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Abstract
The aim of this study is to investigate the bouncing dynamics of a small elastic
ball on a rectangular stairway and to determine if its dynamics is chaotic. We
derive a simple nonlinear recursion for the coordinates of the collisions from
which the type of dynamics cannot be predicted. Numerical simulations
indicate that stationary bouncing always sets in asymptotically, and is typically
quasi-periodic. The dependence on the coefficient of restitution can be very
complicated, yet the dynamics is found to be nonchaotic. Only elementary
mathematics is required for the calculations, and we offer a piece of user-
friendly demo software on our website, http://crnl.hu/stairway, to facilitate
further understanding of this complex phenomenon.

Keywords: bouncing dynamics, stair, billiard, gravity, coefficient of restitu-
tion, quasi-periodic motion, attractors

(Some figures may appear in colour only in the online journal)

1. Introduction

In an Austrian high school textbook, the bouncing motion of a ball down a stairway is given
as an example of chaotic dynamics [1]. Although there is a broad amount of literature on the
bouncing dynamics of realistic balls [2–7], as a first attempt, here we study the simplest model
of bouncing down the stairs by considering a point-like ball, the bounces are assumed to
occur elastically with some energy loss. The investigation of the coefficient of restitution
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(COR) [8–14] and its dependence on different parameters is a current problem of interest. For
simplicity, we assume that the COR is constant during the entire bouncing dynamics and
takes on a positive value k less than unity.

The traditional direction of study for point-like balls bouncing with a constant COR is the
dynamics on a periodically vibrating horizontal plane. This is a paradigmatic example of
dissipative chaos, shedding light on aspects of the general validity of certain dynamical
systems [15–19]. Bouncing between nonmoving walls defines the broad problem of billiards
(see e.g. [20–23]), which are typically considered without any energy loss (k = 1), because
otherwise with the lack of driving force, any motion would ultimately stop. The literature is
much more restricted for billiards in the presence of gravity, some of which, such as wedge-
type billiards, are known to support chaotic dynamics [24, 25].

We consider a stairway which consists of horizontal and vertical parts only (see figure 1),
and define an unbounded billiard problem in the presence of gravity. As in billiards, no
friction is assumed between the ball or the stairway, and rotation can be neglected. Collisional
energy loss, representing the effect of dissipative processes within the ball via the COR, is
natural, and can compensate for the increase in kinetic energy as the height decreases. Thus, a
steady state might set in, supporting an ever-lasting translational motion.

An elementary definition of chaos states that chaos is a motion which is ‘irregular in
time; unpredictable in the long term, and sensitive to the initial condition; complex, but
ordered, in the phase space: it is associated with a fractal structure’ (for more details see the
textbook [23]). At first sight, it is hard to decide whether or not the bouncing dynamics is
chaotic: the planar, horizontal surface would suggest no chaos (because the surface would
behave as a plane mirror not producing any magnification, i.e. a loss of predictability, when
illuminated with light). The edges of the steps, however, could be seen as a source of chaos. A
detailed investigation of this elementary billiard problem has not yet been carried out. To our
knowledge, only the condition for periodic bouncing on every step has been given (see [8], pp
220–222, and [26]). Here we point out that such a motion can only occur with exceptional
parameters, and the typical behavior is much more involved, but nonchaotic. We offer an
exploration of the dynamics with arbitrary COR values as a useful project for undergraduates,
supported by a set of problems to solve, and a piece of demo software on the internet.

Figure 1. The trajectory of a ball bouncing down a stairway with tread L and rise M, and
the quantities characterizing the motion: the location of the nth collision is denoted by xn.
The vertical velocity after the bounce is vn, and the horizontal velocity is the constant u,
while the number of steps the ball jumps over between the nth and n 1st+ collision is Nn.
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2. The model

Let us consider a stairway with step tread L and rise M, tilted from left to right (figure 1).
Since the coefficient of restitution (COR) is less than 1, the vertical component v of the
incident velocity of the ball becomes k 1< times smaller during each bounce, while the
horizontal component u 0> remains constant.

Our goal is to find a relation between the location and velocity data of the nth and the
n 1st+ collision. To keep things simple, we place the origin of our coordinate system on the
left-hand edge of the step on which the collision occurs. (This means that we always shift the
coordinate x of the collision back to the L0,( ] interval.)

