisonwith one-bodytheories.How do the resultsof the n-body theory differ from thoseof
one-bodytheories?In fig. 16 we display the time evolution of the density profile of the reaction
84MeV/n C+ C (b 1 fm) for threedifferenttheories[16]:the quantumtime dependentHartree—Fock
(TDHF), the classical Vlasov equation and the QMD, in which we have blocked all collisions
artificially.

The TDHF andthe QMD calculationsaredisplayedin lines of constantdensities,wherethe density
changesfrom line to line by a factorof two. The asymmetrybetweenprojectileand targetin the QMD
calculation is due to the finite number of simulations (100). For the Vlasov calculation we have
projectedthe coordinatesof 100 simulationsonto the reactionplane.We observea striking similarity
between all three calculations. The longitudinal momentum transfers,as well as the momentum
transfersin the transversedirection,areverysimilar in all threeapproaches.Only the densitiesbetween
the two remnantsareslightly different. The TDHF calculationfinds, in the region aroundthe origin, a
densityof about p0/2

6 = p
0/

64. On this level the fluctuationsbecomeimportant,and furthermorewe
shouldnot expect agreementbetweenthesetheorieson the one-percentlevel.
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Fig. 16. Comparisonof the different mean field calculationsof thereaction84 MeV/n C + C (b = 1 fm) [16]. We display resultsfor thedensity
profile for the TDHF, the Vlasov and the QMD approach for four time steps. The TDHF and the QMD calculations are displayed in lines of
constantdensitywhich are separatedby afactorof 2. For the Vlasov calculation eachnucleon of 100simulationsis markedby a circle and the
coordinatesof all nucleonsare projectedonto the reactionplane.
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Let us recall the different initializationsof thesetheories.The TDHF calculationstartsout from a
Slaterdeterminant,which is a solutionof the staticHartree—Fockequation.The Vlasov equationstarts
out from randomly drawn positions inside a sphereof radius r = 1.12A”3 and random momenta
betweenzero and the local Fermi momentum.The QMD startsfrom a biasedchoiceof positionsand
momentaasexplainedin section4.1. Theseinitializationssharethe commonfeaturethat the densityin
the interior of the nucleusis almostconstant.Since the potentialsaremostsensitiveto the densityand
not as sensitive to the finer details, we can expect a similar time evolution for a common initial
configurationin all threeapproaches.The similarity of the resultsindicates that finer detailsof the
initial configuration,i.e. the detailedform of the wavefunctionof the nucleonsinsidethenucleus,areof
minor importancefor the time evolution of the systemcomparedto the averageinitial density,at the
energyconsidered.

The time evolutionchangescompletelyif weincludetwo-bodycollisions, as donein fig. 17. Here we
display the time evolution of BUU and QMD calculationsand, for comparison,that of the Vlasov
approach(a BUU calculation in which all collisions are blocked). We see a closesimilarity between
those calculationswhich include collisions, in contrastto the mean field calculation. The lack of
two-body collisions results in a strongly forward peaked angular distribution of the few emitted
nucleons(aboutoneper nucleus—nucleuscollision), whichis in sharpcontrastto the experimentaldata.
The collision term createsa mid-rapidity sourcewhich emits particlesalmost isotropically. There are
two remnantsleft which containon the averagehalf of the projectile andtarget nucleons.
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Fig. 17, Comparisonbetweentheone-body(BUU) andthen.body (QMD) theory and,for comparison,theclassicalmean field theoryfor the
reaction84 MeV/n C + C (b = 1 fm) [16].We display thedensityprofile for four timesteps. For eachtimestep100simulationsareplotted andeach
nucleonis markedby a squareor a circle. The coordinatesof all nucleonsareprojectedonto the reactionplane.
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A quantitativecomparisonbetween BUU and QMD is shown in fig. 18. Here a comparisonof
different characteristicobservables is displayed as a function of the impact parameter. We have
averagedover all target and projectile nucleonssince the definition of which particles haveto be
considered as emitted is different in both approaches and would otherwisegenerateuncertainties.The
linear momentumtransferin both approachesis very similar. Even in the most centralcollisions the
linear momentum transfer is far from being complete. At b = 1 fm we still observe a final momentum of
pflflah ~pH1ItIal/3 The final transverse momentum is also very similar at low impact parameters. At large
impactparametersthe differentsurfacesand the finite rangeof the potentialin the QMD ascompared
with the BUUyield a larger net attractive force. The descriptions used to determine the number of

emitted particles also yield a very similar result, which representsa later justification of the method
appliedin the BUU approach[63]. Only the numberof collisions differs betweenthe two approaches.
The additional collisions mostoccurbetweennucleonsin the projectileand targetremnantsduring the
later stagesof the interaction.For suchlight nuclei,with A 6, the prescriptionof the Pauli blocking is
not very satisfying. However,notethat theseadditionalcollisions do not lead to an artificial emissionof
nucleons from these light clusters, as can be seen from the number of emitted nucleons. Looking at the
observablesone can easily see that the additional collisions do not influence the dynamicsof the
reaction.

An even more extensive comparison between one-body BUU-type calculations and the QMD
approach was recently performed [112]at a much higher beam energy (800 MeV/n La + La). As can be
seenin fig. 19, all employed theories agree in their prediction of the differential cross section E d3ff/dp3
for protons.
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Fig. 18. Comparisonof some global variables obtainedin the one- Fig. 19. The differential cross section E d3o-/dp3 for the reaction
body (BUU) and the n-body(QMD) approach[16]. We display the 800MeV/n La+La obtainedin theone-bodyapproaches(BUU [32],
numberof emittedparticles, the averagefinal momentaof all target VUU [64], RVUU [114]) as comparedto the n-body (QMD) ap-
nucleonsandthe numberof collisionsfor two different calculations. proach[11]. We display theresultsof thefour differenttheories[112]

and comparethem with data of Hayashi et al. [113].
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In view of the vastly different inputs [112] this is an astonishingresult, which shows that single
particleobservablesare ratherrobustagainstthe changeof potentials,densityprofiles and scattering
prescriptions.Not only at this highenergybut alsoat 84 MeV/n is the agreementof the QMD approach
with the resultsof the one-bodyBUU theory andwith experimentvery good, as can be seenfrom fig.
20. Herethe doubledifferentialcrosssection do’idfl dE for protons is displayedand comparedwith
dataof ref. [115].At backwardanglesthe BUU calculationsuffersfrom the problemhow to determine
the target remnant.

We can conclude that the QMD approachreproducesthe observablesobtainedwith the BUU
approachquitewell. In addition,the meanfield versionproducesthesametimeevolutionasthe Vlasov
and TDHF calculations.The 40 mb isotropic cross sectionwas a good choice,and yields the same
results for the investigated observables as the much more refined, but also numerically more expensive,
g-matrixapproach.However,if onewantsto look into specific exit channelssuchas subthresholdpion
production,the g-matrixapproachshouldbe employed.Havingseenthat on the one-bodylevel QMD
agreeswith the one-bodytheory we can proceedandtakeadvantageof the n-bodynatureof the QMD
approach.

All calculations presentedhere with the exceptionof the reaction 1050MeV/n Ne+ Au were
performedwith the QMD version 102 [19]. For the Ne reactionan older QMD version (version 100)
was employed,which had a different initialization of the nuclei. The older initialization had a slightly
higher initial centraldensityandproducedaslightly largertransversemomentum.All otherobservables
agree in both versions.

6. Multifragmentation

Oneof the most challengingtasksfor an n-body theory in nuclearphysicsis the descriptionof the
multifragmentationof heavy nuclei. In emulsion experiments,up to seven medium or large mass
fragmentsA >4 of a gold nucleushavebeenfound. The descriptionof sucha processcertainlyexceeds
the limits of any one-bodytheory.
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In section 6.1 we review the basic experimental results as well as the phenomenologicaland
microscopic models which were used up to now to study multifragmentation. We then proceed in
section6.2 to a detailedcomparisonbetweenthe resultsof our approachand the experimentaldata.
The QMDapproach, which is a theory that follows the space—time evolution of the reaction, provides
much more information than experiments, which can only measure the momentum space distribution.
In section6.3 we take advantageof this fact andinvestigatein detail the multifragmentationreaction
and,in section6.4, the causeof fragmentformation. Whatwe can learnabout the nuclearequationof
state from the fragments is presented in section 6.5.

6.1. Experimental facts and review of the theories

The first multifragmentation events, or more precisely, medium mass clusters 5 < A ~ 30, were
observedin high energyproton inducedreactions[116].They werequite unexpectedanda straightfor-
wardphysical explanationof the productionmechanismwas not at hand. The fragmentsreceivedthe
name“deep spallationproducts”,but it hasneverbeenproven that theyareactuallythe remnantsof a
decay chain. The most prominent feature was the power law dependence of the inclusive mass yield
[cr(A) = AT1, a functional form which is expected for a system close to the transition between the
liquid and vapourphases[116,117].

The sameform of massyield curvewas also found in heavyion inducedreactions[118],wherethe
threshold for the production of the deep spallation products is much lower (Elab 25 MeV/n). The
similarity triggered the suggestion that the observed shape of the inclusive mass yield curve indeed
presents evidence for the occurrence of this phase transition in nuclear collisions [118,123]. This
conjectureraiseda lot of opposition.Firstly, the objection was made that it is quite improbable that the
system— independently of the impact parameter — exactly hits the critical point. Above and below the
critical point the mass yield falls exponentially and much more steeply as a function of A. The second
objection was that most of the observablescould be reconciledwith the assumptionof thermal
equilibrium, albeit, with vastly different temperatures.The slopeof the fragmentmomentumdistribu-
tion was Maxwellian but the slope parameter— which should be the temperature— dependson the
fragmentmass[116]andis of the orderof 15 MeV [116,119,120]. The isotopicdistribution,which was
measured with an admirable accuracy over seven orders of magnitude [121],revealed a temperature of
3 MeV [9, 122]. Finally, whereasthe fragmentsfrom proton induced reactionsshowedan isotropic
emissionpattern,thoseproducedin heavyion reactionscannotbe describedby a single thermalsource
[120].

Furthertheoreticalinvestigationshavedemonstratedthat the massyield curveis ratherinsensitiveto
the different reaction mechanismsproposed:statisticalor thermodynamicalmodelswithout Coulomb
interaction [123—125]or including it [126,127] describethe observedmass yield equally as well as
models in which the system does not come to a global [128] or at leastto a local equilibrium prior to
fragmentation. The latter class of phenomenological models contains approaches in which the fragmen-
tation is assumedto besimilar to the percolationon afinite lattice [129,130] or to the shatteringof glass
[131,1321. For details of these phenomenological models we refer to a recent review [9].

The first dynamical models treated the nucleus—nucleus collision as a two-step process. Firstly an
early compressionphasewhich leads to a global thermodynamicalequilibrium of the whole system,
which canbe describedcompletelyby two variables:a temperatureTand a density p. This servesasthe
initial conditionfor the subsequentexpansionphase,which is treatedmicroscopically,either by using
the TDHF [133]equationsor by applyingclassicalmoleculardynamics[731. The essentialresultof these
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calculationswas the observationthat fluctuationsof the phasespacedensityat the beginning of the
expansionarereflectedin the distributionof the observedclusters.

Cluster formation was first treatedin a modelwhich describedthe completetime evolution of the
reactionby applying a potentialmodelto the final phasespacedistribution of a Boltzmann—Uehling—
Uhlenbeck(BUU) [63] calculation,or by applying a phasespacecoalescencemodel to the Vlasov—
Uehling—Uhlenbeck(VUU) [64] model. Both approachesaimedat a removalof their contributionto
the primordial proton spectraand treatedthe clusterformation not dynamically but as a final state
interaction.

