
1 HOMOMORPHIMS

Fundamental concepts

1 Homomorphims

If G and H are groups, then a homomorphism from G to H is a map

ϕ :G→H that satis�es

ϕ(xy) = ϕ(x)ϕ(y)

for all x, y∈G, i.e. the image of a product is the product of the images.

Isomorphisms are nothing but bijective homomorphisms.

Homomorphisms preserve identity elements, i.e. ϕ(1G) = 1H , and com-

mute with taking inverses, i.e. ϕ
(
x-1

)
=ϕ(x)

-1
for x∈G.
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Homomorphisms can be composed: if ϕ :G→H and ψ :H→K are

homomorphisms, then their composition

ψ ◦ ϕ :G→ K

g 7→ ψ(ϕ(g))

is a homomorphism from G to K.

The image of a homomorphism ϕ :G→H is the subset ϕ(G)={ϕ(x)|x∈G}

of H that consists of the images of the elements of G, while its kernel

is the collection of elements mapped onto the identity element of H, i.e.

the subset kerϕ={x∈G |ϕ(x)=1H} of G.

A homomorphism ϕ :G→H is surjective precisely when ϕ(G)=H, and

it is injective when kerϕ=1G.
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2 Subgroups

A subset H of elements of a group G is a subgroup, denoted H < G, if

the inverse and the product of any of its elements also belongs to H.

Remark. The above conditions insure that the identity element of G is

contained in each of its subgroups.

The restriction of the group operation of G to the subgroup H < G is a

binary operation that satis�es the group axioms (associativity, existence

of an identity element and of inverse elements), hence a subgroup is a

group on its own.
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Examples:

1. the set {1G} consisting of the identity element alone is a subgroup,

the trivial subgroup of G;

2. the additive group (2Z,+) of even integers is a subgroup of the

additive group (Z,+) of all integers;

3. the group U(1)={z∈C | |z|=1} of complex phases (numbers of unit

modulus) is a subgroup of the multiplicative group C×=C\{0} of

non-zero complex numbers;

4. the group of orientation preserving symmetries (i.e. rotations) of

a regular n-gon form a subgroup Cn of the dihedral group Dn;
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5. the centralizer CG(X) = {y∈G |xy=yx for all x∈X} of a subset

X ⊆ G, consisting of those group elements that commute with

all elements x ∈ X, is a subgroup of G, and in particular, the

center Z(G) = CG(G), consisting of those elements that commute

with every other element, is an Abelian subgroup (elements and

subgroups of the center are termed central);

6. the image ϕ(G) of a homomorphism ϕ :G→H is a subgroup of its

range, i.e. ϕ(G) < H;

7. the kernel kerϕ={x∈G |ϕ(x)=1H} of a homomorphism ϕ :G→H

is a subgroup of its domain, i.e. kerϕ < G.
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Subgroups of the dihedral group D3:

· trivial subgroup {1} (order 1)

· subgroups Si = {1, σi} ∼= Z2 for i=1, 2, 3 (order 2)

· rotation subgroup C3 =
{
1, C, C-1

} ∼= Z3 (order 3)

· whole group D3 =
{
1, C, C-1 , σ1, σ2, σ3

}
(order 6)

Remark. The order of every subgroup divides 6.

The subgroups of a given group form a partially ordered set because

K<H and H<G implies K<G

i.e a subgroup of a subgroup is itself a subgroup.
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The intersection of subgroups is again a subgroup, hence the subgroups of

G form a lattice (the subgroup lattice LG): any collection S of subgroups

has both a greatest lower bound (their intersection) and a lowest upper

bound (the intersection of all subgroups containing the elements of S).

The subgroup lattice can be visualized by its Hasse-diagram, a graph

with vertices corresponding to the di�erent subgroups H < G, with

vertices H and K connected by an edge if H < K and if H < L < K

implies that either L=H or L=K (in other words, if K covers H), with

the convention that K lies above H in the diagram.