Let the coordinate of the nth collision be xn, and the vertical speed after the bounce be vn.
The height of the ball at time t after the bounce, measured from the surface of the step is:

y t v t
g

t
2

,n
2= -( )

while the horizontal distance from the origin is x t x utn= +( ) . To determine the time tnD
that has passed since the last collision, it is worth assuming that we know how many steps are
jumped over during this time. Let us call this integer Nn the jump number, which will be an
important variable in what follows.

For the calculation of tnD , we use the fact that at the next collision, that is n 1st+ , the
ball will hit the step at height y MNn= - , i.e. v t g t MN2n n n n

2D - D = -( )( ) , whence

t
v gMN v

g

2
.n

n n n
2

D =
+ +

The collision occurs with vertical velocity v g t v gMN2n n n n
2- D = - + . The rebound

velocity is k times the opposite of this velocity, thus the vertical component after the n 1st+
collision is:

v k v gMN2 . 1n n n1
2= ++ ( )

Horizontally, the ball is at a distance of x u tn n+ D from the origin, on its right. Nn is
none other than the number of times the tread L of a step can be included in this interval.
Substituting tnD ,

N
x u g v v gMN

L

2
, 2n

n n n n
2

=
+ + +⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( )( )
( )

where the square brackets represent the integer part. If equation (2) has several solutions, we
keep the smallest Nn. So Nn can be calculated from the data of the nth collision and the
parameters.

As the origin of the coordinate system is placed on the left-hand end of the step on which
the last collision occurs, the coordinate xn 1+ of the next bounce is the difference of the
horizontal displacement and LNn, that is:

x x
u

g
v v gMN LN2 . 3n n n n n n1

2= + + + -+ ( ) ( )

System (1)–(3) represents a discrete time dynamics which yields the location and velocity
coordinates xn 1+ and vn 1+ of the next collision based on the previous ones, x v,n n, and the
jump number Nn.
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3. Dimensionless form

It is worth rewriting the equation of motion in a simpler form, not depending separately, for
example, on the tread and rise of the steps, but only the absolute value of the slope m = M/L.
This can be obtained by dividing (3) by L, yielding the location coordinate measured in units
of tread, and by letting velocity vn appear in units of the constant horizontal velocity, u 0> ,
i.e. via the ratio v un

x

L

x

L

u

gL

v

u

v

u

gL

u
mN N

2
. 4n n n n

n n
1

2 2

2
= + + + -+ ⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟ ( )

Let us observe that besides m only one parameter, the combination gL u2, appears. From here
on, this dynamical parameter is referred to as the length parameter and is denoted by H.
Investigating the other two equations in a similar spirit, we find no further parameters.

Therefore, it is useful to rewrite all the equations for the dimensionless speed and
location by means of the transformations v u v , x L x :

v k v mHN2 , 5n n n1
2= ++ ( )

N x
H

v v mHN
1

2 , 6n n n n n
2= + + +

⎡
⎣⎢

⎤
⎦⎥( ) ( )

x x
H

v v mHN N
1

2 . 7n n n n n n1
2= + + + -+ ( ) ( )

It is clear from here that the dynamics depends on three independent parameters:

k m
M

L
H

Lg

u
, , ,

2
º º

the COR, k, the slope, m, and the length parameter, H (while the original set (1)–(3) contains
five parameters such as k M L u, , , and g). We shall call the steps long, if the length parameter
H is big enough, or more precisely (see problem 1) if H m2> .

Problem 1. In order to interpret the length parameter from another point of view, let us
show that a ball launched from the right end of a step with horizontal velocity u 0> will

collide with the next step at a location which is xi
m

H

2= times the tread. The steps of a

stairway of slope m are considered long if this ratio is smaller than one, namely if H m2> 4.

Generally, steps in buildings are twice as long as their height, hence we use slope
m 1 2= in what follows, and the COR will have a wide range of values. As for a classi-
fication with respect to the horizontal speed, long steps are natural to examine, on which, for
not very energetic motions, several bounces become possible before a jump onto the next step
occurs. Therefore we investigate the interval H 2, 8Î [ ]. The choice of H=4 is repre-
sentative for this class, and we shall provide all the numerical results for H=4. In this
baseline case H m2 4=( ) , meaning that in the case of problem 1, the first collision occurs at
the midpoint of the step.