The first attemptsto describethe dynamicsof the clusteringprocesswereperformedusingmodified
BUU approaches,althougha one-bodytheory certainly is not a proper tool for the investigationof
manybody correlations.Here the meanfield averagesout the correlationsandfluctuationsamongthe
nucleonsin onesingle nucleus.Consequently,on top of the actualone-bodycollision dynamicsonehas
to artificially include processeswhich generatefluctuations. However, becauseof the one-body
dynamics,one cannotfollow them in time. Due to this limitation thesecalculationsdid not produce
resultswhich could be comparedeitherwith experimentsor with true n-body theories.

Baueret al. [134]reducedthe nucleon—nucleoncrosssectionby a factor of 100. For compensation,
when a collision occurs198 nucleonsin the vicinity of the actualcollision partnersarescatteredaswell.
Betweencollisions particles move in the ensembleaveragedmean fields. This method has three
problems: first of all the result dependson how to select the 198 nucleonsout of the total number
(100AT+ 100A~)of nucleonspresentand how to determinethe partnersin the individual nucleon—
nucleoncollision. Secondly,the propagationin the meanfield washesout part of the fluctuationcaused
by the collisions,andthirdly thePauli blocking is not well defined,becausethe wholeneighbourhoodof
the collision partnersin phasespaceis changedat the sametime.

Das Gupta et al. [135] divide the reaction into two steps,an initial stage, where collisions are
dominant,and an expansion,wherethe meanfield providesthe clusteringof the nucleons.The initial
stageis describedby a high-energycascadecalculation. It generatesthe input for the subsequentmean
field calculation which describesthe expansion.If the clustersare madeup only by those nucleons
whose time evolution is initially dominatedby collisions (i.e. “fireball” nucleons),this methodwill be
reasonable.If the clustersarepredominantlyspectatornucleons,this methodwill fail, becausethe first
stageof the time evolutionof the spectatornucleonsis mostlygovernedby the meanfield. As we will
see,we find that clusterspredominantlycontain spectatornucleons.

RecentlyBeauvaiset al. [136]developedan approachsimilar to QMD, which is basedon the local
densityapproachto the potential.They determinethe potentialat the centreof a Gaussiandistribution
of nucleonsby calculatingthe local densitycausedby the othernucleonsat that point. This approachis
also a true n-body theory.

6.2. Confrontationof the modelwith data

Although the fragmentationof heavynuclei is a well establishedphenomenon,thereareonly three
publishedexperimentsknownto us in which morethanjustthe inclusivemassyield of the fragmenta-
tion productswas measured.

(1) The reaction Ne+ Au at several beamenergiesby Warwick et al. [120], where the triple
differential crosssection d3cr/dEdf? dZ, the associatedmultiplicity of fast particlesand correlations
betweenjets of light fragmentsandthe targetrapidity fragmentweremeasured.In this way the strong
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azimuthal (anti-)correlation,which was predictedby hydrodynamical[125]models(“bounceoff’) was
observed [120].

(2) The reactionAu + emulsion at 1 GeV/n by WaddingtonandFreier [137],whereall fragmentsof
the gold nucleuswere recordedby each individual reaction. The primary goalof this experimentwas
the searchfor anomalons.The results,as far as theywereof interestfor the multifragmentationof the
Au nucleus,were recently analyzed[138].

(3) The reaction Au + Au at 200MeV by Kampertet al. [6], wherethe fragmentmultiplicity, the
associated multiplicity of fast particles and the fragment flow were recorded.

Calculationof the triple differential crosssection d3o’-IdE dQ dZ in the QMD approachis beyond
the feasibility of presentdaycomputers.We thereforehaveto restrictourselvesto meanvaluesandto
the angulardistribution du/dul= ~ J dE d3o’idE d,I1 dZ.

We investigatedonehighly asymmetricreaction,wherethe participantspectatormodel [9] hasgiven
a quite accuratedescriptionof the single particledistribution, as well as a symmetricsystem,wherefor
centralcollisions this picturecannothold. The reactionswe havechosenare Ne(1050MeV/n) + Au and
Au(200 MeV/n) + Au. We performedcalculationsat five differentimpactparameters(b = 1, 3, 5, 7 and
10 fm). Larger impact parametersdo not producea significant amount of fragmentsin the most
interestingrange 5 � A ~ 30. For the two most central impact parameterswe have calculated360
events,whereasfor the larger impact parameterswe restrictedourselvesto 180 simulations. One
simulationrequiresaround1 minute CPUtime on a Cray 1 computerfor thefirst and5 minutesfor the
secondreaction.

—21
The reactlonswere followed for 300fm/c (1 x 10 s) for Ne + Au and200fm/c for Au + Au. The

latter reactionis moreviolent andthereforethe final distributionis obtainedin ashortertime. Anyway,
this is a very longtime as comparedto the time it takesthe neonprojectileto crossthe target (20fm/c)
andevenlonger thanwas requiredfor simulating reactionsat 25 MeV/n [63]. As wewill see,the mass
distributioncontinuouslychangesup to this time as a consequenceof thelong decaytime of moderately
excitedheavyclusters.

Nucleonsareconsideredto be part of a clusterif in the endat leastoneothernucleonis closerthan
rmjn = 3 fm. No cuts in momentumspaceare applied. They are not necessary,becauseafter 200 and
300fm/c, respectively,nucleonswith largerelativemomentaareno longer closetogetherin coordinate
space.In addition the Coulombforce helpsto separatethe clusters.

The clusterdistribution is not very sensitiveto the valuechosenfor rmjn. This can be seenfrom table
4, which showsthe exponentr of the massyield o-(A) = AT for different rmjn and different fragment
massbins for the reactionNe(1050MeV/n) + Au.

We start with a survey of both reactions.In fig. 21 we presentthe time evolution of the reactton
Ne+ Au in the reactionplanefor threedifferent times:0, 80,300 fm/c. The arrowsareproportionalto
the momentaof the nucleons.

At 80 fm/c we observeparticles escapingfrom the interactionzonewith almost the beamvelocity

Table 4
r parametersfor different rmjn and for different

fragmentmass binsA

A ç
1~= 2 fm rmn = 3 fm rmjn = 4 fm

1—10 2.86 3.07 2.99
1—20 2.68 2.82 2.83
1—50 2.33 2.44 2.50
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Fig. 21. Surveyof thereactionNe + Au, 1050MeV/n, b = 3 fm. We display thetime evolution of thedensitydistributionin thereactionplanefor
threedifferent times.

although they havemovedthroughthe target. Behindthemsmall clustersand lessenergeticnucleons
are seen.Only a few particlesare emitted in the backwarddirection.At 300fm/c we observesome
clusterswhich movewith roughly the targetvelocity. They areseparatedfrom eachotherquite clearly.
In the forward hemispherewe predominantlyseenucleonsandvery few light clusters.

In fig. 22 we presentthe sameplot (but without arrows) for the time evolution of the symmetric
Au + Au reactionfor various impactparametersat varioustime steps.

At centralcollisions no heavycluster survives.We seequite a numberof small clusters5 < A <30
which move isotropically out of the reactionzone.The single nucleonsalso showan almost isotropic
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Fig. 22. Surveyof thereactionAu + Au, 200MeV/n, for four different impact parameters(1, 3, 7, 11 fm). We display the timeevolution of the
density distribution in the reactionplane for five different times.

distribution. The semicentralcollision (b = 3 fm) still displays someintermediatemassfragments,but
their emissionpatternis moreelliptic thanisotropic. The large axishasan angleof 45°with respectto
the beamaxis. This is a sign of transverseflow, aswe will discusslater. The moreperipheralreactions
showremnantsof projectileandtarget,which areexcitedandemit particlesin their restsystem.These
are typical peripheral reactions.At b =7 fm we still find a small mid-rapidity source,which has
disappearedat b = 11 fm.

Figure 23 displays the total massyield of the reactionNe(1050MeV/n) + Au as comparedto the
experimentaldata [120].Both the theoreticalandthe experimentalmassyield fall off with apower law
A~, correspondingto astraight line in our doublelogarithmicplot. For the valueof the constantr we
obtain T = 2.44 (comparetable 4). The form of the massyield, as well as the valueof T (2< T < 3), is
consistentwith the assumptionthat the massyield is asignal of a liquid—gasphasetransition[117].The
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Fig. 23. The inclusive mass yield ascomparedto the data of ref. Fig. 24. (Top) Angulardistributionand(bottom) averagevelocity as
[120]. a function of the emission angle of medium mass fragments.The

calculation is comparedwith dataof ref. [120].

calculatedslope of the mass yield curve is close to the slope of the experimentaldata but we
underpredictthe data by a factor of roughly two to three. The discrepancyis larger at low masses,
which areextractedfrom theexperimentala(Z) undertheassumptiono-(A) = 0.5o(Z = A /2), than for
thosefragmentswhosemasseswere directly measured.

This discrepancyis a consequenceof the instability of clustersexcitedwith an energyaroundthe
particleemissionthreshold.Whereas— as we haveseen— the clustersare stablein their groundstate,
the higher the excitation, the less correct is our description.Due to an insufficient treatmentof the
bindingenergy,weakly boundnucleonsescapefrom theexcitedfragmentsandhencelower theaverage
cluster mass. Furthermore,the level density of excited nuclei may be different in our approach
comparedto the knownvalue.Our mediummassfragmentsemit oneor two nucleonsmore thanreal
nuclei with thesameexcitationenergy.Only apartial counteractionagainstthis systematicproblemis
possible.In orderto cure this problemcompletelya quantumdescriptionof the final clustersis needed.

The mass yield has a minimum aroundA = 50 and increasesagainfor higher masses.In this
particularexperimentthe massyield of heavyfragmentswas not measured.Experimentswith similar
projectile—targetcombinationsshowa U shapefor the massyield [9],which hasa minimum around
A = AT’

3 (in the absenceof fission).
The upper frameof fig. 24 displays the angular distribution and the lower frame the average

fragmentvelocity as a function of the emissionangle for the reactionNe(1050MeV/n) + Au in the
laboratorysystem.

Experimentallywe seea decreasein the massyield by a factor of two from forwardto backward
angles. This is nicely reproducedby the calculation. As we will see in detail later, this strong
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dependencerulesout an isotropicdistributionof fragmentsin the centreof massframe. In fig. 24 we
observeonly a weak dependenceof the averagefragmentvelocity on the emissionangle.The average
velocity is a little largerthanhalf the centreof massvelocity. Hence the linearmomentumtransferto
the emitting systemis far from complete.To determinethe experimentalaveragevelocity we usedthe
fit function (2.3) andthe parametersof table I of ref. [132].Also for the averagefragmentvelocitieswe
obtain agreementwith experiment.

The upperframein fig. 25 displaysthe numberof fast chargedparticlesassociatedwith afragmentof
a given size for the reactionNe(1050MeV/n) + Au. We applied the experimentalcuts (a minimal
energyof 25 MeV/n of the fastparticles)to our calculation.For mediummassfragmentsour associated
multiplicity is largerthan seenexperimentally.We should also mentionthat the experimentalvalue is
an extrapolation,becausethe detectorscovereda small part of the total solid angle only. The lower
frame in fig. 25 showsthe averagevelocity of fragmentsas a function of their size in the laboratory
system.We see avery high velocity for low massparticles,which graduallydecreasesfor heavierones.
Beyondmass90 the clustersmovebackwardin the laboratorysystem!The averagemomentumtransfer
to heavy fragmentsis much smaller thanthat to the lighter fragments,which clearly showsthat the
fragmentsof differentmassesdo not comefrom a single moving source.

