Vector-valued modular forms and generalized Moonshine

Dubrovnik, June 2009

Introduction

Modular forms: holomorphic functions $f: \mathbf{H} \to \mathbb{C}$ such that $f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^w f(\tau)$

for all $\binom{ab}{cd} \in SL_2(\mathbb{Z})$ and some (even integer) number w.

 $f(\tau)$ is periodic $\Rightarrow q$ -expansion (with $q = e^{2\pi i \tau}$)

$$f = \sum_{n \in \mathbb{Z}} f_n q^n$$

Classically: holomorphicity at $\tau = i\infty$.

More generally: finite order pole.

Example: Eisenstein series (for k > 1)

$$E_{2k}(q) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

where

$$\sigma_k(n) = \sum_{d|n} d^k$$

and B_k is the k-th Bernoulli number.

$$E_{2k}\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{2k} E_{2k}(\tau)$$

Any holomorphic modular form is a polynomial in E_4 and E_6 .

Examples: $E_8 = E_4^2$ and $E_{10} = E_4 E_6$.

Discriminant form (weight 12)

$$\Delta = \frac{1}{1728} \left(E_4^3 - E_6^2 \right) = q \prod_{n=1}^{\infty} \left(1 - q^n \right)^{24}$$

Doesn't vanish on **H**!

Hauptmodul (weight 0)

$$J(q) = \frac{E_4^3}{\Delta} - 744 = q^{-1} + 196884q + 21493760q^2 + \dots$$

Univalent map $J: X(1) \to \mathbb{CP}^1$.

Any modular form of weight 0 is a polynomial in J(q).

Applications:

- function theory
- algebraic geometry (STWW)
- number theory (CFT)
- combinatorics (partitions)
- topology (elliptic cohomology)

- algebra (VOA-s)
- physics (string theory and 2d CFT)
- Moonshine

Need for a theory of vector-valued modular forms.

Vector-valued modular forms

Holomorphic maps $\mathbb{X}\colon \mathbf{H} \to \mathbb{C}^d$ such that

$$\mathbb{X}\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{w} \rho\left(\frac{a\,b}{c\,d}\right) \mathbb{X}(\tau)$$

 ρ is a suitable (projective) representation of $SL_2(\mathbb{Z})$ (more precisely, an ordinary representation of B_3).

Exponent matrix: $\exp(2\pi i\Lambda) = \rho\binom{11}{01}$.

q-expansion:

$$\exp(-2\pi i \Lambda \tau) \mathbb{X}(\tau) = \sum_{n \in \mathbb{Z}} \mathbb{X}[n] q^n$$

X meromorphic at $\tau = i\infty$ if singular part $\mathfrak{PX} = \sum_{n < 0} X[n] q^n$ is a finite sum.

Thanks to Δ , general case may be reduced to w = 0, in which case ρ is a true representation of $PSL_2(\mathbb{Z})$.

 $\mathcal{M}(\rho)$: linear space of weight 0 forms.

Singular part map $\mathcal{P}: \mathcal{M}(\rho) \to \mathbb{C}[q^{-1}]^d$ is affected by choice of Λ .

Is there a "best" choice?

Trace condition: $\ensuremath{\mathcal{P}}$ is bijective if and only if

$$\operatorname{Tr}(\Lambda) = d - \frac{\alpha}{2} - \frac{\beta_1 + 2\beta_2}{3}$$

 $d, \alpha, \beta_1, \beta_2$: nonnegative integers (signature of ρ).

The fundamental matrix

Multiplication by J(q) takes $\mathcal{M}(\rho)$ to itself \Rightarrow

 $\mathcal{M}(\rho)$ is a $\mathbb{C}[J]$ -module (of finite rank)

Fundamental matrix $\Xi(q)$:

1. Columns generate $\mathcal{M}(\rho)$;

2. $\Xi(q) \rightarrow q^{\Lambda-1}$ as $q \rightarrow 0$.

Exists and is unique provided \mathcal{P} is bijective.

The inversion formula

Determinantal formula:

$$\det \Xi(q) = \left(\frac{E_4(q)}{\Delta(q)^{1/3}}\right)^{\beta_1 + 2\beta_2} \left(\frac{E_6(q)}{\Delta(q)^{1/2}}\right)^{\alpha}$$

 $\Rightarrow \Xi(q)$ is invertible (except at elliptic points).

Transformation rule:

$$\Xi\left(\frac{a\tau+b}{c\tau+d}\right) = \rho\left(\frac{a\,b}{c\,d}\right)\Xi(\tau)$$

 \Rightarrow each component of $\mathcal{J}X = \Xi(q)^{-1}X(q)$ is a polynomial in J(q).