Recursion (5)–(7) is nonlinear, therefore, it might support chaotic dynamics [23, 27]. In
the lack of general analytical results, numerical simulations are needed to decide if there exist
chaotic solutions in the parameter range investigated. Motivated readers may become better

4 Detailed solutions of the problems are available on the website http://crnl.hu/stairway.
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acquainted with the dynamics by running the programs available on the website: crnl.hu/
stairway to exhibit the motion of the ball with arbitrary parameters and initial conditions.

4. Simple periodic bouncing (period-one and period-two attractors)

With the typical values of the COR and initial conditions leading to a bouncing motion
without any sliding (for more details on sliding, see section 7), one finds that the dynamics
always reaches a stationary motion, and the ball bounces downwards with a constant average
velocity. Over the course of this motion the energy dissipated at the collisions equals the
decrease of the potential energy associated with the fall. The restitutional loss is a type of
dissipation and, as a consequence, the ball ‘forgets’ its initial conditions. Therefore, given any
set of initial conditions, ultimately the same type of permanent motion is generated. Thus the
balls are ‘attracted to’ a certain dynamical state, which we can term the attractor.

The numerical solution presented in figure 2 is periodic from about the fifth bounce. The
simplest attractor occurs here, which is the attractor of periodic bouncing with jump length
unity. Panel (b) shows that the series xn, vn, Nn converges towards a constant value, to a fixed
point.

It is worth mentioning that such periodic bouncing can be observed in the dynamics of
realistic balls, too. Because of their final extension, and as a consequence, of the possibility of
rotation, and also because of air resistance, our model does not hold for such balls; never-
theless there may be certain qualitative features in common. The demonstration experiment
shown in figure 3 illustrates that the attractor of periodic bouncing with the jump length of the
tread also exists for realistic balls.

Figure 2. Bouncing with k = 0.6 (m = 0.5, H= 4). (a) A trajectory starting with the
initial conditions x0 = 0.7, v 30 = (continuous curve, on the lower stairway the motion
from the upper part continues) and (b) the time series xn, vn, Nn of the bounces. In both
panels, the dashed curves represent the attractor, and the dashed horizontal lines
indicate the corresponding fixed point values reached after a short transient period. All
bouncings converge to the attractor of one-step jumps, where v 1.5* = and N 1* =
because of (8) and (9). The value of x* depends on the initial condition,
here x 0.592* = .
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Returning to our model, from recursion (5)–(7) one can see that the fixed points of the
velocity and the jump number are:

v m
k

k
2

1
, 8* =

-
( )

N
m

H

k

k

2 1

1
. 9* =

+
-

( )

Problem 2. Show that results (8) and (9) follow from equations (5)–(7). Of course, one
should assume exact repetitions, i.e. x x xn n 1 *= =+ , v v vn n 1 *= =+ , and N N Nn n 1 *= =+ .

Special consideration is needed to ensure that N* should be an integer, by definition.
Therefore, it is worth taking an integer value for N* and searching for the corresponding COR
value. It is clear from (9) that only the following discrete k values are possible:

k N
1

1
, 1, 2, .... 10N

NH

m
NH

m

2

2

=
-

+
= ( )

This can be called a spectrum of CORs, since periodic bouncing can only occur at discrete k
values, in a similar way to the discrete energy levels of the hydrogen atom [28–30], as
indicated graphically in figure 4. For H=4 (the baseline case), k 3 5 0.61 = = for the
periodic attractor jumping over one step, and k 7 9 0.772 = = for the periodic motion that
jumps over two steps.

Note that for length parameter H=1 the first element k1 of the spectrum (as well as the
corresponding v*) is zero: the simplest periodic bouncing with N=1 cannot occur. For the
range H 2, 8Î [ ] of the length parameters investigated, the k1 value falls into the interval

Figure 3.After some experimenting, one is able to find the initial conditions which lead
to the periodic motion of a ping-pong ball in the course of which it bounces on each
step once. The path of the ball is reconstructed here with red (diamond) symbols from a
video recording of the motion by means of the program tracker (http://physlets.org/
tracker/). The inset shows the parallax-corrected path. Data: L = 33 cm, M = 13 cm,
k = 0.8, u 0.5» m s–1.
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1 3, 7 9( ), i.e. in an intermediate and realistic range of CORs. This allows us to conveniently
investigate the phenomena characterizing both the k k1< and the k k1> regions, since
neither of them is too short.