Figure26 displaysthe multiplicity distributionof heavyclustersZ � 3. The resultsof our calculation
for (b ~ 3 fm) are comparedwith data of refs. [137,1381 for Au(1 GeV/n)+ emulsion. As already
mentioned,in this experimentthe chargesof all Au fragmentswere recordedon an event-by-event
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Fig. 25. (Top) Average numberof fast particles associatedwith a Fig. 26. Multiplicity distribution of heavy clusters 3 � Z� 20. The
heavyfragmentand (bottom) the averagefragmentvelocity in the resultsof our calculation (b � 3 fm) are comparedwith data of refs.
laboratorysystem,asa functionof the fragmentmass. The data are [137,138]. To allowa comparisonwe acceptedonly thoseexperimen-
from ref. [120]. tal eventsin which no clusterZ� 42 wasobservedandthenumberof

target trackswas between5 and 8. By thesecutswe want to discard
peripheralcollisions and thosewith theheavy emulsionconstituents.
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basis.To allow for a comparison,we haveselectedonly thoseexperimentaleventsin which no cluster
Z � 42 was observedandthe numberof targettracks was between5 and 8. By thesecutswe want to
discardperipheralcollisions and thosewith the heavyemulsionconstituents.Again we seereasonable
agreementwith experiment,which indicatesthat on the averageseveralmediummassfragmentsare
produced.

Not only is the impactparameteraveragedmultiplicity of mediummassclusterswell reproducedin
our calculation,but also finer detailslike the impactparameterdependenceof multiplicity. Experimen-
tally the impact parametercannot be measured.Hence the comparisonis done by classifying the
experimentaland the theoreticaleventsby the associatedproton multiplicity. In fig. 27 we compare
calculationand experiment[6] for a given multiplicity bin.

Our calculationat b = 3 fm correspondsto the multiplicity bin 4. The multiplicity distributionfor that
bin was not available. Thereforewe comparewith the two neighbouringbins. In the Plastic Ball
experiment only the Plastic Mall, which has a threshold of 35 MeV/n, can detect medium mass
fragmentsup to Z = 10. To allow for comparisonwe applied the Plastic Ball filter SIMDAT [139],
which reducesthe multiplicity by morethana factorof two. First of all we observea quite high average
multiplicity in central collisions. In thesecollisions eachof the gold nuclei is broken into about five
mediummassfragments,of which 2.4are detected.So wecan really talk aboutmultifragmentation.No
heavyfragmentssurvive in thesecollisions.

Figure 28 displays the averagetransversemomentumin the reactionplane as a function of the
rapidity of the particlesin the reactionAu(200 MeV/n) + Au. The filter SIMDAT [139]wasappliedto
simulate the experimentalacceptance.We observea strongcorrelation:the larger the rapidity, the
larger the averagetransversemomentum.This collectiveflow of matterwill be discussedlater. Again
we find good agreementbetweentheory and experimentfor all massbins.

Finally we comparethe angulardistributionof clustersasseenin the PlasticBall experimentwith our
calculation. In fig. 29 we display dN/d cos0 as a function of the laboratoryangle 0 for two types of
clusters,2 s A ~ 4 and 5 ~ A. We observereasonableagreementwith experimentfor both species.The
dip around10°is due to theexperimentalacceptancehole. Thefilter, however,doesnot cut down the
cross section as much here. The theoretical angular distribution is forward peaked even in the
nucleus—nucleuscentre of mass system. Its agreementwith experimentpresentsevidencethat the
fragmentationis not a thermalprocessbut yields a quite anisotropicangulardistribution.
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Fig. 27. Multiplicity distributionof medium mass fragments5 ~ A � 20 as a function of theassociatedmultiplicity of protons. We compareour
calculationfor the multiplicity bin 4 with dataof ref. [6].
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For the sake of comparisonwe also display the unfiltered angular distribution for the heavier
fragments.We seethat the filter doesnot only cut down thecrosssectiondue to energyandanglecuts
but also changesthe shapeof the angular distribution quite seriously. Thus, before one can learn
somethingfrom theangulardistributiona very accurateknowledgeof theapparatusand theacceptance
is necessary.

6.3. Predictionsand results of the calculation

Massyield. We nowproceedandtake advantageof the fact thatin simulationsmoreinformationis
available than in an experiment. One additional piece of information is the impact parameter
dependenceof the observedquantities. In fig. 30 we display the massyield distributionfor our two
reactionsat different impactparameters.

We see a striking similarity betweenboth reactions,anda clear impactparameterdependence.The
massyield of the reactionAu + Au is almost identical to that of the Ne + Au reactionat a somewhat
higher impactparameter.Consideringthe differentbeamenergy,the vastly different energyavailable
in the nucleus—nucleuscentreof mass frame and the different geometry, this is a surprising result,
which confirms the insensitivityof the total mass yield on the reactionparameters.

At each impactparameterthe massyield of mediummassclustersis well describedby a power law;
the slope parameter,however, is vastly different. At the lowest impact parameterno heavy target
remnantssurvive.The gold nucleusis broken into manypieces,noneof them heavierthanA = 80. For
semicentralcollisions we observea plateaufor 45 < A <70. The most peripheralreactions(b = 7 fm)
are not violent enough to destroythe heavy nuclei completely. Here less than half of the projectile
volume overlapsgeometricallywith the targetin the caseof Ne andwe havehalf overlapin the caseof
Au. We observe a remnant of the gold nuleus aroundA = 140. There are no clusters with masses
30cA~90.

From theseobservationswe can immediatelydraw severalconclusions.
(a) The power law form of the inclusive mass yield is accidental. It does not reflect a phase

transition— which would require a massyield independentof the impact parameter— but is merely a
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Fig. 30. The massyield for four different impactparameters,b = 1, 3, 5, 7 fm, for the reactions1050 MeV/n Ne+ Au and 200MeV/n Au + Au.
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parametrizationof thesum of differentforms of massyields at differentimpactparameters.This will be
confirmed later when we investigatethe momentumspacedistribution of the fragments.

(b) The transition from the power law form to a flat and ultimately increasingmassyield at masses
around A = 45 reflects the different origin of the clusters. Fragmentslarger thanA = 45 are target
remnants.Theyare producdwhenthe collision is not violent enoughto breakup the targetcompletely.
Their creation is controlled by the impact parameter. Masses around A = 45 are producedin
semi-centralcollisions by deepspallation.The ultimate increaseof the massyield follows from the
increasingprobability of peripheralreactions.

(c) The yield ofthe heaviestclusterprovidesa tool to determinethe impactparameterofthe reaction.
According to the calculationthis method is superior in accuracyto the usual method to measurethe
total multiplicity of light particles.

Figure 31 displays the multiplicity distribution of fragments A > 4 for the four different impact
parametersin the reactionsNe + Au and Au + Au. For the Au + Au reactionwe also display the
multiplicity distribution which would be observed by the Plastic Ball set up.

As expected,the Au + Au reactionyields manymoreclustersof A > 4 thanthe Ne+ Au reaction.
We find up to 16 clustersin onesingle Au + Au collision! The averagevalues are9.0 (3.3),9.2 (2.6),
6.8 (1.7) and3.5 (2.2)for Au (Ne) + Au at b = 1, 3, 5, 7 fm, respectively.The minimumof the average
values in the caseof Ne is causedby the survival of projectile-like fragmentsat the very peripheral
reactions.
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Fig. 31. The multiplicity distributionof fragmentsheavierthan A = 4 for four different impactparameters.b = 1, 3, 5, 7 fm, for the reactions
1050 MeV/n Ne + Au and 200 MeV/n Au + Au.
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Anotherpoint of interestis how the reactionproceedsin time. Here our conjecturethat fragments
largerthanA = 45 arethe endproductof a decaychainandthat the othershaveadifferentorigin, can
be substantiated.This questionis addressedin fig. 32, wherewe displaythe numberof fragmentsas a
function of time for sevenmassintervals, againfor both reactionsin parallel.

In the caseof Ne+ Au we selectedb = 1 fm, for the Au + Au reaction b 3 fm. Already in the
discussionof fig. 30 we observedthat the massyield is very similar in both thesecases.We observethe
samesimilarity for the time evolution as well.

In the caseof Ne we see that the massyield distributionfor A > 50 stabilizesnot prior to 300fm/c
(1 x 1021 s), while for 2< A <30 the distributionis alreadystableat 150fm/c. In the caseof Au the
time is a little bit shorterfor both bins and weobservea stabledistributionat 200 fm/c. Nevertheless,
this is a very long time for a high energyheavy ion reactionandit is in the rangeof the lifetime of a
compoundnucleus.Let us first concentrateon the heavyclusters.At t = 50 fm/c theheavyclusterswith
amasslargerthan70 arenot stablebut decayby the subsequentemissionof nucleonsandlight clusters.
The decaychaincan be seenby the subsequentpopulationanddepopulationof the differentmassbins.
Finally, the end productsof the decay chain are mostly in the bin 31 < A <50. At larger impact
parameterswe find the decaychain endingat largermasses.So all masseslargerthanA 40 are end
productsof the decaychain. Along the evaporationchain the clustersemit neutronsandprotonsand
thereforetheir numberincreasesand saturatesnot prior to t = 300fm/c or 200 fm/c, respectively.
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Fig. 32. Time evolution of thefragmentnumberfor sevendifferent classesof fragmentsfor the reactionsNe + Au and Au + Au.
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The clustersin the range2 ~ A ~ 30 havea completelydifferenthistory. They areformedat a very
earlystageof thereactionandarenot fed by the decayingremnants,nor do theydecay.After 100fm/c
practicallyall of them areformed. Theyemergefrom thesurfaceregion of the combinedsystems,aswe
will see,and measurethe violence of the reaction,being producedmore copiously at small impact
parametersthan at large ones.

One hasto keepin mind that clustersare not countedbefore all of the cluster nucleonshavea
minimal distanceof 3 fm to all the other nucleons.This is much laterthan the formation time of the
clusters.Which nucleonsform a clusteris determinedvery earlyin the courseof the reaction(at about
t= 20 fm/c), as we will seelater.

In peripheralreactionswe seea differenttime structure.Heremediummassclustersareproducedin
a sequentialdecayof heavy clustersas well. However, in absolutenumbersthe medium massevents
producedin a sequentialdecayarerarecomparedto thoseproducedin centralcollisions.In fig. 33 we
show a peripheraleventfor Au(E = 200 MeV/n, b = 7 fm) + Au in moredetail. Fragmentswith A � 10
are depictedfrom t = 0 (bottom) to t = 200fm/c (top) in stepsof 10 fm/c.

Up to 50 fm/c there is one blob of matter in configuration spacewhich— for this large impact
parameter— is still separatedin momentumspaceinto a projectile-andatarget-likeresidue[for central
collisions (b ~ 3 fm) this is not the case;we thenobservealmost completestoppingof projectileand
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Fig. 33. Time evolution of a single peripheral event 200 MeV/n Au + Au, b = 7 fm. Only clusterswith massA>9 are displayed.
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target in the centreof mass frame]. After 50 fm/c the systembreaksup into thesetwo residues.
Between30 and80 fm / c single nucleonsand light fragments(A < 10) areemitted.Thena ratherstable
fragmentwith A 105 remainsin theprojectilerapidity regime.In the targetregimea secondbreakup
is observed,which yields two stable fragmentswith A 80 and 15. At large impact parameters
(b = 7 fm) the intermediatemassfragmentsaremostly producedin the binary break up of the heavy
residues.Recentlya similar conclusionwas reachedexperimentallyfor asymmetricsystems[1411.

Correlationsbetweeninitial andfinal state. As we haveseenthe impactparameterdependenceof the
massyield distributionrules out the conclusionthat theinclusivedatapresentevidencefor a liquid—gas
phasetransition. In thiscasethe massyield curvewouldhaveto be universalbecausethe systemalways
hasto cometo the critical temperature.

However,the questionremainsas to whetherequilibrium is reachedin the courseof the reaction.
Somefastprojectile nucleonsalwaysemergefrom the reactionzoneprior to equilibration.Hence the
energyavailable for thermalizationdoesnot correspondto the total centreof mass energyand may
dependon the impactparameter.Thedifferentslopesat different impactparametersdo not contradict
the assumption of complete equilibrium. The crucial test for the assumptionof completeglobal
thermalization is to check whether the system loses its memory of the initial configuration. If it
equilibrates,we would expectthat the final stateparticlesdo not carry any informationaboutthe initial
state,in particular abouttheir initial positions.