Remark. The bottom vertex of the Hasse-diagram is the trivial subgroup,

while the top vertex is the whole group.
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Figure 1. Subgroup lattice of the dihedral group D6
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Note that every subgroup of a symmetric group of �nite degree is �nite;

conversely, one has

Cayley's theorem: every �nite group is isomorphic to a subgroup of

some symmetric group of �nite degree.

This result implies that the study of �nite groups could be reduced to

that of groups of permutations , but this is not always convenient, for

the degree of the corresponding symmetric group might be too big: for

example, Cayley's theorem allows to view a group of prime order p as

a subgroup of the symmetric group Sp of degree p, but it is much more

convenient to represent it as the additive group of integers modulo p.
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3 Generating sets

A subgroup H < G is generated by a set G ⊆ G of group elements �

equivalently, G is a generating set (aka. system of generators) for H � if

H is the smallest subgroup of G containing G (i.e. H is the intersection

of all subgroups of G containing G ).

The subgroup generated by G ⊆ G, denoted ⟨G ⟩, contains all possible

products of elements of G , together with their inverses.

A group (subgroup) is �nitely generated if it has a �nite generating set,

and cyclic if it can be generated by a single element.
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Remark. A group (subgroup) may have many di�erent generating sets,

since any set of group elements that contain a generating set is itself

a generating set; in particular, the system of all group elements is a

generating set for the whole group.

The major use of generating sets is e�ective group description, i.e. the

speci�cation of a particular group as a subgroup of some bigger, well

understood group via a generating set.

For example, a group G that consists of permutations of a set X is a

subgroup of the symmetric group Sym(X) over X, hence it can be fully

speci�ed by giving a generating set G ⊆Sym(X) for which G= ⟨G ⟩, e.g.

S3=⟨(1, 2), (1, 2, 3)⟩ and A4=⟨(1, 2, 3), (2, 3, 4)⟩.



4 COSETS

4 Cosets

A coset of a subgroup H < G is a set of group elements of the form

xH = {xh |h∈H} left

Hx = {hx |h∈H} right

for some x∈G (with 1H=H1=H the trivial coset).

Unless G is Abelian, left and right cosets usually di�er, i.e. xH ̸=Hx.

The subgroup H < G is normal, denoted H◁G, if all left and right cosets

coincide, i.e. xH=Hx for all x∈G.

The coset spaces G/H = {xH |x∈G} and H\G= {Hx |x∈G} are the

collections of left and right cosets of H.
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Examples:

1. the cosets (left or right) of the trivial subgroup {1G} < G are the

one element sets {x} for x∈G;

2. (2Z,+) < (Z,+) has two cosets (even vs odd numbers);

3. the coset space of C×/U(1) is in one-to-one correspondence with

the positive real numbers;

4. the rotation subgroup Cn ◁Dn has two cosets, the trivial coset

consisting of orientation preserving symmetries (rotations), and

the coset σ1Cn = {σ1, . . . , σn} consisting of orientation reversing

symmetries (re�ections).
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Remark. There is a bijective correspondence between G/H and H\G,

hence it is enough to study left cosets.

The index [G :H] of a subgroup H<G is the cardinality of its coset space

[G : H] = |G/H| = |H\G|

Poincaré's theorem: the intersection of two �nite index subgroups

is again of �nite index.

The cosets of a subgroup equipartition the set of group elements: each

group element belongs to exactly one coset, and each coset has the same

cardinality (equal to that of the trivial coset, i.e. the order of H).
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Lagrange's theorem: if G is �nite and H<G, then |G|=[G :H]|H|.

In particular, the order of any subgroup divides the order of the group.

Corollary. Groups of prime order are cyclic.

