
Introduction

Group theory is currently one of the most important mathematical dis-

ciplines, with manifold applications in

· mathematics (Galois theory, di�erential equations, geometry, etc.)

· physics (crystallography, solid state physics, high energy physics,

gauge theories, phase transitions, general relativity, etc.)

· chemistry (molecular symmetries)



Question: what makes groups so ubiquitous?

Twofold origin of the group concept: notions of symmetry and (co)homology.

Homology is a topological notion characterizing the �connectedness� of

a manifold through a sequence of groups associated to it.

In physics, the notion of homology has important applications in the

study of quantum systems, e.g. the Berry phase and topological quantum

computing, gauge theories (instantons), general relativity (gravitational

singularities) and string theory (branes).

The notion of homology can be extended to much more general situations

(homological algebra).



Symmetry: invariance under suitable transformations.

A classical example is the bilateral (mirror) symmetry of the human

body, characteristic of a very large class of animals, the Bilateralia (to

be contrasted with the �ve-fold rotational symmetry of echinoderms and

the icosahedral symmetry of certain micro-organisms).



Similar symmetry patterns show up in arti�cial (man made) objects like

buildings, furniture, decorations, etc.

Symmetry transformation can be composed, and groups describe the

algebra of symmetries, hence group theory provides techniques to convert

qualitative information into quantitative one.



Example: counting of phenomenological constants.

Small deformations of an elastic medium are described by Hooke's law

σij = Lijklukl

with uij and σij denoting the deformation and the stress tensor.

34=81 di�erent Lijkl components, related by Onsager's reciprocity law

Lijkl = Ljikl = Lklij

Question: how many independent coe�cients Lijkl (elastic moduli)

characterize a given medium?

Answer: 2 for isotropic media, 21 for a triclinic crystal.



Explanation: crystalline structure characterized by its symmetries,

part of which form a group of matrices, the so-called point group.

For a crystal with point group G, there are

1

8

∑
g∈G

{
Tr(g)

4
+ 2Tr(g)

2
Tr
(
g2
)
+ 3Tr

(
g2
)2

+ 2Tr
(
g4
)}

independent elastic moduli (in any dimension).

In complete generality, the scalar free energy is an invariant polynomial of

the (symmetric) deformation tensor, hence the answer equals the number

of independent invariants of the symmetrized square of the point group

(the above formula gives the number of quadratic invariants, appropriate

in the linear case described by Hooke's law).



Recreational mathematics: solving Rubik's Cube.

43, 252, 003, 274, 489, 856, 000 valid con�gurations.

Reach a given ('solved') position within shortest time ('speedcubing') or

with the least number of moves.

Best results to date: 3.13 seconds (2023) and 16 moves (2019).

M. Davidson, J. Dethridge, H. Kociemba and T. Rokicki (2010) : all

initial con�gurations can be solved in 20 moves or less, and some (in fact

millions) actually require 20.



Elementary moves (6 in total): clockwise 90 degree rotation of a face.

Each legal cube move can be obtained through a sequence of elementary

moves, and solving the cube amounts to �nding such a sequence.

Legal cube moves form a group (product being application of one after

the other), the Cube group, whose elements are in one-to-one correspon-

dence with the valid con�gurations: solving the cube amounts to �nding

a sequence of elementary moves whose product corresponds to the initial

con�guration.

Group theory helps develop e�cient solver methods, and allows to asso-

ciate Rubik's Cube with a quantum system of few particles.
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1 Historical highlights

Antiquity: application of symmetry principles in geometry (Euclid of

Alexandria, Archimedes of Syracuse, etc.), classi�cation of platonic solids.

J.-L. Lagrange (1771): solubility of polynomial equations.

É. Galois (1832): Galois theory.
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A. Cayley (1854): abstract group concept.

É. Mathieu (1861,1873): discovery of the Mathieu groups.

F. Klein (1873): Erlangen program (classi�cation of ge-

ometries via symmetry principles).

S. Lie (1871-1893): continuous transformation groups.
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H. Poincaré (1882): homology groups, uniformization.

É. Picard (1883): di�erential Galois theory.