The completerecording of the positions and momentaof all particles during the courseof the
simulation allows us to addressthis questionin a direct way. We can investigatecorrelationsbetween
final and initial stateswhich one would expectfor a systemwhich is not completelyequilibrated.An
obviouscandidatefor such a correlationis the probability to find a nucleonfinally in a cluster as a
function of its initial position. Thosenucleonswhich are in the geometricaloverlapof projectileand
target supposedlyhavea large probability to suffer violent collisions. The large momentumtransfer
thensuppressesthe probability to find othernucleonswith small relativemomentawhichare neededto
form a cluster.We studythis correlationin fig. 34.
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Fig. 34. Correlationbetweeninitial andfinal stateof thereaction1050 MeV/n Ne + Au, b = 3 fm. wedisplayherethefractionP(r) = N.(r) /i~N(r),
where N(r) denotes the number of nucleonswhichareinitially locatedat adistancer from theimpactpoint andendup finally in afragmentof class
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We distinguishthreedifferentclassesof fragmentsand investigatethe correlationbetweenthe initial
position of the nucleons and their probability to end up finally (at t = 300 fm/c) in a cluster. We
calculatethe distancer in the planeperpendicularto the beamdirection betweenthe initial positionof
the nucleonsand the impact point b and define the fraction

P(r) = N1(r)/~N1(r). (6.1)

N1(r) is the numberof nucleonswhichare initially locatedat r andfinally belongto a clusterof classi. If
therewere no correlations,this probability shouldbe independentof r. We seestrongcorrelationsfor
protonsand neutronsas well as for heavy clusters.Nucleonsin the overlapregion betweenprojectile
andtargethavea muchhigher probability to endup asindividual protonsandneutronsthanto be part
of a cluster. Henceclustersmainlyconsistof spectatormatter(thosepartsof projectileandtargetwhich
do not overlap). Since the fragmentsareexcitedwhenformed,theyhaveto emit neutronsandprotons.
Therefore,we observealsoprotonsand neutronswhichinitially were locatedquite far from the impact
point of the projectile. Medium massclusters,as we can see,areformed from nucleonsall over the
place without a significant preference.From the observedcorrelationswe can concludethat in the
courseof the interaction the systemdoes not reacha global equilibrium as assumedin a numberof
model calculations[126,127, 133, 731.

The correlationwhich we observecould be expectedon the basisof the participant—spectator[1421
model, in whichit is assumedthat the geometricallyoverlappingnucleonsr < RNe equilibrateandform
a fireball. They aresurroundedby cold spectatormatter,and thereis no communicationbetweenthe
two regions.This model limits the initial positionof nucleonswhich arefinally observedas protonsor
neutronsto r < RNe~whereas those nucleonswhich are finally containedin clustersare initially at
r> RNe~However, we do not find such a clear division, and in addition thesemodels also cannot
accountfor the disappearanceof the correlationfor the mediummassclusters.

Momentumspacedistribution. In principle the presenttheorycan predictthe triple differential cross
section d

3o-/dEdQ dA. However, due to computationalexpenditurewe restrict ourselvesto mean
values for the time being.

We start with the laboratory double differential cross section d2cr/dy dp
1, displayed in fig. 35, for

differentclassesof fragmentsandtwo different impact parametersfor the reactionNe+ Au. Ydenotes
herethe rapidity andp1 thetransversemomentumof theparticles.The contourlines areseparatedby a
factor of 2.

We see that light fragmentshave a highly anisotropicemissionpatternevenin centralcollisions.
Thereare many fast particles in the forward direction, which are not counterbalancedat backward
angles. These particles have a finite emission angle, whose origin will be investigated in the next
section. The emission pattern of medium mass clusters is, to 10%, not isotropic, as observed
experimentallyby Warwick et al. [120],whofound that the doubledifferential crosssectionof medium
massclusterscannotbe describedby a single thermalsourcewhich emitsfragmentsisotropically in its
rest system.Comparingd

3o-/d[l dE dZ at different laboratoryanglesone hastwo possibilitiesfor a
definition of the sourcevelocity: (a) either onerequiresthat the slopeof the energydistribution (i.e. the
“temperature”)doesnot dependon the emissionanglein the restsystem,or (b) oneassumesthat the
Coulombpeakappearsat the sameenergyin the restsystem.If therewere an isotropicemissionof a
single source,both methodswould coincide.The experimentshowsdifferencesbetweenboth methods.
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Fig. 35. Contourplotof thedoubledifferential crosssectiond
2~/dp,dy for two impactparameters(b = 1, 5 fm) andthreedifferent massintervals

for thereaction1050MeV/n Ne+ Au.

Applying the secondmethod it seemsthat the fragmentsgainedadditional momentumin the beam
direction, i.e., showa higher “temperature”.This gives rise to an elliptical emissionpatternin the rest
frame of the source.The heavierclusters,one the contrary,exhibit an isotropic emissionpatternin
their restsystem,which moveswith a velocity closeto zeroin the laboratorysystem.Note the different
scalesof the transversemomentum.

Figure 36 presentsthe rapidity distribution of the different classesof fragmentsat two impact
parametersfor Ne+ Au andat four impact parametersfor the Au + Au reaction. Only for central
collisions in the reaction Au + Au are all particlesstopped,and do we observean almost thermal
distribution, i.e., a mid-rapidity sourceappearswhich emitsparticlesand clustersalmostisotropically.
Even at small b (b = 3 fm) we see that the fragmentscan be attributed to two different sources,
althoughthe protons and neutronswill show a ratherthermaldistribution and mimic a non-existent
equilibrium. This is the reasonwhy the inclusivemeasurementof protonsor very small clustersalways
revealsa thermal distribution. For the very peripheralreaction we see the heavy fragmentmoving
backwardsin the laboratory system (Ytarget = 0.33). In the Ne + Au reaction we see that the gold
nucleusis not ableto stop a 1 GeV/n neonprojectilecompletely. Evenin centralcollisions,wherethe
meanfree path is small comparedto the diameterof the target,energeticsingle nucleonsand small
clustersescapefrom the interactionzone.Thusevenfor the single nucleonsthefireball picture,i.e. the
assumptionthat the geometricallyoverlapping projectile and target nucleon form an equilibrated
source,doesnot hold. The spectraare alwaysspoilt by evaporationproductsof the “cold” spectator
matter.For the largeimpactparameter(b = 7 fm) weclearlysee a projectileanda targetregion.Here
alsoremnantsof the projectile survive (and also demonstratethe stability of clustersin our numerical
approach).

Finally fig. 37 showsthe transverse“temperature”,i.e. up to a constantthe secondmoment of the
transversemomentumdistribution,
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m 2 cos(O)

TT= ~ (v) cos(O)—cos3(O)/3

for different fragmentclassesin their restframeas a function of the emissionangle.Fora systemwhich
is equilibratedlongitudinally, this quantity coincideswith the apparenttemperature,i.e. the slope of
the momentumspacedistribution. Isotropic emissionwould resultin an angleindependentTT. We see,
however, a higher “temperature”for low mass fragmentsin the forward direction comparedto the
backwarddirection.The ratio of the “temperature”of fragmentsemittedin the forward direction over
that of the fragmentsemittedin the backwarddirection is betweentwo andsix. Only fragmentsin the
largestmassbin, which also hasthe lowest statistics,can be consideredas isotropically emitted.The
averageTT of differentclustersaredifferent as well. We observe(TT) = 30.1, 27.3, 57.4MeV for the
mass bins A = 1, 5 ~ A ~ 15, 51 ~ A � 70, respectively.These higher temperaturesin the forward
direction werealsoseenexperimentally[120]andthe valuesobtainedfor TT by fitting the experimental
data are of the samemagnitude[132].

From all theseobservationswe concludethat the momentumspacedistributionsof the different
cluster classesare greatly different. A single sourcecannotbe identified, apartfrom the very central
Au + Au collision. If one wants to interpret the emission pattern in terms of thermal sources,a
continuoussourcedistributionis required.

6.4. What causes fragmentation?

There remainsthe questionof what actually causesthe fragmentformation. We haveseenthat
clustersare not formedin a globally equilibratedenvironment.Hence processesother than statistical
decay haveto be takeninto account.We saw that the medium mass clustersare emitted from the
systemquite early, long before the targetevaporationchain ceases.In this sectionwe investigatethe
detailsof this process.Sinceclustersareproducedby fluctuationsof the system,wehaveto investigate
the cluster formation on an event-by-eventbasis, looking for the specific environmentaround a
prefragment,i.e., thosenucleonswhich finally form a fragmentor areemittedfrom a fragment,in a
given simulationof the reaction.

We start out by examining how the projectile and the target interact at the beginning of the
interaction.Figure 38 displays the velocity and the densityprofile for central collisions 1050MeV/n
Ne+ Au from 10 to 20fm/c and 10 to 35 fm/c, respectively,in stepsof 5 fm/c. The velocity profile is
shownseparatelyfor thosenucleonsinitially belonging to the projecile or the target.Arrows areonly
plotted if the local density is larger than0. lp

0. In this figure we haveaveragedover ten events,so
fluctuationsare reduced,but not completelywashedout.

At 10fm/c the projectilehascompletelydived into the target. The projectilevelocity is muchfaster
thanthe speedof soundin nuclearmatter.Thereforethe time scalefor the transverseexpansionof the
projectile is small comparedto the time scalefor the projectileto traversethe target.The root mean
squareradius of the projectile nucleonsdoes not increaseup to 15 fm/c. The peak compression
increasesto 2.lp0. While the projectile nucleons travel through the target they experiencestrong
transverseforcesdueto the strongdensitygradientatthe surfaceof the projectile. Thereforetheypick
up transversevelocity andaredeflectedat finite angles.A shockprofile develops,which movesinwards
into the projectilenucleusbecausethe outernucleonshavealreadybeencarriedawayby the sideways
travelling compressionwave.So wesee the situationthat the projectilecausesthe emissionof clusters
with a velocity abovethe sound velocity, while the source itself deceleratesgraduallybut still has
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Fig. 38. Velocity (rows 1 and 2) and densityprofile (rows 3 and 4) for thereaction1050MeV/n Ne+ Au, b = 0 fm, in thereactionplaneat the
beginningof thereaction.The velocity profile is separatelydisplayedfor projectileandtargetnucleons.The length anddirectionof thearrowsare
proportionalto thevelocityin thereactionplane.An arrow is only drawn if theprojectile or targetdensityis largerthanO.lp~.Thecontourlinesof
the densityprofile are separatedby a factorof two, startingwith p/p

0 = 0.2.

supersonicvelocity. In an infinite systemthis is the situationwherea Machconewould be formed,and
indeed the form of the velocity distribution at 20 fm/c resemblessuch a velocity profile closely.
However,onehasto keepin mind that we havea systemof only 217 particlesandthereforewe do not
obtain a sharpdiscontinuity in the density as occurs in macroscopicsystems.Behind the cone we
observea rarefactionregion,which heals,however,becausetargetsurfacenucleonsstreaminwards.At
35fm/c this rarefied region is filled and again hasthe highest density. Whereasat the beginning
projectileandtargetinterpenetrate(the densityprovidesa high Pauliblockingrate),towardsthe endof
the reactionthe projectile drags along sometarget nucleons.At 20fm/c we see that in the forward
direction the target nucleonshavethe samedirection of motion as the projectilenucleons,whereasin
the backwarddirection the target nucleonsmove collectively with roughly half of the centreof mass
momentum.This time evolution of the reaction is similar to that predictedby hydrodynamical
calculations[125].