Problem 3. Based on (10), what is the H parameter belonging to a periodic bouncing over N
steps?

Problem 4. What is the fixed point value v* of the vertical velocity on the Nth level of the
spectrum?

Problem 5. Figure 4 indicates that the spectrum gets more and more dense at high N values
(just like the spectrum of the hydrogen atom), as the values for k approach 1. Let us show that
in this region, the following holds with good accuracy:

k
m

H N
N1

4 1
, 1. 11N = -  ( )

Remark: The caption to figure 2 states that x* depends on the initial condition; this is true
for all kN values. The reason becomes clear when one studies figure 2(a) and notices that the
important characteristic of the attractor is the parabola arch of the bouncing motion. A given
value of N* and v* determines a given parabola arch; x* may not be unique, however. From
the ‘point of view’ of the ball, the floor under its attractor curve can be shifted to the left or
right, since it will still be bouncing on horizontal surfaces with the same height difference.
Hence different x* values might belong to the attractor determined by N* and v*.

It may happen that in a stationary motion, bouncing is repeated only after every second
collision. This means that before the first and the second collision, the ball jumps over N and
K steps, respectively (N K, are positive integer numbers), and this pattern is repeated ad
infinitum.

Figure 4. The kN spectrum of periodic bouncing over N steps. An increasing N results
in a more and more dense set for increasing kN values.
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It is also worth noting that these two-cycles exist only for exceptional k values deter-
mined by N and K. The COR values kN K, associated with these numbers are easy to deter-
mine. Among them, the smallest one is k1,2 (for H= 4 it takes the value k 0, 7151,2 = ) which
lies between the k1 and k2 COR of the simplest periodic bouncings.

Problem 6. Derive from (5)–(7) the ‘eigenvalue equation’ which determines the kN K, COR
spectrum of two-cycles.

5. Motion with arbitrary k values

With arbitrary COR values when k is not equal to the ones belonging to one- or two-cycles, a
long-term, quasi-periodic motion is found to set in, as figure 5 illustrates. The terminology
comes from the property of the motion not repeating itself exactly: it is only similar to
periodic motion (for a more detailed definition see [23, 27, 31]), and such dynamics are
known to be nonchaotic.

To understand the essence of this phenomenon, let us imagine that we begin with COR
k1. In this case, a simple periodic motion is generated: the ball bounces on each step, at the
same location and with the same velocity. By increasing the value of k somewhat, the jumps
become longer because of the smaller energy loss. Among the N=1 jumps, there will be
some N=2 jumps as well. By further increasing k, the number of N=2 jumps increases
monotonically compared to the ones with N=1, and in the end only N=2 remains. Here we
arrive at the case of k2. There is an intermediate value (but not the arithmetic mean of k1 and
k2) where the number of jumps with N=1 and N=2 are equal, and they alternate with one

Figure 5. The motion with k = 0.75 after the transients have died out (other parameters
are the same as in figure 2). Here, the trajectories are plotted between 500 and 1500
bounces in this representation of the attractor: after the third collision, the trajectories enter
the picture at the same height over step 0, where they previously left the right-hand edge
of the picture over step 3, again and again. Even when starting from different initial
conditions, the motion ends up conforming to this quasi-periodic dynamics. For this k,
k k k1,2 2< < , i.e. the COR is in between the values belonging to the N=1, K=2 two-
cycle and the N=2 one-cycle. As a consequence, during the quasi-periodic motion, the
ball jumps over one or two steps at once, the latter being more frequent since the long-
term average of the jump number is found to be N 1.747=¯ numerically. The
corresponding vn velocity time series is shown in the inset of the next figure.
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another. The quasi-periodic attractor is converted here into a two-cycle, with the corresp-
onding COR of k1,2.