D. Hilbert (1888): theory if invariants, homological algebra.



1 HISTORICAL HIGHLIGHTS

W. Killing (1880-1890) and É. Cartan (1894):

classi�cation of simple Lie-groups and their Lie-algebras.

G.F. Frobenius (1896): representations, group characters.

W. Burnside (1903): �nite groups.



1 HISTORICAL HIGHLIGHTS

I. Schur (1904): projective representations.

A. Haar (1933): invariant integrals.

1966-1976: sporadic simple groups.



1 HISTORICAL HIGHLIGHTS

Group theory in physics

Renaissance: symmetry principles in statics (�Epitaph of Stevinus�).

L. Euler (1765): movement of rigid bodies.

E.S. Fedorov (1891), L. Schön�ies (1891) and W. Barlow

(1894): classi�cation of crystal structures in 3D.

H. Poincaré (1900): symmetries of Maxwell's equations.



1 HISTORICAL HIGHLIGHTS

E. Noether (1915): symmetries vs conservation laws.

E. Wigner: symmetries in quantum physics (1933),

classi�cation of relativistic wave equations (1947).

C.N. Yang és R. Mills (1954): local gauge symmetries.

M. Gell-Mann (1963): �eightfold way� (basis of the quark model).

D. Shechtman (1982): discovery of quasi-crystals.
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2 Fundamental concepts

Question: What is a group? How to compare groups?

A group is a set of elements with a suitable binary operation.

Binary operation: rule that assigns to two elements of a set a well-de�ned

third element of that same set.

Examples: addition and multiplication of (integer, rational, real, com-

plex, hypercomplex, p-adic, etc.) numbers, greatest common divisor and

lowest common multiple of integers, addition and cross product of vec-

tors (but not their scalar product), addition and multiplication of linear

operators /polynomials/matrices.
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Multiplicative in�x notation: for a binary operation on the set X, we

denote by x⋆y (or simply by xy) the element obtained by applying the

operation to the elements x, y∈X.

A binary operation (on the set X) is

associative, if for any x, y, z∈X

x(yz) = (xy)z

commutative, if for any x, y∈X

xy = yx

unital, if there exists 1X ∈X (the identity) such that for all x∈X

1Xx = x1X = x
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A group is a set G of elements together with an associative and unital

binary operation (the 'product'), such that for all x ∈ G there exists

x-1∈G (the inverse of x) for which xx−1 = x−1x = 1G.

The order of a group is the cardinality of its set of elements. A group is

a �nite if its order is �nite, i.e. a positive integer.

A group is said to be abelian if its product is commutative.

Abelian groups have very special properties (they form a subvariety of

the algebraic variety of groups).
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The groups G and H are isomorphic, denoted G∼=H, if there exists a

bijective (i.e. one-to-one) map ϕ :G→H that preserves products, i.e.

ϕ(xy)=ϕ(x)ϕ(y)

for all x, y∈G (such a map is called an isomorphism).

The relation of being isomorphic is re�exive (G∼=G), symmetric (G∼=H

implies H∼=G) and transitive (G∼=H and H∼=K implies G∼=K).

Isomorphy principle: isomorphic groups cannot be distinguished from

each other by algebraic means (they have the same algebraic structure).

Group theoretic properties are the same for isomorphic groups, e.g. the

orders of isomorphic groups are the same: G∼=H implies
∣∣G∣∣= ∣∣H∣∣.
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An automorphism of a group is an isomorphism of the group with itself,

and the collection Aut(G) of all automorphism of a group G is itself a

group, the automorphism group ('symmetry group') of G, with product

the composition of maps.

A collection H of elements of a group G is called a subgroup, denoted

H <G, if it contains the identity element of G and the product of any

two of its elements, as well as the inverse of all its elements.