How a prefragment,i.e. an excited fragmentwhich still emits nucleons before being detected,
experiencesthis situationis displayedin fig. 39. Theleft-handcolumn showsthe time evolutionof mean
valuesof different quantitiesfor a large prefragment(A = 24). This prefragmentemits six nucleons
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Fig. 39. Time evolution of asingle prefragmentproducedin the reaction1050MeV/n Ne + Au, b = 0 fm. The properties of a heavy (A = 24) (left)
anda light (A = 6) (right) prefragmentaredisplayed.We showtheaveragenumberof collisions,themeanradialforce, thedensity,themeanradial
momentum,themeanradial distancefrom the centreof thetarget, andthe “temperature”~1= (m/3)(v— (v))2 asafunctionof time. Thevalues
displayedareaveragedover the fragmentconstituents.For details we refer to thetext.

beforeit is finally (at t= 300fm/c) registeredas a fragment(A = 18).The right-handcolumn showsthe
analogousquantitiesfor a small fragment(A = 6). The upperfigure displaysthe numberof collisions
perfragmentnucleon.Initially, i.e. beforethe projectilereachesnucleonsof the fragment,no collisions
occur. Betweenthe arrival of the projectile and the separationof the fragmentfrom the remnantwe
observea quite high collision rate. When the fragmentis formedthereis still excitationenergy,which
allows furthercollisions amongthe fragmentnucleons.The next row showsthe density
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Radial here meanswith respectto the centreof mass of the target. As already expectedfrom the
previousfigure we see a strong increasein the densitywhen the projectile matter hits the nucleons
whichwill form the fragment. Initially the collectivemomentumof thosenucleonspointsinwards.The
density,however,causesa strong radial repulsive force, which reversesthe direction of the average
momentum

— 1 .~ P1 — rcm target)
Prad A

‘‘frag JEAfrag r1 Tern target

This is displayedin the next row.
So far it seemsthat collisions arenot requiredat all to causefragmentsto breakoff. This, however,

is not true.If the nucleon—nucleoncollisions aresuppressed,we do not find fragmentation.Collisions
havea twofold influenceon the fragmentationprocesses.Firstly, theydeceleratethe projecilenucleons
and henceincreasethe density in the projectile region. Secondly, they may provide an additional
momentumtransfer to those nucleonswhich are going to form a fragment. To checkwhether the
secondmechanismis importantwe comparethe actual averageradial momentumwith that causedby
the averageradial field only. The latter is determinedby

pf~d(t) = J ~ad(~) dt’ + Prad(t= 0).

The differencebetweenthesetwo revealsthe importanceof the momentumtransferto the fragment
nucleonsdueto collisions.The resultsaredisplayedin thesamerow. In thecaseof the largeclusterthe
final momentaare almost identical,whereasthe small cluster would not be brokenoff at all (it still
would havean inward directedradial momentum).So the role of collisions in the actual break up
processis ambiguous.

The last row displays the time evolution of the internal excitationof the fragment. We define a
“temperature”

1 m 2TKViav)
‘~fragJEAf00~ ~‘

Keep in mind, however,that this is not a truetemperaturesinceit alsoincludestheFermi momentum.
We only see a small increasein the courseof the reaction.So the prefragmentsare only moderately
excited and there seemsto be no equilibration betweenthe internal degreesof freedom and the
translationalmotion. This is in agreementwith recentexperiments,which showthat the excitationof
prefragmentscorrespondsto temperatureof 5 MeV, independentof the beamenergy[143].

The velocity profile of the samereactionat b = 6fm is displayedin fig. 40. Here the projectileis
slightly deflected,but still dragsalongsometargetnucleons.The targetbecomesslightly excited,and
most of the target nucleonsretain their initial velocity up to 25 fm/c, wherethe interaction between
projectileand targetis over. Only closeto the interactionzonedo we see a disturbancein the velocity
field, which ultimately leadsto an excitation of the target. Sinceparticlesfrom this excitedzone(hot
spot) which travel towardsthe centreof the targethaveahigher chanceto transfertheir momentumto
othertarget nucleonsthan thosetravelling towardsthe surfaceof the target,we observea transverse
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Fig. 40. Velocity profile for b = 6 fm in thezxplane at thebeginning of the reaction,t = 10—20fm/c, in steps of 5 fm/c, separatelydisplayedfor
projectile and targetnucleons.The length and directionof the arrowsare proportionalto thevelocity in the zxplane.

momentumtransfer to the target, which is compensatedby the momentumof the emitted single
particles in the oppositedirection.Hence transversemomentumtransfercan also be causedby pure
geometryandnot only by momentumdependentinteractionsand compression.

6.5. Fragments and the nuclearequationofstate

What can we learn from the fragmentsabout the nuclearequationof state?Fragmentsare, as we
haveseen,createdin the earlystageof the reaction.Since the densitygradientcausestheir break off,
theyshould be quitesensitiveto the compressionachievedin heavyion collisionsandto the transverse
momentumtransfer. We would furtherexpectthat they arealso sensitiveto the numberof nucleon—
nucleoncollisions. Thesecollisions abruptlychangethe momentumof the collision partnersandlower
the probability to find a partnerwith low relativemomentumin order to form a fragment.Figure 41
displaysthe momentumspacedistributionof nucleonsandlight clustersin the reactionplaneatthe end
of the reactionAu + Au, b = 3 fm, for two equationsof state.

Several simulationsare displayed on top of eachother. The distribution of unbound nucleons
appearsto be isotropic, independentof the equationof state and is centredaroundp~= = 0,
indicating almostcompletestopping.Alreadyclusterswith massA 2—4, however,revealtheir origin
from projectileor targetandthep, andp~distributionspeakat finite values(comparefig. 36). But most
important,we observea bounceoff, i.e., target-andprojectile-like clustershavea finite and opposite

(p5) which dependson the equationof state.The harderthe equationof state,the larger is the value
of (~p~I). (lp~) increaseswith the clustersize.For 15 < A ~ 30 theknowlegeofp~is almostsufficient
to identify the clustersas projectile- or target-like.

Thesefindings are expected.Nucleon—nucleonscatteringsrandomizethe momentumdistributions.
After a large momentumtransfernucleonsdo not find a partnerwith low relativemomentumandare
thereforeobservedassingle nucleons.Clustersconsistmostlyof nucleonswhichhavenot sufferedlarge
momentumtransfer.Theirmotion is governedby the densitygradientswhichcausethe bounceoff. We
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Fig. 41. Survey of thereaction200MeV/n Au + Au, b = 3 fm, for two different equationsof state(SF,HF). We display thefinal momentaper
nucleon in the reactionplanefor a coupleof simulationsfor four differentfragmentclasses.

seethat clustersaregood candidatesfor exploring the equationof state.To substantiatethesefindings
we display in fig. 42 the ratio of the transversemomentumin the reactionplanep,~and the total
transversemomentump~ = (p~+ ~ / 2 as a function of the rapidity for a stiff andfor a soft equation
of statein comparisonwith experimentalresults [6].

A filter wasappliedto the theoreticalcalculationswhichsimulatesthe acceptanceof the Plastic Ball
[139].The calculationsareperformedat b = 3 fm, wherewe find the largestp~,andcomparedwith the
correspondingmultiplicity bin. The absolutevaluesof p~Ip1 are twice as largefor A � 6 comparedto
protons.For all four massbinswe seedifferencesbetweenthedifferentequationsof state.As expected
they are biggestfor the largest clusters.The calculationsseemto favour a stiff equationof state.
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Fig. 42. The transversemomentumper nucleonp~/p~asa function of the rapidity. We displaycalculationsfor threedifferent chargebins Z= 1

(A = 1, 2), Z= 2 (A= 3, 4), Z= 3 (A = 5, 6, 7), Z>6 (12 � A �20) and two equationsof state(SF, HF) and comparethe resultswith
experimentaldata[6]. A filter is appliedto thetheoreticalcalculationswhich simulatesthe acceptanceof thePlastic Ball [139].

However, before definite conclusionscan be drawn, the dependenceof p1Ip1 on the otherquantities
like in-mediumcrosssectionshasto be investigated.

Figure43 showsthe massyield for a stiff anda soft equationof statefor the Au(200MeV/n) + Au
reactionat b = 3 fm. As alreadymentionedwe seea powerlaw dependenceof the massyield. Thereis
little differenceat low masses.Largemassfragmentsaremorecopiouslyproducedif lesscollisions take
place,i.e., whena hardequationof stateis employed.The differenceis too small, however,to be of
practical importance.This confirms oncemore that the total mass yield is not very sensitiveto the
dynamicsof the reaction.
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7. Probing the nuclear equation of state

In chapter 2 we discussedthat presentlythe in-mediumcrosssection,as well as the nuclearequation
of state,cannotbe calculatedreliably from the underlyingnucleon—nucleoninteraction.Furthermore,
we have seen that the momentumdependentpart of the nucleon—nucleoninteraction acts quite
differently in nuclearmatter andin supernovae,as comparedto nucleus—nucleuscollisions. In nuclear
matter anymomentumdependenceof the interactioncan be expressedas a densitydependencesince
the averagerelativemomentumbetweentheparticlesis afunction of the Fermi energyandhenceof the
density. In heavyion collisions the momentumanddensitydependenceof thepotentialaredecoupled.
By choosingdifferentbeamenergieswe can probethe potentialover a largedynamicalrangewithout
changingthe densitysubstantially.In theenergyrangeof interest,100MeV/n < Elab< 1 GeV/n, optical
modelcalculationsreveala strongrepulsionarisingfrom the momentumdependentinteraction.As we
haveseenin section 2.5, this repulsioncan mimic a stiffer equationof state in heavyion collisions.

Before starting out to pin down the compressionalenergyin nuclearmatter at high density and
temperatures,onehasto studywhetherthe observablesarerobustenoughso that our lack of complete
knowledge of some dependenciesdoes not render any conclusionswe might draw obsolete.The
essentialuncertaintiesarethe momentumdependenceof the opticalpotentialathigh densities,which
maybe cast in an effective mass,andthe in-mediumcorrectionsof the nucleon—nucleoncrosssection
which go beyondthe Pauli suppressionfor the final states.

A first glimpseof the difficulties in determiningthe nuclearequationsof statecan begottenfrom fig.
44. It showsthe maximal densityobtainedin the reactionAu + Au at b = 3 fm for different beam
energies.Althoughwe havechosenone of the heaviestsystemsavailable,we observeonly a very weak
dependenceof the maximal densityon the projectileenergy.

Almost neverdoes the densityexceedtwice the normal nuclearmatter densityp0. This is in strong
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Fig. 44. Maximal centraldensity reachedin thereactionAu + Au at b = 3 fm asafunctionof thebeamenergyfor threedifferentequationsof state
(see table 3).

contrastto cascadecalculations, which lack the compressionalenergy,and achievedensitiesup to
Pmax =

4p
0. The values obtainedin the QMD model are slightly lower than those obtainedin BUU

calculations.The situationbecomesevenworse if we relate the centraldensity to the compressional
energy,which can beinferredfrom fig. 8. We note that the compressionalenergyis almostidenticalfor
S andH. This questionsall thesuggestionswhich rely only on differentcompressionalenergiesobtained
from differentequationsof state.Recallingthevastly different influenceof the momentumdependence
of the optical potentialsat the different beamenergies,one can also imagine from this figure the
difficulty of separatingreliably the momentumdependentpart of the opticalpotentialfrom the density
dependentpart.

In this sectionwe report on the first stepstowardsthe goalof determiningthe nuclearequationof
state from a comparisonbetweentheoreticalcalculationsand experiments.We will see that many
parametershaveto be measuredsimultaneouslyin order to disentanglethe effectsof the compressibili-
ty, the effective massand the effectivecrosssectionon the observables.

7.1. Velocity dependenceversuscompressibility

We first concentrateon the interactionsH, S and SM (table 3). We discusshow thesereactions
proceedin time, andwhetherSM can yield the sameresultsas H andthusimitate a stiffer equationof
state. In fig. 45 we give an overview of differentquantitieswhich are relevantfor this question.We
denotethe rowsfrom (a) to (d). All the quantitieswe displayarefor the reactionAu + Au, b = 3 fm, at
two different beamenergies:200MeV/n (left) and800MeV/n (right).