Three alternative representations:

1. polynomial representation $\mathcal{J}\mathbb{X} = \Xi(q)^{-1}\mathbb{X}(q);$

2.
$$q$$
-expansion $\mathbb{X}(q) = \sum_{n \in \mathbb{Z}} \mathbb{X}[n] q^{\Lambda+n}$;

3. singular part
$$\mathfrak{PX} = \sum_{n < 0} \mathbb{X}[n] q^n$$

Inversion formula:

$$\int \mathbb{X}(w) = \frac{1}{2\pi i} \oint \frac{J'(q)}{w - J(q)} \Xi(q)^{-1} q^{\Lambda} \mathfrak{P} \mathbb{X}(q) dq$$

9

The compatibility equation

Should we know $\Xi(q)$, we would know everything about $\mathcal{M}(\rho)$.

How can we determine $\Xi(q)$?

 $\mathcal{M}(\rho)$ is a differential module: the (universal) differential operator

$$\nabla = \frac{E_{10}(q)}{\Delta(q)} q \frac{\mathsf{d}}{\mathsf{d}q}$$

maps $\mathcal{M}(\rho)$ to itself \Rightarrow the matrix entries of

 $\mathcal{D}(q) = \Xi(q)^{-1} \nabla \Xi(q)$

are (first order) polynomials in J(q).

 $\mathcal{D}(q) = J(q) \left(\Lambda - 1 \right) + \Lambda \mathcal{X} - (\mathcal{X} + 240)(\Lambda - 1)$

Characteristic matrix ("constant part" of Ξ):

$$\mathcal{X} = \lim_{q o 0} \left(q^{ extsf{-} oldsymbol{\Lambda}} oldsymbol{\Xi}(q) - q^{ extsf{-} 1}
ight)$$

The pair (Λ, \mathcal{X}) characterizes the representation ρ .

Compatibility equation

$$\nabla \Xi(q) = \Xi(q) \mathcal{D}(q)$$

First order (Fuchsian) ODE !

Boundary condition: existence of \mathcal{X} .

May be solved, e.g. recursively.

How can we determine \mathcal{X} ?

1. Rademacher-Petersson formula

$$\mathcal{X}_{ij} = 2\pi \sqrt{\frac{1 - \Lambda_{jj}}{\Lambda_{ii}}} \sum_{n=1}^{\infty} \frac{1}{n} I_1 \left(\frac{4\pi}{n} \sqrt{\left(1 - \Lambda_{jj}\right) \Lambda_{ii}} \right) \mathcal{S}_{ij}(n)$$

Problems: poor convergence, arithmetic properties, computation of Kloosterman-sums.

2. Invariant theory

Polynomial invariants (covariants) of $\rho \rightarrow$ polynomial relations between the matrix elements of $\Xi(q)$ and \mathcal{X} .

Problem: hard to compute.

3. Spectral condition

The matrices

$$\mathcal{A} = \frac{31}{36} \left(1 - \Lambda \right) - \frac{1}{864} \left(\mathcal{X} + \Lambda \mathcal{X} - \mathcal{X} \Lambda \right)$$

and

$$\mathcal{B} = \frac{41}{24} \left(1 - \Lambda \right) + \frac{1}{576} \left(\mathcal{X} + \Lambda \mathcal{X} - \mathcal{X} \Lambda \right)$$

satisfy the monodromy equation

$$\mathcal{A}(\mathcal{A}-1) = \mathcal{B}(\mathcal{B}-1)(\mathcal{B}-2) = 0$$

System of quadratic equations for \mathcal{X} (given Λ).

Overdetermined for d < 6.

Example: the Ising model $(c = \frac{1}{2})$. Signature: (3, 1, 1, 1).

$$\Lambda = \frac{1}{48} \begin{pmatrix} 47 \\ 23 \\ 2 \end{pmatrix} \qquad \rho \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}$$

$$q^{-\Lambda} \Xi(q) = q^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2325 & 94208 \\ 1 & 275 & -4096 \\ 1 & -25 & -23 \end{pmatrix} +$$

 $+q \begin{pmatrix} 1 & 60630 & 9515008 \\ 1 & 13250 & -1130496 \\ 1 & -4121 & 253 \end{pmatrix} +q^2 \begin{pmatrix} 1 & 811950 & 356765696 \\ 1 & 235500 & -63401984 \\ 1 & -102425 & -1794 \end{pmatrix} + \dots$

Moonshine

McKay: 196884 = 196883 + 1.

Conway and Norton: Monstrous Moonshine.

Frenkel, Lepowsky and Meurman: Moonshine module.

Borcherds: proof of the Moonshine conjectures.

Norton: generalized Moonshine.

Dixon, Ginsparg and Harvey: relation to orbifold CFT.

Generalized Thompson-McKay series: $Z(g,h|\tau)$ is the graded trace of h in the g-twisted module (gh = hg).

- 1. $Z(g^z, h^z | \tau) = Z(g, h | \tau)$ for all $z \in \mathbb{M}$;
- 2. $Z(g^{-1}, h^{-1}|\tau) = Z(g, h|\tau);$

3. Equivariance

$$Z\left(g,h\left|\frac{a\tau+b}{c\tau+d}\right) = \alpha Z\left(g^ah^b, g^ch^d|\tau\right)$$

for $\binom{ab}{cd} \in SL_2(\mathbb{Z})$ and some cocycle factor α ;

4. $Z(g,h|\tau)$ is either constant or a Hauptmodul.