The relation of being a subgroup is an ordering. In particular, every

subgroup is a group, and a subgroup of a subgroup is itself a subgroup:

if K<H and H<G, then K<G.
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Generalizations of the group concept:

· relaxing the existence of inverses leads to monoids (with applica-

tions to automata theory & linguistics, renormalization, etc.);

· relaxing the associativity of the product results in quasi-groups

(combinatorial applications like latin squares, aka. sudoku);

· a partially de�ned product gives groupoids (with applications to

topology, the description of quasi-crystals, etc.);

· theoretical physics ⇝ quantum groups, supergroups, ...
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3 Examples of groups

3.1 Additive groups of numbers

Consider the set Z of all integer numbers with the binary operation of

addition, which is

associative: a+(b+c)=(a+b)+c;

commutative: a+b=b+a;

unital: a+0=0+a=a

for all a, b, c∈Z.
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Every integer has an additive inverse, i.e. to each a∈Z corresponds its

negative −a such that a+(−a)=(−a)+a=0, hence the integers form an

abelian (i.e. commutative) group (Z,+), the additive group of integers.

Similar considerations apply to other sets of numbers, like the rationals

Q, the real numbers R, the complex numbers C, etc., leading to the

additive groups (Q,+), (R,+), (C,+), and so on.

Remark : for an arbitrary integer n, the set nZ= {nx |x∈Z} of integer

multiples of n also forms a group (nZ,+) with the operation of addition,

which may be shown to be isomorphic with (Z,+).

While the structure of (Z,+) is relatively simple (it is an in�nite cyclic

group), the structure of the other additive groups is pretty complicated.
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3.2 Integers modulo n (residue classes)

Euclid's division lemma. Given integers a and b ̸= 0, there exist

unique integers q and r such that a = bq+r and 0 ≤ r < |b|, where |b|

denotes the absolute value of b.

In the above setting, r is called the remainder of a upon division by b

(while q is the quotient), and it is usually denoted as r=a mod b (modulo

operation).

(a1+a2) mod b = ((a1 mod b) + (a2 mod b)) mod b

consequently the remainder upon division by b of a1+a2 only depends

on the remainders of a1 and a2.
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For a positive integer n> 1 (called the modulus), let's consider the set

Zn={0, 1, . . . , n−1} with the binary operation that assigns to x, y∈Zn

the remainder upon division by n of their sum x+y, i.e. (x+y) mod n

(addition mod n).

This is an associative, commutative and unital operation, such that every

x∈Zn\{0} has an inverse equal to n−x (while the inverse of 0 is itself),

hence Zn becomes a �nite abelian group of order n with this operation,

the additive group of integers modulo n.

To each element of k ∈Zn corresponds the set nZ+k= {nx+k |x∈Z},

the collection of all integers that have remainder k upon division by n

(a residue class mod n).
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3.3 Matrix groups

A matrix A is a rectangular array of numbers, with the matrix element

Aij denoting the number found at the intersection of the ith row and jth

column (in general, the elements of a matrix may come from any ring).

A square matrix of size n has n rows and columns.

One can add matrices A and B of the same shape (i.e. with the same

number of rows and columns) element-wise, that is (A+B)ij=Aij+Bij ,

while their product AB is only de�ned if the number m of columns of

A equals the number of rows of B, in which case it has matrix elements

(AB)ij=
m∑

k=1

AikBkj .
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For a positive integer n, the identity matrix 1n of size n has diagonal

matrix elements equal to 1, and all other equal to 0, i.e. (1n)ij=δij .

Since the determinant of the identity matrix is 1, and the determinant of

a product is the product of the determinants, det (AB)=det (A) det (B),

a square matrix A is invertible, i.e. there exists a square matrix B such

that AB=BA=1, i� its determinant has a multiplicative inverse.

For any number ring R (collection of numbers containing 1 and closed

under addition, subtraction and multiplication, e.g. the integers Z or

the complex numbers C) and a positive integer n, the collection of all

invertible n-by-n matrices with entries from R with the operation of

matrix product form a group GLn(R), the general linear group over R.
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GLn(R) is in�nite if R is, and is not abelian unless n=1.

Besides the general linear group GLn(R), several of its subgroups play an

important role in applications:

1. those matrices in which each row and column contains exactly one

nonzero entry (monomial matrices) form a group Mn(R)<GLn(R);

2. the set Πn = {A∈Mn(R) |Aij ̸=0 implies Aij=1} of permutation

matrices is a subgroup of Mn(R), hence of GLn(R);

3. the set

∆n(R) = {A∈GLn(R) |Aij=0 if i ̸=j}

of diagonal matrices is an abelian subgroup of Mn(R);
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Remark. Note that every monomial matrix is the product of a

diagonal and a permutation matrix.