We startwith the transversemomentum
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Fig. 45. Time evolution of different observablesfor the reactions 200 MeV/n and 800MeV/n Au + Au.

(pdlr) = ~ sign(y(i)) p~(i), (7.1)

wherey(i) is the rapidity of particle i andp~(i)is its transversemomentumin the reactionplane. In
earlier yearsit wascommonto employ the quantity flow to discussthe transversemomentumtransfer.
This, however, is not the bestchoice, since the flow is essentiallyproportional to the ratio of the
longitudinal and the transversemomenta.The excitation function of the averageflow angle is almost
flat, since with increasingenergyboth the longitudinal and the transversemomentaincrease.The
longitudinalmomentumreflectsthe stopping,i.e. thecrosssection,whereasthe transversemomentum
is determinedby the compressionand/orthe momentumdependenceof theinteraction.Sincetheseare
two separatephysical phenomena,it is better to disentangleboth and to discuss the transverse
momentuminsteadof the flow. The transversemomentumin the reactionplane,p~,can be obtainedby
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usingthe transversemomentumanalysistechnique[144],which givesa descriptionof howto extractthe
reactionplanefrom the experimentaldata.

The transversemomentum~p~~r~ is displayedin fig. 45a.We startwith the reactionat 200MeV/n.
Initially (pdlr) has to be zero. When the nuclei approacheachother they feel an attractivepotential
which— due to the geometry— causesa collective transversemomentum opposite to the impact
parameter.As soonas the nucleioverlap,the potentialbecomesrepulsiveand acceleratesthe particles
in the transversedirection (figs. 3 and4). Finally we observea finite collectiveflow of the orderof some
tensof MeV/n. At 200MeV/n the momentumdependentforce is not strongenough to enhancethe
collective transversemomentumtransfersubstantially.By contrast,in the reactionat 800MeV/n the
momentumdependentforcesenhancethe transversemomentumof the softequationof stateby almost
50% so that it exceedsthe value expectedfrom a hard equationof state.One hasto keepin mind,
however, that this conclusion depends strongly on the impact parameterand the mass of the
projectile—targetcombination.The differentorigin of the transverseflow of SM as comparedto S or H
can be seen from the time evolution. For SM the transverseflow startsto developas soon as the
projectileandthe targetoverlapandhencebeforea high densityis built up. The transversemomentum
of H and S is causedby compressionandstartsonly after we observea sufficiently high density.

Fromtheseresultsweconcludethat the momentumdependenceof the nuclearpotential canimitate
a stiffer equationof stateat high beamenergies.At EIab = 200 MeV/n weseelittle differencebetweenS
and SM, but at Elab = 800MeV/n the transversemomentumtransferwith a soft velocity dependent
equationof stateexceedsthat of a hard equationof state.

Figure 45b shows the longitudinal momentumtransferand the degreeof global equilibration.We
display the averagefinal longitudinal momentumof all those nucleonswhich were initially in the
projectile.Due to momentumconservation~p~1°~~ equals— (~target) We observethat the final (p~OJ)
is around30% of its initial value. Thus thereis a considerablelongitudinal momentumtransfer,but
thereis no completestopping.There is alsono completeglobal equilibration,althoughwe displayhere
almostcentralcollisions of a very heavy projectile—targetcombination.This can be inferredfrom the
quantity (~p~”2+ (p~)112)/2~p~)”2.If the systemis globally equilibrated,this ratio will be 1. The
observedratio is around0.7 independentof the beamenergyandthe equationof state.This meansthat
the averagekinetic energyin the transversedirection is lower than thatin the longitudinal one. Recent
investigationshaveshownthat this heavysystemdoesnot evenbecomelocally equilibrated[145].

The numberof collisions which the nucleonssufferis displayedin fig. 45c. Againweobservethat SM
lies betweenS and H, as expectedfrom our considerationsin section 2.5. The averagenumberof
collisions is around4 for 200MeV/n and 8—10 for 800MeV/n. It is remarkablethat even this high
numberof collisions do not equilibrate the system.

The question as to which degreevelocity dependentforces can mimic the directed transverse
momentumobtainedwith a much stiffer staticequationof statehas causeda lot of confusionrecently
becausedifferent calculations yielded quite different results [14,32,35]. In some calculations SM
yielded much larger (pdlr) thanH, in other calculationsthe influencewas quite moderate.When
comparingthe different calculationsone hasto keepin mind that we expect

(a) a strongmassdependenceof thiseffect; for smallmasseswe observealmostno compressionand
hence SMshould yield a larger (p~ )t than H; for large massesthe differenceshould be smaller;

(b) a strongenergydependence;atlow beamenergythe influenceof the velocity dependenceshould
be quite moderate,of course;

(c) that the densitydependenceof the velocity dependentpotential,which cannotbe inferredfrom
experiment, influences the result.
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Furthermore,evenquite different forms of the velocity dependenceof the equationof statewhich
yield quite different optical potentialsfor heavy ion collisions havebeenusedand, last not least,the
calculations so far were performed at different impact parameters,which also causesdifferent
conclusions.This is certainly a topic that hasto be settledin the nearfuture.

7.2. Particle production and the equationofstate

Pions are produced copiously in high energyheavy ion collisions and are an important sourceof
informationon the reactionmechanism.Applying a Cascadecalculation,Rosenhaueretal. [146]have
shown that the number of pions is directly correlatedwith the number of hard nucleon—nucleon
collisions. Thus the numberof pionsimmediatelyyields informationon the stoppingpowerof nuclear
matter.

Experimentallyit hasbeenobservedthat the pion has a nice scalingproperty.The numberof ir is
proportionalto the numberof participantnucleons,whichcan be inferredfrom the observedprojectile
spectators[147],independentof the massof the projectile—targetcombination.We take advantageof
this observationand compareour results with those of ref. [1471.In fig. 46 we see the total
experimentalpion yield as comparedwith the results of Au + Au reactionsat various energiesas a
function of the meanenergyper participant nucleon. We find nice agreementbetweenQMD and
experiment.This agreementwas alsoobtainedin VUU calculations[64]. Again we seethat the results
of our n-body approachcoincidewith thoseof the one-bodytheoriesas far assingle particleproperties
are concerned.

Some while ago it was proposed[148,1491 to use the particle production as a measureof the
compressibilityof nuclearmatter.This suggestionwas triggeredby the intra-nuclearcascaderesults,
which alwaysoverestimatedthe numberof pions,and was basedon the ideathat someof the available
energyis storedin compressionalenergyandhencenot availablefor theproductionof pions.Applying
a thermalmodel,the discrepancybetweendataandcascaderesultscan be convertedto acompressional
energy.For a given dependenceof the averagedensityat thepoint of highestcompressionon the beam
energywe can then relate the compressionalenergyto the compressibility.

More refined calculations[62,64] did not confirm this suggestion.In fig. 45d we see that for all
equationsof statealmost the samenumberof pions is obtained.This is a direct consequenceof the

197Au + t97Au
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ECM 1MeV]

Fig. 46. Numberof pions as afunction of the energyper participant nucleonas comparedwith data of ref. 11471
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almost identicalcompressionalenergy.At 200MeV/n, the numberof producedpions is small andthe
fluctuationsare large. Hence the differencesare not statisticallysignificant.

Another possible candidatefor testing the equationsof state is the K~(the K has a higher
threshold).For severalreasonsthe K~is a [86] more promising particlethan the pion:

(1) At the energiesof interestkaonscan only be produced“subthreshold”,i.e., a nucleon—nucleon
collision at the sameenergyis below the productionthreshold.In nucleus—nucleuscollisions the Fermi
motion can help to createtheseparticlesin a single nucleon—nucleoncollision. With increasingimpact
parameterand hencelower numberof collisions it becomesless probablethat two nucleonswith
sufficient relative momentumcollide. This concentratesthe productionat low impact parameters.

(2) The recombinationof strangeparticleshas low probability. Hence thereis no reabsorptionin
contrastto the caseof the pions.

(3) According to the calculations,the majority of the kaonsare producedin a two-stepprocess,
n + n—~~, ~ + n—~n + K~+ A, becauseat low energiestherearevery few nucleonswhich can provide
sufficientenergyin a nucleon—nucleoncollision. The relativemomentumrequiredto producea K~in a
i~+ n collision is lower due to the largermass of the ~. This productionmechanismfavours central
collisions becausecentralcollisions producemost~‘s andthe probability that they interactwith another
nucleonis high.

Thereare,however,obstaclesto calculatingthe productionof K~‘s reliably. Firstly, the elementary
productioncrosssectionn + n—~ nearthresholdis not well known. Secondly,the abovementioned
two-stepprocessis not establishedexperimentally.It was pointedout recently[86,150] that someof the
uncertaintiesmay cancel if one concentrateson ratios of the cross sectionsof different symmetric
systemsand doesnot aim at a measurementof their absolutevalues.

Calculationsshowthat kaonsareindeeda very good tool to disentanglethe momentumdependence
of the nucleon—nucleoninteraction from the staticpart. In fig. 47 we showthekaonyield as a function
of the impactparameterof the systemLa + La at 800MeV/n. Forcentralcollisions we seea factor of
four betweenthe yield for SM andH andstill a factorof two betweenS andH. The differencebetween
S and H can be understoodby inspectingfig. 45. S producesmorepions (deltas)andmore collisions

3 -

‘39La + 139La
£ s 1 800 MeV/n

b If ml
Fig.47. Productionprobability of a kaon in thereaction800MeV/n La + La for different impactparameters.The errorbarsdisplay thefluctuation
of that numberfor different simulations.
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take place. Both work towardsan enhancementof kaon production. Employing velocity dependent
forces, the kaon production suffers from the fact that the nucleonswhich have enough relative
momentumto createa are thosewhich feel the strongestrepulsiveforce, which deceleratesthem
below threshold.

The only otherelementaryparticle onemay think of to use for probing the equationof stateis the
photon. Calculations show that they are sensitive on the 10% level [85, 1511 only. This can be
understoodeasily: Each collision in which a proton is involved causesbremsstrahlung.Therefore
photonscomefrom everywherein the collision region andnot from the compressedregion only. The
total productioncrosssectionsof compositeparticlesare not sensitiveeither,as we haveseenalreadyin
the last chapter.

7.3. Can we extract the nuclear equationofstatefrompresentdata?

The first suggestionson how to measurethe nuclearequationof stateareratherold [148].Already in
hydrodynamicalcalculationsone observedthat the compressionalenergyis partially releasedin the
transversedirection (bounceoff, fig. 4). Thusin the reactionplaneprojectileandtargetgaintransverse
momentum,but in oppositedirections.The absolutevalueof the transversemomentumis relatedto the
equationof state(butunfortunatelyalso to the viscosity [152]).However, therewere reasonsto hope
that a morecarefultreatmentof the collisions betweenthe nucleons,especiallyduring the initial state
of the heavyion reaction,wherethe approximationof local equilibrium cannotbe justified, would allow
both effects to be disentangled.First microscopiccalculationsshowedcircumstantialevidencefor a
ratherstiff equationof state,but detailedtheoreticalinvestigations,as well as the analysisof a large
body of experimentaldata, especiallyfrom the Plastic Ball group, renderedthis conclusionpremature.

In recentyears it has beenconjecturedthat otherobservablesshould also carry information about
the nuclear equation of state. We have discussedin the last section whether producedparticles
carry information on the nuclearequationof state. In this sectionwe concentrateon proton obser-
vables.