Proof. If G has prime order |G|= p, and x∈G is a non-trivial element

(i.e. x ̸= 1G), then the subgroup ⟨x⟩ generated by x has at least two

di�erent elements, hence its order is � by Lagrange's theorem � a divisor

of p greater than 1, consequently it equals p, and ⟨x⟩ contains all of the

group elements, hence G=⟨x⟩.

Remark. Not only the order, but the index of a subgroup is also a divisor

of the order of the whole group.
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5 Normal subgroups

A subgroup N < G is a normal subgroup, denoted N ◁ G, if its right

cosets coincide with its left cosets, i.e. xN=Nx for all x∈G.

The trivial subgroup and the whole group are always normal: a group

which has no other normal subgroup is called simple.

Simple groups may be considered as the elementary ('atomic') constituents

of which more general groups may be built up, and many questions may

be reduced to the case of simple groups.

All subgroups of an Abelian group are normal, hence a �nite Abelian

group is simple if and only if it is cyclic of prime order.
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Classi�cation of �nite simple groups:

1. the cyclic groups Zp of prime order;

2. the alternating groups An for n > 4;

3. the �nite Lie groups (�nite analogs of Lie groups that form � apart

from some exceptional cases � several in�nite families, together

with suitable twisted versions);

4. 26 sporadic groups, including the famous Mathieu groups and

the Monster M (with more than 1058 group elements).
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The intersection of normal subgroups is normal again, hence the normal

subgroups form a (modular) sublattice of the subgroup lattice.

Congruence relation: equivalence relation compatible with product

x1 ≡ y1

x2 ≡ y2

}
⇒ x1x2 ≡ y1y2

One-to-one correspondence between normal subgroups and congruence

relations: the cosets of a normal subgroup are the equivalence classes of

a congruence relation, while the congruence class {x∈G |x ≡ 1G} of the

identity element is a normal subgroup.
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6 Factor groups

For two subsets X,Y ⊆G of group elements let

XY = {xy |x∈X, y∈Y } ⊆ G

Associative operation on subsets, but inverses exist only for singletons.

The product of cosets of a subgroup is usually the union of several cosets,

but for a normal subgroup, the product of cosets is a single coset!

For a normal subgroup N◁ G and group elements x, y∈G

(xN)(yN) = (xy)N

Factor group G/N : collection of cosets of the normal subgroup N ◁ G

with the above product (with the trivial coset as identity element).
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Examples:

1. the factor group G/ {1G} is isomorphic to G;

2. C×/U(1) is isomorphic to the multiplicative group of positive real

numbers, since any z ∈C× has a polar decomposition z= ru with

r>0 and u∈U(1);

3. the factor group Dn/Cn is isomorphic to Z2;

4. An is a normal subgroup of index 2 in Sn, and Sn/An
∼= Z2.

Remark. In general, if p denotes the smallest prime divisor of the order,

than any subgroup of index p is normal, and the corresponding factor

group is isomorphic with Zp.
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Correspondence theorem: subgroups of the factor group G/N are of

the form H/N , where H<G is a subgroup of G containing the normal

subgroup N (with normal subgroups corresponding to normal ones).

In other words, the (normal) subgroup lattice of the factor group G/N

is completely determined by the (normal) subgroup lattice of G.

Isomorphism theorems:

1. if N◁ G and H<G then N◁ NH<G, N∩H◁H and

H/(N∩H)∼=NH/N

2. if K◁N◁ G and K◁G, then N/K◁ G/K and

(G/K)/(N/K)∼=G/N
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7 Subnormal series and soluble groups

A subnormal series is a �nite sequence of subgroups

G=G0 ▷ G1 ▷ · · · ▷ Gn={1}

where each term is a normal subgroup of the preceding one.

A composition series is a subnormal series where all factor groupsGi−1/Gi

(the composition factors) are simple groups.

Example: S4 ▷A4 ▷V▷Z2 ▷{1}, with respective factor groups (isomorphic

to) Z2, Z3, Z2 and Z2.