4. denoting by A
⊺
the transpose of the matrix A, i.e. the matrix with

entries (A
⊺
)ij = Aji, the set

On(R) =
{
A∈GLn(R) |A−1=A

⊺}
of orthogonal matrices is a group. More generally, denoting by ηp,q

the diagonal matrix having the �rst p diagonal entries equal to 1,

and the remaining q entries equal to −1 (the metric tensor of �at

space with p spacelike and q timelike directions),

Op,q(R) =
{
A∈GLp+q(R) |A−1=η−1

p,qA
⊺
ηp,q

}
is also a group;
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5. the set

Sp2n(R) =
{
A∈GL2n(R) |A−1=J−1

n A
⊺
Jn

}
of symplectic matrices is a group, where Jn is the block-diagonal

matrix made up of n copies of the Pauli-matrix

iσ2 =

(
0 1

−1 0

)

6. those subsets of all the above whose elements satisfy detA=1, e.g.

the special linear and orthogonal groups

SLn(R) = {A∈GLn(R) | detA=1}

SOn(R) = {A∈On(R) | detA=1}
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3.4 Symmetric and alternating groups

A permutation is a bijective self-map of a set onto itself ('reshu�ing').

The product of permutations is the composition of the corresponding

maps: this is an associative and unital binary operation, with the trivial

permutation idX:x 7→x as identity element.

Inverse of a permutation: inverse map (once again bijective).

The collection of all permutations of a (�nite) set X forms a group

Sym(X), the symmetric (NOT symmetry !) group over X.

Sym(X) is not commutative in case |X|>2, and has order∣∣Sym(X)
∣∣ = ∣∣X∣∣!
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Transposition: interchange of two elements.

Any permutation can be decomposed (in many ways) into a product

of transpositions: while their number may change, whether there is an

even or odd number of them characterizes the permutation, allowing to

distinguish odd and even permutations.

The product of even permutations is even, hence even permutations form

themselves a group Alt(X), the alternating group over X.

The symmetric groups Sym(X) and Sym(Y ) are isomorphic precisely

when
∣∣X∣∣ = ∣∣Y ∣∣, hence it is enough to consider the symmetric groups

Sn = Sym({1, . . . , n}) (resp. alternating groups An =Alt({1, . . . , n})) of

degree n, isomorphic to Πn and SΠn respectively.
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A cycle (orbit) of a permutation is a set of points that are taken into

each other by successive applications of the permutation (a �xed point

is a cycle of length 1).

The cycles of a permutation π∈Sym(X) partition the setX, i.e. any two

are either equal or disjoint, and each point of X belongs to some cycle.

A permutation is called cyclic if it has only one cycle of length greater

than one, and the length of this cycle is its order (or period).

Every permutation can be decomposed into a product of cyclic ones.

A cyclic permutation π∈Sym(X) is uniquely determined by the sequence

x1, x2=π(x1) , . . . , xn=π(xn−1) , . . .

where x1 is any element of the non-trivial cycle of π (cycle notation).
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3.5 Geometric symmetry groups

Rigid motion: mapping of Euclidean space onto itself that preserves the

distance of points (Euclidean isometry).

Types of rigid motions: translations, rotations, re�ections, and di�erent

composites of the above.

Symmetry of a geometric �gure: rigid motion mapping the �gure (as a

set of points) onto itself.

For example, any rotation around an axis passing through the center

of a sphere is a symmetry of the sphere (but the sphere has re�ection

symmetries as well).
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Regular polygon: convex plane �gure all of whose sides are congruent

(i.e. have equal length), and angles between neighboring sides are equal.

Medians (edge bisectors) of a regular polygon all meet in a single point,

the center of the polygon.

For each integer n>2 there is exactly one regular n-gon (up to similarity).
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The symmetries of a regular n-gon, composed of rotations around the

center (by multiples of 2π/n) and re�ections across lines passing through

the center and some vertex, form the dihedral group Dn of degree n.
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Since there are n di�erent re�ection axes (the medians for odd n, and the

medians together with the diagonals passing through opposite vertices

for even n) and n di�erent rotations, the order of the dihedral group is∣∣Dn

∣∣=2n.