Welke et al. [153] presentedcalculationsin the BUU model which showedthat the azimuthal
distributionof protonswith a rapidity largerthan(y/ypioj)Iab >0.75 showeda quite strongdependence
on the nuclearequationof state.Of coursethis observableis nothingbut a function of the transverse
momentumtransfer,but it maybea cleanerway of demonstratingthe equationof statedependence.If
we assumethat the particleshavea thermaldistributionf~haroundthe mean (Pr), we expectfor the
ratio R the following dependence:

R— N(q5=0°) — J(p) fth(PX)dPX 72
— N(~= 180°)— J(P÷) f~h(P

1)dp ( . )

Thus if (p5) increases,this ratio increasesas well, becausethe fraction of particleswhich have a
momentumlower than — (p5) decreases.Only thoseparticles,however,areobservedat 4 = 180°.

This methodhas two drawbacks.Most particlesare at mid-rapidity in thesereactions.Hence the
effect is causedby a few particles,and consequentlythe fluctuationsare large. Furthermore,in this
kinematicalregimetherearemanycompositeparticles(cf. fig. 41), which haveto be treatedcorrectly
in order to allow a quantitativecomparisonwith the data. But nevertheless,the quotedvaluesof R for
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differentequationsof statediffer by morethan afactor of two. Thus— if confirmedby othermodels— it
is certainly a good candidatefor a closerinspection.

Anotherobservablewhich maydependon the equationof stateis the collectiveflow at mid-rapidity
perpendicularto the reactionplane,which hasrecentlybeenobservedexperimentally[51. It could be
causedby particles whose motion is deflectedin the lateral direction through the action of strong
densitygradientsin the courseof the reaction. Of courseit could also be that particlesare emitted
preferably perpendicularlyto the reaction plane, as, after a nucleon—nucleoncollision, there the
distancethey haveto travel in nuclearmaterial is the shortest.In the lattercasethe equationof state
dependenceis rathersmall.

A third conjecture,advancedby Bauer[154],that the quadrupolemomentumtensorcan beused to
determinethe nuclearequationof state,did not materializein actual calculation,neither in the BUU
nor in the QMD approach.

In this sectionwe investigatethe equationof statedependenceof the abovementionedobservables
in detail. Specialemphasisis devotedto the questionwhethertheseobservab.lesaresufficiently robust
in order to reveal informationon the equationof state.For this purposewe presentcalculationswith
different cross sections(in the limits suggestedby nuclear matter calculations)and both with and
without a momentumdependentpotential. In order to substantiateour calculationswe start with a
detailedcomparisonwith experiment.

Transversemomentumtransfer. The quantity (p~~1) as definedin eq. (7.1) hasbeenintroducedto
condensethe distribution (p5)( y) to one number.The valueof this variableis displayedin fig. 48 for
differentbeamenergies,differentprojectile targetcombinationsand different theories.

This quantity hasmuch smaller fluctuationsthan (p5)( y) for y near the projectile rapidity. The
drawbackis, however,that it is dominatedby the largenumberof mid-rapidity particleswhich do not
contributesignificantly to p~.This quantity alsoyields muchhigher valuesfor the BUU calculationas
comparedto the QMD calculationwith the sameinputparameters.At 800MeV/n the differencecan be
as large as a factor of 3. At small beamenergiesthe differencebetweenthe calculationsis small.
Looking at (pr) for a fixed beamenergyas a function of the massof the scatteringpartners,we see
thatat 400MeV/n a soft velocity dependentequationof statecan neverimitate the hard equationof
state.The oppositeis the caseat 800MeV/n, whereevenfor the heaviestsystemthe hard equation
produceslessp~thanthe softvelocity dependentequationof state.This conclusion,however,depends
stronglyon the impactparameter.At the lowestenergyconsideredherewe seethat all calculationswith
a soft equationof stateare below that with the hard equationof state.Thus low energyexperiments
may be most promising if we want to limit the influenceof the velocity dependenceof the optical
potential.However, even theredifferent crosssectionsinfluencethe resultsconsiderably.

The origin of the differencein (p~h1) betweenthen-body QMD andthe one-bodyBUU calculation
is investigatedin detail in fig. 49. There the transversemomentumas a function of the rapidity for
400 MeV/n Nb + Nb at b = 3 fm is plottedfor four different computercodes,of which threesimulate
the BUU equationandone is the solutionof the n-bodyequation.The BUU [63]and the BUU Welke
[35]model havea spacefixed grid of length 1 fm (Eulerianmethod)to determinethe local densityand
hencethe potential.The VUU approach[64] measuresthe density in a comovingsphereof radiusR
aroundtheparticleunderconsideration(Lagrangianmethod).We seea strikingsimilarity of theresults
of the one-bodytheories.Togetherwith the resultsdisplayedin fig. 19 this showsthat the resultsare
independentof the quite differentnumericalmethodsemployedto solve thiscomplicatedequation.The
resultsof the QMD calculationsagreewith thoseof the one-bodytheoriesat centralrapidity but are
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Fig. 48. (p~”)= A’ ~, sign(y(i))p0(i) for the different setups (seetable 3), for different beam energiesand for different projectile—target
combinationsat b = 3 fm. BUU refers to resultsof the Boltzmann—Uehling—Uhlenbeckcalculation [631.
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Fig. 49. Averagetransversemomentumasafunctionof the centreof mass rapidity for differenttheoriesfor thereactions400MeV/n Nb+ Nb,
b = 3 fm. We have averagedoverall nucleons.
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smaller aroundthe beamrapidity. Therewe observevery few nucleonsfinally, mostof them boundin
clusters.We seemostof theclustersfinally. Thereasonfor thisdifferenceis not completelyclearso far.
It probablydependson two facts:

(a) The unphysicalpoint particlescan yield strongerdensity gradientsthan the GaussianWigner
densities,which smear the nucleonsover larger spaceregions. This effect is also indicated by the
dependenceof the transversemomentumat beamrapidity on the radiusof the sphere,in which the
local densityis determinedin the VUU calculation.

(b) In this momentumspaceregion,where many clustersare formed, the fluctuationsare most
important, which are not treatedcorrectly in the BUU/VUU model.

In fig. 50 we confrontthe experimental~ ( y) /A) distributionfor the reactions400 MeV/n Nb + Nb
andAu + Au with our calculations.The calculationsareperformedat b = 3 frn, whichyields a proton
multiplicity correspondingto theexperimentalmultiplicity bin 4. Therefore,we choosefor comparison
thedataof this multiplicity bin. The first row displaysthe resultsof theone-bodyBUU theoryfor the
reaction. From the theoreticalcalculation we have ignored all particleswhich are below the energy
thresholdof thePlasticBall. For the sakeof comparisonwe displaythe resultsof HC as well (treated
with the samefilter). Both BUU H and QMD HC (see table3) employ exactly the sameequationof

Nb+l’*3 400MeV/nucL b~3fm Au+Au 4~//r.jct. b:31rn
Dsta:14u14,” ~ Oate:t4.A.4 ~ * ,

I I I I I I I I I I I I I I I I I I I I I I I I 4—I—I—I——f I I I I I I I I I I I I I I I I I I I I I
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o 01~SC

~

III III 111111111111111111111—- 1111)111111111111111111111111
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Fig. 50. Transversemomentumtransferasa function of thecentreof massrapidityfor different setups (seetable 3) for thereactions400MeV/n
Nb+ Nb andAu + Au ascomparedto experiments[7]. In thesecondandthethird rows we filtered thetheoreticalcalculationwith thePlasticBall
filter SIMDAT [139]. In the first row only an energyand angle cut is applied. BUU refers to resultsof the Boltzmann—Uehling—Uhlenbeck
calculation [63]. -
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stateand nucleon—nucleoncrosssection.Between —0.5< Y’YprOj <0.5,wherealmost all the particles
are finally located, the differences between BUUH and QMDHC are small. For larger values of

Y’Yproj’ however,theybecomesignificant. This differenceis not yet understood,and— due to the small
particlenumberin thisrapidity regime— is hardto investigate.In theQMD calculationwe observehigh
fluctuationsof (p5/A) in this regime. The fluctuationsare much smallerin the BUUapproach. This
may be a hint that the mean field of the BUU calculationsacts differently here comparedto the
nucleon—nucleonpotential of the QMD approach.In addition to that, particle identification in the
Plastic Ball leadsto considerablechanges(20%) in (p5/A) in this rapidity regime,as can be seenfrom
comparingthe QMD HC calculationsof rows1 and2. In rows 2 and3 wehaveemployedthefull Plastic
Ball filter SIMDAT [139], which includes, in addition to the threshold,particle misidentification.The
momentumdependentequationof stateis not able to yield the high (p5/A) values of a hard equation
of stateat this energy,but gives resultsin betweenthoseof HC andSC. If we increasethecrosssection,
we producehigher (p1/A) values. This can be seenfrom the third row, whereprotonsand neutrons
interactwith the free np crosssection insteadof the smallerpp crosssection in SC and HC.

From this figure one can concludethat the experimentaldata are nicely reproducedin the QMD
approach,whereasthe BUU approachyields values of (p5) IA which are too large at the beam
rapidity. The differencesbetween the different equationsof state are of the same order as the
differencesdue to differentcrosssectionsor due to the momentumdependenceof the potential,and
amountto about20%.Thus from the (p5) /A distribution alonea firm conclusionon the stiffnessof the
equationof statecannot be drawn.

The next figure, fig. 51, displaysour calculationfor 800MeV/n La + La with H as comparedto the
dataof the streamerchambergroup [155].It seemsto be astonishingthat the very samedataare also
well describedin the BUU calculations[35]althoughwe haveseen(fig. 48) that the averagetransverse
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Fig. 51. Average transversemomentumas a function of the centre of massrapidity for H (see table 3) for the reaction800MeV/n La + La as
comparedto experiment[155]. We display the transversemomentumfor protons,deuteronsand all nucleonsseparately.
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momentum is larger in BUU calculations as comparedwith the QMD results. The reason for
this— probably accidental— agreementof both theoriesis a consequenceof the fact that in the QMD
calculations— as in experiment— we can selectthe deuterons,whereasin BUU calculationsone hasto
sumover all nucleonsbecauseclustersarenot definedin theseone-bodytheories.As can be seenin fig.
51, the averagetransversemomentumof the deuteronsis largerthan that of the protons,as we have
alreadyobservedin the 200MeV/n reaction(fig. 42). More important,however,is the hugedifference
(about afactor of 2.5) betweenthe averagetransversemomentumof the deuteronsas comparedto that
obtainedby averagingover all nucleons.This large factor is dueto large remnantsof projectile and
target,which do not havea substantialtransversemomentumand are presentat impact parameters
larger than 4 fm. Thus we can concludethat a detailedcomparisonbetweenexperimentand theory
requiresa separationbetweensinglesanddifferentclassesof fragments.The maximumof the function
(p5(y)) originatesfrom centralcollisions. Larger impact parametersdecelerateprojectile and target
less and thereforethe deuteronsappearat largery values.

Azimuthaldistribution. The next figure, fig. 52, presentsour resultsfor the observableproposed
by Welke et al. [153]. We display the quantity R= N(4 = 10°)/N(cb= 170°) for particles with
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Fig. 52. R = N(4 = 100)/N(4 = 170°)for (y/y0,0~)00>0.75 [153]for different setups (seetable3), for different beam energiesandfor different
projectile—targetcombinationsat b = 3 fm. BUU refers to resultsof theBoltzmann—Uehling—Uhlenbeckcalculation [63].
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(Y’Yproj)Iab >0.75. We seethat the QMD calculationsfall almoston top of eachother, independentof
the parameterschosen, and independentof energyand projectile—targetcombination. The BUU
results, however, show exactly the behaviourWelke observed:a very strong dependenceon the
equationof state. Thus this way of plotting p

5(y) can amplify the differencestremendously.These
differencesbetweenthe BUU and QMD calculationshavenot beeninvestigatedso far. We should
mention,however,that the experiments(fig. 50) do not favour the largep5(y) valuesatbeamrapidity
which are necessaryto obtainthe large azimuthalanisotropiesof the BUU calculation.