These observations and the numerical evidence show that for two-cycle attractors only
K N 1= + is possible, in other words, the longer jumps of the two-cycles must not exceed
the length of the shorter one by two or more steps. Numerical evidence also indicates that no
cycle of length 3 or longer exists in the k�k1 range of the CORs. For every k in
k k kN N 1< < + (where N 1 ), the quasi-periodic motion is typical, and composed of jumps
of length N and N 1+ . As k increases, so does the number of N 1+ jumps compared to those
of N.

To characterize the process, it is useful to determine the average jump number N̄ on the
attractor, giving the number of steps that are jumped over by the ball on average between two
subsequent collisions. Figure 6 shows the smooth, monotonic increase of N k¯ ( ). Note that for
CORs belonging to one-cycles of jump N, this N is also the average jump number:
N k NN =¯ ( ) . For N 1 , when the kN are close to 1, the COR values become dense and
according to the inverse of (11), N m H k4 1 1= -¯ · ( ). The average jump number thus
increases proportionally to k1 1- -( ) .

6. Multiple bounces on a single step

In the region of small CORs, for k k1< new forms of motion appear as well. When looking
for two-cycles, Nn was never 0. For small CORs, however, this makes sense and indicates two

Figure 6. The average jump number N̄ on the attractor versus k, based on numerical
simulations for large CORs: k k1 (m = 0.5, H= 4). It can be clearly seen that N̄
increases monotonically with increasing k. Discrete dots mark the points kN, N, i.e. the
one-cycles with jump number N. The dashed line stands for the approximate relation
N k2 1 1= - -¯ ( ( )) , which is valid for large k (and this seems to be a rather good
approximation for the whole range). Naturally, for the N N, 1+ two-cycles
N k N N N1 2 1 2N N, 1 = + + = ++¯ ( ) ( ( )) , and these two-cycles also corre-
spond to certain points of the continuous curve, but we do not indicate them for better
visibility. The inset shows the velocity time series vn of the k = 0.75 quasi-periodic
attractor of the previous figure. It is clearly seen that the motion is almost repeated after
every fourth bounce, but the ‘outliers’ always prevent exact repetition.
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possible bounces on the same step. The two-cycle for which the ball jumps to the following
step, bounces on it twice, and this repeats (figure 7), is characterized by the indexes N=1,
K=0 or N=0, K=1. The corresponding COR value k k1,0 0,1= is found to be k 0.4051,0 =
for H = 4, and is well below k1. Since in this case the ball moves to the next step after only
two bounces, the average jump number is 1/2: N k 1 21,0 =¯ ( ) .

Problem 7. Derive the expression of k1,0 for arbitrary parameters.

For even smaller COR values, the ball may bounce three times before jumping to the
following step, where everything is repeated. When the ball bounces j times on a step ( j is an
arbitrary natural number) the motion is a j 1+( )-cycle repeating itself after j 1+ bounces.
The average step number is then j1 1+( ). The corresponding COR value (which decreases
with an increasing j) can be determined using the method previously indicated (see pro-
blem 11).

7. Sliding

In the case of sufficiently small CORs (strong dissipative losses), the ball, after a period of
bounces on different steps, might undergo an infinite number of collisions on a single step. At
the end of this process, the ball remains on the surface of the step, and as its horizontal speed
is constant, the subsequent motion should be interpreted as sliding in continuous time.
Iterations (5)–(7), characterizing the bouncing dynamics, ought to be augmented if one is
interested in the sliding sequence. (In the language of discrete time dynamics (5)–(7) the ball
appears to stop, since v 0n  and there is no displacement between the bounces for n  ¥;
the real and ‘iterational’ times become completely different, and the former appears to stop in
the latter5.) For simplicity’s sake, we do not analyze the details of the sliding, and stop

Figure 7. A double bounce on a single step. The attractor trajectory with k 0.4051,0 = ,
after the dying away of the transients (all the other parameters as in figure 2). The
bounce with any initial condition converges to a periodic attractor, a two-cycle, where
the ball bounces twice before moving onto the following step.