Composition series provide (in some sense) the dissection of group 'molecules'

into their 'atomic constituents' (simple groups).
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Jordan-Hölder theorem: if a group has several composition series,

then all have the same length, and their composition factors coincide.

All �nite groups have a composition series (possibly several), but in�nite

ones (e.g. the additive group of integers) not necessarily.

A group is soluble if it has a subnormal series where all factor groups

Gi−1/Gi are Abelian (commutative).

Remark : by the above example, the group S4 is soluble.

Soluble groups play a prominent role in Galois theory (solving polynomial

equations by radicals), di�erential equations (solubility by quadratures),

algorithmic methods, etc.
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Solubility is a kind of relaxed commutativity, in particular all subgroups

and factor groups of a soluble group are themselves soluble.

Feit-Thompson theorem: �nite groups of odd order are soluble.

Remark : Sn is soluble only for n≤4, explaining the Abel-Ru�ni theorem

(only equations of degree less than 5 can be solved by radicals).

The commutator of the group elements x, y∈G is the group element

[x, y]=x-1y-1xy

The subgroup G′ = ⟨{[x, y] |x, y∈G}⟩ generated by all commutators is

the commutator subgroup (aka. derived subgroup) of G.
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Two group elements commute i� their commutator equals the identity,

hence G′ is trivial precisely when G is Abelian.

The commutator subgroup G′ is always a normal subgroup of G, and

the factor group G/G′ is always Abelian (what is more, it is the smallest

normal subgroup N ◁ G such that G/N is commutative ).

Derived series

G=G0 ▷ G1 ▷ · · · ▷ Gi

with Gi+1=G
′
i (need not terminate in the trivial subgroup).

A group G is soluble i� its derived series is subnormal, i.e. reaches the

trivial subgroup in a �nite number of steps.



8 THE HOMOMORPHISM THEOREM

8 The homomorphism theorem

For a normal subgroup N◁ G, the natural projection

πN :G→ G/N

x 7→ xN

is a homomorphism with kernel equal to N .

Homomorphism theorem: the kernel of a homomorphism ϕ :G→H

is a normal subgroup, kerϕ ◁ G, and its image is isomorphic with the

corresponding factor group, ϕ(G) ∼= G/kerϕ.

Up to isomorphism, the homomorphic images (an external attribute) of

a given group coincide with its factor groups (an internal attribute).
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9 Cyclic (sub)groups

The powers of the group element x∈G are de�ned recursively as x1=x

and xn+1 = xxn for an integer n; in particular, x0 = xx-1 = 1G and

x−n=
(
x-1

)n
=(xn)

-1
for all n∈Z.

Since the multiplication of powers corresponds to the addition of their

exponents, the smallest subgroup containing x∈G (the cyclic subgroup〈
x
〉
generated by it) has as elements its di�erent powers:

〈
x
〉
={xn |n∈Z}.

Remark : any cyclic group is Abelian because the addition of integers is

commutative.
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The map ϕx :Z→G that assigns to each integer n the nth power of x∈G,

i.e. ϕx(n)=x
n, is actually a homomorphism

ϕx(n+m) = xn+m = xnxm = ϕx(n)ϕx(m)

The image of ϕx consists of all powers of x, hence〈
x
〉
= ϕx(Z) ∼= Z/ kerϕx

according to the homomorphism theorem; in particular, the index [Z :kerϕx]

equals the order of x∈G, i.e. the order of the cyclic subgroup
〈
x
〉
<G.

A subgroup H of the additive group (Z,+) of integers is either trivial or

consists of the di�erent multiples of some positive integer n (equal to its

index): H=nZ={nk | k∈Z}.
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Since Z/nZ∼=Zn (the additive group of residue classes modulo n)

· if the order of x∈G is in�nite, then kerϕx={0}, and
〈
x
〉
is isomor-

phic to Z, the additive group of integers (in�nite cyclic case);

· if the order of x∈G is a �nite number n, then kerϕx is a subgroup

of Z of index n, hence kerϕx=nZ and
〈
x
〉
is isomorphic to Zn.