For �nite groups, the group structure can be neatly described using the

Cayley table.

G 1G . . . h . . .

1G 1G . . . h . . .

...
...

. . .
...

. . .

g g . . . gh . . .

...
...

. . .
...

. . .
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Since symmetries map the polygon onto itself, any set of distinguished

sub�gures (like vertices, edges, medians, etc.) is also mapped onto itself

by a symmetry transformation.

As a consequence, each symmetry transformation induces a permutation

of any chosen set of distinguished sub�gures (be it vertices, edges, me-

dians, etc.), which can prove handy for the computation of the Cayley

table.

Remark : since the set V of vertices of a regular n-gon has cardinality n,

the above correspondence is bijective only for n=3, when∣∣Sym(V )
∣∣=n!=2n=

∣∣Dn

∣∣
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D3 1 C C2 σ1 σ2 σ3

1 1 C C2 σ1 σ2 σ3

C C C2 1 σ3 σ1 σ2

C2 C2 1 C σ2 σ3 σ1

σ1 σ1 σ2 σ3 1 C C2

σ2 σ2 σ3 σ1 C2 1 C

σ3 σ3 σ1 σ2 C C2 1

()

(1, 2, 3)

(1, 3, 2)

(2, 3)

(1, 3)

(1, 2)

Multiplication table of D3 and the induced permutation of vertices.
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A convex spatial �gure all of whose bounding facets are congruent regular

polygons is called a Platonic solid (regular polyhedron).

There are �ve di�erent Platonic solids (up to similarity):

1. tetrahedron (4 triangles);

2. octahedron (8 triangles);

3. icosahedron (20 triangles);

4. cube (6 squares);

5. dodecahedron (12 pentagons).
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The symmetry groups of regular polyhedra are:

· tetrahedral group T ∼= A4 (tetrahedron),

· octahedral group O ∼= S4 (octahedron ⇌ cube)

· icosahedral group I ∼= A5 (icosahedron ⇌ dodecahedron).

Regular convex polytopes in 4D: simplex (5-cell), orthoplex (16-cell),

hypercube (8-cell), 600-cell, 120-cell, 24-cell (with 1152 symmetries).

Only 3 regular polytopes in dimensions >4: the simplex , the orthoplex

(cross-polytope) and the hypercube.
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3.6 Molecular symmetry groups

Charge density in molecules invariant under a �nite group (point group)

of geometric transformations, leading to restrictions on

1. the structure of the molecular spectrum (Wigner, Tisza);

2. electromagnetic characteristics (dipole and magnetic moments);

3. chemical properties.
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Point groups in 3D: 7 polyhedral groups

1. T∼=A4 (chiral tetrahedral)

2. Td
∼=S4 (tetrahedral), e.g. methane

3. Th
∼=A4×Z2 (pyritohedral)

4. O∼=S4 (chiral octahedral)

5. Oh
∼=S4×Z2 (octahedral), e.g. sulfur hexa�uoride SF6

6. I∼=A5 (chiral icosahedral)

7. Ih∼=A5×Z2 (icosahedral), e.g. C60 fullerene
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+ 7 in�nite families of axial groups

1. Cn
∼=Zn (cyclic), e.g. hydrogen peroxide (n=2)

2. Cnv
∼=Dn (pyramidal), e.g. water (n=2),

ammonia (n=3), hydrogen �uoride (n=∞)

3. Cnh
∼=Zn×Z2 , e.g. boric acid (n=3)

4. Dn
∼=Dn (dihedral), e.g. twistane C10H16 (n=2)
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5. Dnd
∼=D2n (anti-prismatic), e.g. ethane C2H6 (n=3)

6. Dnh
∼=Dn×Z2 (prismatic), e.g. boron tri�uoride (n=3),

benzene (n=6), carbon dioxide (n=∞)

7. S2n
∼=Z2n, e.g. tetraphenylborate (n=4)
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3.7 Crystalline symmetry groups

Some homogeneous substances exhibit anisotropic (direction dependent)

behavior on a macroscopic scale: e.g. mechanical, optical, electric, etc.

properties of crystals.

At the phenomenological level, the material characteristics (like permit-

tivity, heat conductivity, elastic moduli, etc.) are tensorial quantities

(rather than scalars).