5 It follows from equation (3) that for bounces on the same step, i.e. with Nn = 0, x x u v g2n n n1 - =+ . For a large
number of collisions on the same step v 0n  , and the horizontal displacement x x xn n1D = -+ between subsequent
bounces approaches zero, i.e. the ball seems to stop in discrete time. Since the time t v g2 nD = between two
bounces also goes to zero, we nevertheless recover that the horizontal speed x t uD D =/ , is constant (this constant is
unity in dimensionless variables).

Eur. J. Phys. 38 (2017) 055003 M Gruiz et al

10



following the iterations after infinite bounces occur on a given step, considering the dynamics
to have reached the attractor of sliding.

Let the vertical velocity right after the first bounce on a given step be denoted by vi; the
total horizontal displacement after infinitely many collisions is then

x
v

H k

2 1

1
. 12iD =

-
( )

Problem 8. Derive relation (12).

If the first impact on a given step occurs at location xi, the condition for the set-up of
sliding is that the ball is still before the endpoint of the step of coordinate unity after an
infinite number of collisions, i.e. x x 1i + D < . Substituting relation (12), after rearrangement

v
H

k x
2

1 1 . 13i i< - -( )( ) ( )

Whether this inequality is fulfilled depends, with a given k, on the impact coordinate and
velocity, xi and vi, respectively. We consider our simulation to have reached the attractor of
sliding if inequality (13) holds for xi and vi upon the impact of a given step.

The critical COR value kc below which any initial condition leads, after transients, to
sliding can be determined based on the numerical evidence as follows. As the horizontal
velocity is constant, the ball leaves the previous step with a (dimensionless) horizontal
velocity of unity, and the arch of the oblique projection crosses the surface of the next step at
an xi value with a rebound velocity vi , with which the series of an infinite number of
collisions stops exactly at the edge of the step, i.e. inequality (13) is converted into an
equality. Thus, we obtain

m

H

k

k

2 1

1
1. 14c

c

+
-

= ( )

Problem 9. Derive relation (14).

Rearranging (14), the explicit result for kc is

k
1

1
. 15c

H

m

H

m

2

2

=
-

+
( )

For H=4, this yields k 1 3 0, 33c = = . For CORs smaller than kc, it is found to be true that
all motions end in sliding, i.e. long-term bouncing dynamics does not exist.

8. Motion with small k values

Decreasing k somewhat below k1 (the value belonging to the one-step periodic bouncing), we
still find that only a single asymptotic attractor exists: the bouncing motions6 from arbitrary

6 The previous arguments allow us to give a precise definition of the bouncing motion as dynamics for which
iteration (5)–(7) leads to nonzero velocities vn for n  ¥.
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initial conditions become qualitatively similar asymptotically. The attractor is typically quasi-
periodic and the numerically determined average jump number N̄ decreases with k (see
figure 8). There exists, however, a COR value k-, below which this does not hold, because for
certain initial conditions sliding sets in, and the quasi-periodic attractor of bouncing and the
attractor of sliding coexist. For H=4, numerics indicates that k 0, 382=- . In such cases, a
question arises regarding their basins of attraction. The basins can be determined by coloring
the points of the plane x v,0 0 of initial conditions according to the attractor to which the
motion emanating from them tends. The right-hand upper inset of figure 8 exhibits the basins
of attraction of bouncing and sliding in white and black, respectively, for k = 0.35 and H=4.
The gray triangle marks the region in which inequality (13) holds, and the initial condition
from here can only lead to sliding7. The smoothness of the boundaries indicates that not even
the transient form of chaos is present in the dynamics, since the fractal basin boundaries are
the consequences of nonattracting chaotic sets [23, 27, 32].

Figure 8. The average jump number N̄ on the attractor of bouncing motion versus k in
the range of small CORs (k k1 ), obtained numerically (m H1 2, 4= = ). Horizontal
dashed lines mark the values N 1 2=¯ , 1/3, ... 1/10, black dots represent the COR
values kj¢ belonging to period- j 1+( ) attractors. The value of k- is marked with a

vertical dashed line. The dotted curve denotes the approximate form of N k¯ ( ) valid
close to kc. The two insets on the left exhibit the quasi-periodic time series vn for a COR
value k = 0.35 (somewhat below k 0.3532¢ = ) and k = 0.337. On the right-hand side of
the upper panel, the basins of attractors of the coexisting bouncing and sliding motions
at k = 0.35 can be seen. Arrows point to the N 0, 298=¯ and N 0, 194=¯ values
belonging to the insets.