Structure theorem of cyclic groups: the order of a cyclic

group is either �nite or countably in�nite, and two cyclic groups

are isomorphic precisely when they have the same order.
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10 Direct product of groups

The direct product G×H of the groups G and H is a new group, whose

elements are ordered pairs (x, y) with x ∈G and y ∈H, endowed with

component-wise multiplication

(x1, y1) (x2, y2) = (x1x2, y1y2)

G×H has order |G×H|= |G||H|, its identity element is (1G,1H), and

inverses are given by (x, y)
-1
=
(
x-1, y-1

)
.

Considered as a binary operation between isomorphism classes of groups,

the direct product is commutative and associative

G1×G2
∼=G2×G1 and G1×(G2×G3)∼=(G1×G2)×G3
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Examples:

1) for coprime integers n and m

Zn×Zm
∼= Znm

and in general Zn×Zm
∼= Zlcm(n,m)×Zgcd(n,m);

2) GLn(C) ∼= SLn(C)× C×;

3) U(n) ∼= SU(n)× U(1);

4) D4n+2
∼= D2n+1 × Z2;

5) the additive group (V,+) of a linear space of dimension n over a �eld

F is isomorphic with the n-fold direct product of the additive group of F

(V,+) ∼= (F,+)× · · · × (F,+)︸ ︷︷ ︸
n
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Ĝ={(x,1H) |x∈G} and Ĥ={(1G, y) | y∈H}

are normal subgroups of the direct product that

1) generate the whole product,
〈
Ĝ, Ĥ

〉
= G×H;

2) have trivial intersection, Ĝ ∩ Ĥ={(1G,1H)};

3) have pairwise commuting elements: (x,1H)(1G, y)=(x, y)=(1G, y)(x,1H);

4) are isomorphic with the direct factors: Ĝ∼=G and Ĥ∼=H;

5) (G×H)/Ĝ ∼= H and (G×H)/Ĥ ∼= G.

Conversely, any group having normal subgroups Ĝ and Ĥ satisfying 1)-3)

is isomorphic to their direct product Ĝ×Ĥ.
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The direct product of Abelian (in particular cyclic) groups is Abelian.

Conversely, one has the following structure theorem.

Frobenius-Stickelberger theorem: any �nite Abelian group can be

decomposed into a direct product of cyclic groups of prime power order.

The above decomposition is unique up to the ordering of the factors (the

elementary divisors).

In case of �nitely generated Abelian groups, a �nite number of in�nite

cyclic factors (each isomorphic to the additive group of integers) may

also appear in the decomposition.
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11 Group presentations

A subset X ⊆ F is a free generating system of the group F if every

map ϕ :X→G into an arbitrary group G is the restriction of a unique

homomorphism ϕ♭ :F→G.

A group is free if it has a free generating system.

For any set X there exists a group FX (the free group over X) with free

generating set X.

FX
∼=FY precisely when

∣∣X∣∣= ∣∣Y ∣∣, hence any two free generating systems

of a free group have the same cardinality (the rank of the group, which

determines it up to isomorphism).
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Remark. Free generating systems are the analogues for free groups of the

di�erent bases of a linear space (with rank corresponding to dimension).

Nielsen-Schreier theorem: every subgroup of a free group is free.

If F is free of rank n and H<F , then H is free of rank 1+[F :H] (n− 1).

von Dyck's theorem: every group is a homomorphic image of a free group!

If G is generated by X⊆G, then the inclusion map iX :X→G that sends

each x∈X to itself extends to a unique homomorphism i♭X :FX →G, and

because X is a generating set, the image of i♭X is the whole of G, and

G = i♭X(FX) ∼= FX/ ker i
♭
X

by the homomorphism theorem.
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Because the kernel of i♭X is itself free (by the Nielsen-Screier theorem),

it can be characterized by a free generating set K⊆FX , and G itself is

completely described by X and K. For in�nite groups this is ine�ective,

as the kernel has in�nite rank (its index being equal to the order of G).