Replication

n-fold symmetric product: orbifold with respect to all permutations of n identical copies of the Moonshine module.

Automorphism group contains the Monster (diagonal action) \rightsquigarrow higher Thompson-McKay series $Z^{(n)}(g,h|\tau)$.

$$Z^{(n)}(g,h|\tau) = \frac{1}{n!} \sum_{\substack{xy=yx\\x,y\in S_n}} \prod_{\xi\in\mathcal{O}(x,y)} Z\left(g^{\lambda_{\xi}}, g^{\kappa_{\xi}}h^{\mu_{\xi}} \left| \frac{\mu_{\xi}\tau + \kappa_{\xi}}{\lambda_{\xi}} \right)\right)$$

 $\lambda_{\xi}, \mu_{\xi}, \kappa_{\xi}$: integers characterizing the orbit $\xi \in \mathcal{O}(x, y)$.

Replication: $Z^{(n)}(g,h|\tau)$ is a polynomial in $Z(g,h|\tau)$.

For each n, the $Z^{(n)}(g,h|\tau)$ form a vector-valued modular form, with same automorphy factor as $Z(g,h|\tau)$.

But: in this monomial basis the Dehn-twist is not diagonal \rightsquigarrow change to primary basis.

$$Z^{(n)}(g,h|\tau) = \sum_{i} Z_i^{(n)}(\tau) \psi_i(g,h)$$

By general teory, there exists $\mathcal{Z}_i^{(n)}(J) \in \mathbb{C}[J]$ such that

$$\left| Z^{(n)}(g,h|\tau) = \sum_{i} \mathcal{Z}_{i}^{(n)}(J) \boldsymbol{\zeta}_{i}(g,h|\tau) \right|$$

for some 'elementary' Thompson-McKay series $\zeta_i(g,h|\tau)$.

Differential equation

$$\nabla \zeta_i(g,h|\tau) = \sum_j \mathcal{D}_{ji}(\tau) \, \zeta_j(g,h|\tau)$$

Boundary condition: behavior of $\zeta_i(g,h|\tau)$ as $\tau \to i\infty$.

Product of two TM-series is again a TM-series (if no cocycle factors) \Rightarrow

$$\zeta_i(g,h|\tau)\,\zeta_j(g,h|\tau) = \sum_k C_{ij}^k(\tau)\,\zeta_k(g,h|\tau)$$

where the coefficients C_{ij}^k are polynomials in $J(\tau)$.

Example: $G = \mathbb{Z}_2$.

$$q^{-\Lambda} \Xi(q) = q^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} -24 & 24 & 1 & 1 \\ 4096 & 276 & 0 & 0 \\ 98304 & -2048 & 0 & 0 \\ 98304 & -2048 & 0 & 0 \end{pmatrix} +$$

 $q \begin{pmatrix} 98580 & 2048 & 0 & 0 \\ 1228800 & 11202 & 0 & 0 \\ 10747904 & -49152 & 0 & 0 \\ 10747904 & -49152 & 0 & 0 \end{pmatrix} + q^2 \begin{pmatrix} 10745856 & 49152 & 0 & 0 \\ 74244096 & 184024 & 0 & 0 \\ 432144384 & -614400 & 0 & 0 \\ 432144384 & -614400 & 0 & 0 \end{pmatrix} + \dots$

20

	ζ_1	ζ_2	ζ_3	$ \zeta_4 $
(1,1)	J(au)-24	24	2	1
(1,x)	$T_{2B}(au) - 24$	$T_{2A}(\tau) - T_{2B}(\tau) + 24$	0	1
(<i>x</i> , 1)	$T_{2A}\left(\frac{\tau}{2}\right) - T_{2B}\left(\frac{\tau}{2}\right)$	$T_{2B}\left(\frac{\tau}{2}\right)$	0	1
(x,x)	$T_{2A}\left(\frac{\tau+1}{2}\right) - T_{2B}\left(\frac{\tau+1}{2}\right)$	$T_{2B}\left(\frac{\tau+1}{2}\right)$	0	1

 $T_{2A} = q^{-1} + 4372q + 96256q^2 + \dots$ and $T_{2B} = q^{-1} + 276q - 2048q^2 + \dots$

*	ζ_1	ζ_2	ζ_3	ζ_4
ζ_1	$(J-24)\zeta_1 - 4096\zeta_2 + 98304(\zeta_3 - \zeta_4)$			
ζ_2	$24\zeta_1 - 2048\zeta_3 + 4096\zeta_4$	$-\zeta_1 + (J+552)\zeta_4$		
\$ 3	$(J-24)\zeta_3$	24 ζ_3	2ζ ₃	
ζ_4	ζ_1	ζ_2	ζ_3	ζ_4

Outlook

- vector-valued modular forms pretty much under control
- explicit computational procedures
- applications to Moonshine

and open questions

- automorphic forms for other groups
- Hecke operators
- Jacobi and Siegel forms