7 The gray triangle exists for any COR value and represents the initial conditions leading to sliding on the very first
step, which are therefore not of interest from the point of view of our investigation of bouncing motion. The basic
difference between the ranges k k> - and k k< - is that in the latter, permanent bouncing might coexist with motion
which is converted into sliding after a finite number of bounces on different steps. In the case of such coexistence, the
average jump number, N̄ , in figure 8 refers to that of the attractor of bouncing motion. When all initial conditions
lead to sliding, we take N 0=¯ , since this quantity yields the typical jump number between subsequent bounces; but
in such cases the total distance is less than 1, even after infinite bounces.
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Problem 10. Estimate the value of k- based on the fact that inequality (13) holds not only
for the initial conditions, but also for typical values on the attractor of the bouncing motion,
indicating that the dynamics might enter the region of the gray triangle. Hint: use the
observation that (8) provides a good approximation for the average velocity for any long-term
bouncing, and can thus be taken to represent typical values of vi, and 1/2 can be considered to
be the typical value of xi.

Below k- (but above kc), the change of the average jump number is not monotonic, but
the trend of N̄ is a decreasing one. It is surprising that long before reaching kc from above, the
option of a bouncing motion disappears in short COR intervals, and N 0=¯ . When k
decreases within such an interval, its end is designated by the sudden appearance of a finite N̄ ,
which is the local maximum. These N̄ values are the reciprocals of the integers and represent
particular periodic long-term bouncing motions: after a bounce with N=1, the ball collides
with the same step j times. The corresponding COR values are denoted by kj¢ and the average
jump number is, of course, N k j1 1j¢ = +¯ ( ) ( ). The longest such interval exists in between
k 0.35272¢ = and k = 0.3555, and the others repeat themselves with ever shorter lengths when
approaching kc from above. This accumulation can clearly be seen in figure 8.

Problem 11. Determine the COR values kj¢ based on the fact that the periodic time series of
Nn belonging to them can be chosen as N N N 0j0 1= = = = , N 1j 1 =+ , which is repeated
ad infinitum. Hint: use recursions (5)–(7), which become particularly simple for Nn = 0.

Problem 12. Determine the form of function N k¯ ( ) in the vicinity of kc based on the
accumulation of the COR values kj¢ in this region, i.e. for large j.

For k kc< only the attractor of sliding exists. Reaching the value of kc from below,
bouncing motions appear ‘suddenly’: the curve N k¯ ( ) starts with an infinite slope. The
appearance of bouncing motion at kc resembles the change characterizing the phase transi-
tions of the second order or, in the language of dynamical systems, bifurcations [27, 31].

9. Summary

The aim of our study has been to investigate whether the bouncing motion of a ball down a
stairway is chaotic—at least in the simplest model of this phenomenon. Interestingly, com-
plex behavior has only been found in the regime of small CORs, i.e. strong dissipation. The
recursive dynamics (5)–(7) is nonlinear, designated by the opportunity for coexisting
attractors, and the bifurcation occurring at kc. The basin boundaries are, however, smooth, as
the inset of figure 8 illustrates. The function N k¯ ( ) for k k1< is not smooth: it exhibits sudden
jumps at discrete points. We investigated how the difference of any of the coordinates
between a pair of long lasting bouncing motions changes in time, starting from nearly
identical initial conditions. Instead of a rapid (exponential) increase, we observed a decrease
on all occasions: the average Lyapunov exponent [23, 27] is found to be negative for any k in
the investigated parameter range. We thus conclude that the dynamics of the investigated
model is not chaotic. The dynamics is nevertheless complex, which is reflected by the fact that
analytical forms are not found for many quantities, among others for the average jump
number N̄ , and numerical simulations are unavoidable. This complexity suggests that the
dynamics might turn chaotic after minor modifications to the shape of the step. In fact, a
rounded transition from a horizontal surface to a vertical one at the edge of the steps would
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turn the billiard into a scattering (convex) billiard. Thus, in the case of a sufficiently large
radius of curvature, one expects the appearance of robust chaos in the smoothed-out billiard
problem.
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