Particle emissionperpendicularto the reactionplane. Alreadyhydrodynamicalcalculationspredicted
a preferredemissionof mid-rapidity particlesperpendicularto thereactionplane(“squeezeout”). Only
recently,however,hasthis predictionbeenconfirmedby experimentsof the PlasticBall group[7]. They
foundnot only that thenumberof mid-rapidity particlesemittedperpendicularlyto thereactionplaneis
larger than that of particlesemitted in the reactionplane. Also the averageenergyof the particles
which are emitted out of planeis largerthan that of in planeemitted particles.The ratio betweenin
planeandout of planeemissiondependson the size of projectileandtargetasexpectedfor an equation
of state dependenteffect. However, also shadowingcan producesuch a result becausethe distance
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Fig. 53. Azimuthal distributionof protonsaroundprojectile,mid- and targetrapidity for different setups (seetable 3)as comparedto experiment
[7]. In the second and the third rows we filtered thetheoreticalcalculationwith thePlasticBall filter SIMDAT [139].In the first row only anenergy
and angle cut is applied. BUUrefers to resultsof the Boltzmann—Uehling—Uhlenbeckcalculation[63].
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particleshave to travel in the nuclearmedium is longer if they are emittedin the reactionplaneas
comparedto that if they are emittedperpendicularly.If shadowingdominateswe would not expecta
strongequationof statedependence.

The azimuthaldistributionof particlesin differentkinematical regimesis displayedin fig. 53. Here
againthe theoreticalcalculationsare acceptancecorrectedwith the Plastic Ball filter SIMDAT [139]
and, in the caseof the BUU calculations,for the energythreshold.Again we observefor the BUU
calculationsa quite strongdependenceon the equationof state,whereasthe dependenceof the QMD
calculationson the equationof stateis quite moderate.In the projectileandtargetrapidity domainwe
see only a weak equationof statedependence.More pronouncedarethe differencesat mid-rapidity.
However,evenherethe differencesrarelyexceed15% if thevariablesarecalculatedin the laboratory
system.

The differencesbecomemorepronounced,however,if one measuresthe effect in a systemwhichis
rotatedby the flow angleinto the principal axessystemof the momentumflow ellipsoid.The resultsof
our calculation at 400MeV/n for three different systemsas well as the experimental results are
presentedin fig. 54. The ratio of outof planeand in planetransverseenergyincreasesalmostlinearly
with the massnumberof thesystem,asexpectedfor a collectivephenomenon.We observealsoa strong
dependenceof this ratio on theequationof state.The hardertheequationof state,themorenucleons
aresqueezedout. However,a detailedknowledgeof theexperimentalacceptanceis necessaryin order
to find the proper flow angle. (Thus this method relies completelyon the experimentalacceptance
simulation.)Nevertheless,this observableis promisingfor further investigationsdue to the relatively
largedifferencebetweenthe resultsfor different equationsof stateandfor large systems.

Rapidity distribution. Theobservableswe haveinvestigatedso far allow no firm conclusionaboutthe
equationof state.Thus one hasto considera different strategy:Ratherthanlooking for onevariable
which immediatelyallows conclusionsabouttheequationof state,we shouldinvestigatea combination
of variables.Aiming at thosevariableswhich dependstrongly on oneof theinput parametersand less
on the others,we may finally be able to reducethe complexity of the problem.Oneof the possible
candidateshas already beeninvestigated.The kaon yield showeda very strong dependenceon the
velocity dependenceof the nucleon—nucleonpotential, but less dependenceon the nucleon—nucleon
crosssection.Theoppositeis truefor the rapidity distributionof thebaryons,ascanbe seenin fig. 55,
wherewe comparethe filtered data[139]with experiment[8].
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Fig. 54. Projectileandtargetmassdependenceof theout of planeto in planeratio of thetransverseenergyfor X(400 MeV/n) + X at b 0.25b,,
1,,

in the rotatedsystemfor ahard andasoft equationof state.The predictedlinear massdependenceis alsoobservedby thedatameasuredby the
PlasticBall Group[7], which are presentedin the inset.
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Fig. 55. Rapidity distributionsof thebaryonsfor thereaction400MeV/nNb+ Nb for different setups (seetable3) ascomparedto experiment[8].
We employedthe PlasticBall filter SIMDAT to correct for acceptance[139].

Again the overall agreementbetweentheory andexperimentis quite good.We observethat the free
crosssectionleadsto a Gaussianform of the rapidity distribution, whereasthe reducedcrosssection
causesa plateau,orevena dip, at mid-rapidity, independentof theequationof state.The comparison
betweencalculation and experimentindicatesa large cross section.Even the free np and pp cross
sectiondoesnot equilibratethe system to a degreewhich is indicatedby the experimentandwe can
expect that an in-medium enhancementof the free crosssectionwould yield evenbetteragreement.

We also observehere that thedifferencesareof sucha magnitudethat high precisionexperiments,
togetherwith a good understandingof the acceptanceof the detectingdevices,are requiredon the
experimentalside if one wants to achievethe goal of extracting the nuclearequationof statefrom
experiment.The theory, on the otherhand,hasto be accurateatleastat the20% level to allow firm
conclusionsabout the equationof state.Both maybe within reachin thenext decade,whenthe new
SIS acceleratorallows high statisticsexperiments,and also the computationswill no longer require
unwantedapproximationsdueto increasesin the availablecomputerpower.However, aswe haveseen
in chapter4, thereremainstheproblemof howto dealproperlywith a fermionic system,which hasto
be solvedbefore the nuclearequationof statecan be reliably calculated.

8. Conclusions

We havepresenteda microscopicdynamicaln-bodyapproachto heavyion collisions which describes
the whole time evolution of a nucleus—nucleuscollision. We havediscussedunderwhich approxima-
tions the model can be derivedfrom the Wigner density of the n-body Schrödingerequation.They
includethevalidity of the impulseapproximationand theassumptionof independentnucleon—nucleon
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collisions.Most of theseapproximationsarereasonablyfulfilled underthe circumstanceswe expectfor
medium andhigh energyheavyion collisions. Heavyion reactionscan now be studiedtheoreticallyon
anevent-by-eventbasisfrom the initial configurationto the final distribution of nucleons,pions, kaons
and fragmentsin phasespace.This is achievedby following the time evolution of the n-body system,
which interacts via mutual two- and three-bodypotentialsand a residual interaction with a Pauli
blockednucleon—nucleonscatteringcrosssection.As far as one-bodyobservablesare concerned,we
reproducethe results of BUU/VUU and TDHF calculations,except for the transversemomentum
transfer.

We find almost complete,to this high degreeunexpected,agreementwith a largevariety of single
particleandfragmentdata.Thus we feel confidentthat thismodel allows us,for thefirst time, to study
the formation of fragmentsin a dynamicalmodelandto makedetailedcomparisonswith experimental
data possibleby allowing one to separateclustersfrom single particles.This is a prerequisitefor the
study of the nuclear equation of state.

We haveinvestigatedin detail the formation of fragmentsand haveexaminedwhich conclusions
aboutthe nuclearequationof statecan presentlybe drawn. As wehaveseen,heavyion collisions are
presentlythe only possibility to obtain this desiredquantity. The calculationsconfirm qualitatively the
predictions of hydrodynamicalcalculations, i.e. the squeezeout and the bounceoff. Hence the
potentialis of importancein this energydomainbeyondthe formation of clusters.Detailed investiga-
tions in the QMD model, however,show that differentpotentials,correspondingto differentequations
of state in nuclearmatter,producequantitativelyalmost the sameeffect.

We presentour main resultsin two setsof conclusions,one for fragmentformation andonefor the
nuclearequationof state.

Concerningfragmentproduction.
(a) The calculationreproducesall investigatedobservables,

• the fragmentyield,
• - the angulardistributionof fragments,
• the associatedmultiplicity of singles,
• the meanvelocity of fragments,
• the multiplicity distributionof fragmentsas a function of the associatedmultiplicity of fastparticles,
• the averagetransversemomentumof fragmentsin the reactionplane.

(b) Of theseobservablesonly the averagetransversemomentumis, asexpected,dependenton the
equationof stateabovethe 30% level. On the otherhand,this observableis also quite sensitiveto the
in-medium correctionsof the crosssection.So both dependenceshaveto be disentangledbefore this
observablecan be usedto pin down the compressibilityof nuclearmatter.

(c) The strongimpactparameterdependenceof the massyield curve rules out the conjecturethat
the powerlaw form of the inclusivemassyield curveprovidesa signaturethat the systemis closeto the
critical point of a liquid—gas phasetransition. The agreementof the inclusive massyield distribution
with a form expectedfor a systemclose to its critical point is purely accidental.

(d) We observea strong geometriccorrelation between the entranceand exit channelsof the
reaction.Nucleonsretain informationabouttheir initial position.Thisrules out the assumptionthat the
systemequilibratesglobally to some state similar to a compoundnucleus. If that were true, any
information about the initial state would be lost. Consequently,a thermodynamicalsingle source
approachto multifragmentationin heavyion reactionscannotbe consideredas adequate.

(e) Fragments2 � A ~ 30 stemfrom thesurfaceof the system.They separatefrom therestsystemat
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a very early time, i.e., whenthe densityis highest.They measurethe violenceof the reaction, i.e., the
numberof theseclustersstrongly decreasesas a function of the impactparameter.The mediummass
clustersare kicked off from the system as a result of the high densitywave and its repulsiveforce,
causedby the interpenetratingprojectile.

(f) At later timesa compound-nucleus-likeremnantis formed, which emits protonsand neutrons.
The decaychainof theseremnantsyields fragmentswith massesdown to A = 40. Theseheavyclusters
can be usedto determinethe impactparameterof the reaction.This methodis superiorto the method
usedup to now to measurethe multiplicity of singles.

Concerning the nuclear equation of state.
(g) For single nucleonswe see a 30% dependenceof the averagetransversemomentumon the

equationof state,a much lower value than the factor of two seenfor fragments.About the same
differenceis seenfor the differentcrosssectionsemployed.

(h) The pions arenot at all sensitiveto the equationof state.
(i) Twice as many kaonsareproducedwith a soft equationof stateas comparedwith ahardone.

Including the momentumdependenceof the interactionwe see a reductionby a factor of four.
(j) Even at almost central collisions (b = 3 fm) a systemas heavy as Au + Au does not come to

equilibrium. We seefragmentsemittedfrom well separatedtargetandprojectilesources.Thelargerthe
crosssection,the closerthe systemcomesto equilibrium. Hencethe rapidity distributioncanbeusedas
a measureof the in-medium crosssection.

(k) As a consequence,the observedtransversemomentumdependson the exactknowledgeof the
cross section. Before we can pin down the stiffness of the nuclear equation of state one has to
understandthe in-medium correctionof the nucleon—nucleoncrosssection.

To extractthe nuclearequationof statefrom experimentsa simultaneousmeasurementof several
variablesis necessary.Thereone shouldconcentrateon thosevariables,whicharesensitiveto only one
of the unknowninputs. The momentumdependenceof the potential can bestbe investigatedby the
cross section for kaon production.The ratio oK(Al + A1)Io-K(A2 + A2) with A1 being light andA2
being heavy also gives informationon the equationof state.This informationshouldbe supplemented
by transversemomentum measurementsof singles and medium mass clusters.Finally the rapidity
distribution of the nucleonshasto be measuredto reduce the uncertaintiesof the crosssection.

We have reported on the first steps towards the understandingof the equation of state. The
calculationsperformedso far hint at a stiffer equationof state than that obtainedin astrophysics.
However, a better understandingof the in-medium effects as well as more refined experimentsare
neededfor furtherprogress.Only combinedefforts from the experimentalandthe theoreticalside will
enableus to pin down the nuclearequationof stateby the analysisof heavyion collisions successfully.
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Note added in proof

After submissionof the manuscriptwe becameawareof QMD calculationsat very low energies
(EIN 20 MeV/n) of a Japanesegroup[T. Maruyamaetal., Phys. Rev. C 42 (1990) 386] andpreprints
KUNS 1028 and 1033 from Kyoto University.