Since the kernel is a normal subgroup, instead of a free generating set

one may consider a subset R whose normal closure (the intersection of

all normal subgroups containing it) equals the kernel.

A presentation ⟨X|R⟩ of the group G consists of a generating set X⊆G

and a subset R⊆FX (relators) whose normal closure is the kernel of i♭X .

G is �nitely presented if it has a presentation in which both X and R

are �nite: such groups are amenable to algorithmic methods.
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Examples of �nitely presented groups:

1) ⟨{x} | {xn}⟩ for n > 1 is a presentation of the additive group Zn of

residue classes modulo n (i.e. the cyclic group of order n);

2) a presentation of the group Dn (n>2) is
〈
{σ1, σ2} |

{
σ2
1 , σ

2
2 , (σ1σ2)

n}〉
;

3)
〈
{s, t} |

{
s2, t3, (st)n

}〉
is a presentation of

· the symmetry group T of a tetrahedron for n=3;

· the symmetry group O of an octahedron for n=4;

· the symmetry group I of an icosahedron for n=5;

· an in�nite hyperbolic symmetry group for n>5.
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Combinatorial group theory: study groups using �nite presentations.

Powerful algorithms available (Knuth-Bendix, Todd-Coxeter, Reidemeister-

Schreier, etc.), but not always terminating.

Basic algorithmic problem (word problem): for a �nite presentation

⟨X|R⟩, decide whether two elements w1, w2∈FX are mapped to the same

element, i.e. whether i♭X(w1)= i♭X(w2).

Isomorphism problem: decide whether two �nite presentations ⟨X1|R1⟩

and ⟨X2|R2⟩ describe isomorphic groups.

There is no algorithm solving the above problems in a �nite number of

steps for all groups, and even worse, there are explicit examples of groups

where the word problem has no solution (is undecidable).
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12 Conjugacy classes

The group elements x, y∈G (resp. subgroups H,K<G) are conjugate,

if there exists g∈G such that xg=gy (resp. Hg=gK).

The conjugacy class of a group element (resp. subgroup) is the set of all

group elements (resp. subgroup) conjugate to it.

Two conjugacy classes are either equal or disjoint, and each element

(resp. subgroup) belongs to a conjugacy class, hence conjugacy classes

form a partition of the set of all group elements (resp. subgroups).

Members of the same conjugacy class are related by automorphisms,

hence they have many algebraic properties (e.g. their order) in common.
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The identity element forms a conjugacy class in itself, the trivial class.

More generally, any central element (i.e. a group element commuting

with all other group elements) forms a class in itself (such conjugacy

classes of size 1 are called central classes).

A subgroup forms a conjugacy class in itself precisely when it is normal.

The cosets of the centralizer CG(x)={y∈G |xy=yx} of a group element

x∈G are in one-to-one correspondence with the di�erent conjugates of

x; in particular, the number of the latter is equal to the index [G :CG(x)].

Consequence: the size of a conjugacy class divides the order of the group.
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Example: the elements of the dihedral group D3 form the following

conjugacy classes

C1={1} , C2=
{
C,C-1

}
and C3={σ1, σ2, σ3}

The �rst class is the trivial one, the second contains the order 3 rotational

(orientation-preserving) symmetries, while the class C3 consists of the

(orientation-reversing) re�ection symmetries of order 2.

The subgroups of D3 fall into 4 conjugacy classes: the trivial subgroup

{1}, the rotation subgroup C3=
{
1, C, C-1

}
, and the whole group D3 form

a conjugacy class in themselves (because they are normal subgroups),

while the 3 cyclic subgroups ⟨σi⟩= {1, σi} of order 2 (generated by the

re�ection symmetries σi) form a single conjugacy class.
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