Since both microscopic homogeneity/isotropy and unordered microscopic

inhomogeneity/anisotropy leads to isotropic behavior, macroscopic an-

isotropy is a consequence of ordered microscopic inhomogeneity/anisotropy.
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Ordered microscopic anisotropy is realized in ferro- and ferrimagnetic

materials, while ordered inhomogeinity in (quasi-)crystals.

Macroscopic order can arise from discrete translational symmetries: a

periodic structure in space exhibits ordered inhomogeinity.

Crystalline substance: microscopic components (atoms/molecules/ions)

distributed periodically in space, localized (in the absence of defects)

around the lattice points of a 3D periodic lattice (the crystal lattice).
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Quasi-crystal: aperiodic structure exhibiting long range order.
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Space group: full symmetry group of the crystal, taking into account the

symmetries of its microscopic constituents (composed of translations,

rotations, re�ections, inversions and various combinations of the above).

Translation subgroup: group of translations taking the crystal into itself.

Point group: �nite group describing the rotational and re�ection sym-

metries of the crystal.
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Crystal structures are grouped into crystal classes, families and systems

according to their point groups and translation subgroups.

Order of a transformation: smallest positive integer N such that the Nth

power of the transformation is the identity.

Crystallographic restriction: the number of integers coprime to the order

of any element of the point group cannot exceed the dimension of space

(valid for periodic structures, not quasi-crystals).

dimension 2, 3 4, 5 6, 7

allowed values {2, 3, 4, 6} ∪{5, 8, 10, 12} ∪{7, 9, 14, 18}
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Consequence: there are only �nitely many di�erent crystal structures in

any space dimension.

Classi�cation results

dimension 2 3† 4‡ 5∗ 6∗

# crystal systems 4 7 33 59 251

# point groups 10 32 227 955 7104

# space groups 17 230 4894 222097 28934974

†: Fedorov (1891), Schön�ies (1891) and Barlow (1894).

‡: Brown, Bülow and Neubüser (1978).

∗: Plesken and Schulz (2000).
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3.8 Space-time symmetries

Kinematics: description of the movement of material bodies, i.e. of the

time evolution of their mutual emplacements (relative distances).

Frame of reference: system of bodies with known relative motions.

The relative motions of all bodies of the Universe are completely de-

termined by their motions with respect to a speci�c frame of reference.

Question: are there reference frames that are more useful than others?

Answer: inertial frames, in which the inertial motion of isolated (not

interacting with the rest of the Universe) bodies is uniform translation.



3 EXAMPLES OF GROUPS

Remark : inertial frames move at constant speed relative to each other.

In classical (Newtonian) mechanics

· physical space is 3D Euclidean

· time is a 1D continuum

· forces act instantly, without any delay (action at a distance).

Galileo's relativity principle: not only the law of inertial motion,

but all mechanical laws look the same in every inertial frame.
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It follows that in inertial frames,

· both space and time are homogeneous, without a preferred origin;

· space is isotropic, i.e. there are no preferred directions;

· any reference frame obtained via a boost (constant speed uniform

translation) from an inertial one is itself inertial.

These are universal symmetries governing the structure of natural laws:

the laws of classical mechanics are the same anywhere and at anytime,

irrespective of the orientation and of the inertial frame chosen.
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The symmetries of classical mechanics form the Galilei group G, whose

elements consist of

· space translations (3 parameters)

· time translations (1 parameter)

· spatial rotations (3 parameters)

· (Galilean) boosts (3 parameters)

· discrete re�ection symmetries
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Noether's theorem: to each one-parameter group of continuous

symmetries of a physical system corresponds a conserved quantity.

Galilean symmetries correspond to universal �rst integrals.

space translations (linear) momentum

spatial rotations angular momentum

time translations energy

(Galilean) boosts center of mass

The existence of universal symmetries is corroborated by the classical

conservation laws (energy, momentum, etc.)!
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Einstein: Galileo's relativity principle holds for all laws of physics (in-

cluding those of electrodynamics), not only those of classical mechanics,

but there is a limit speed c for the propagation of physical causes, i.e.

there is no action at a distance.

Remark : the limit speed c equals the speed of light in vacuum.

Poincaré: the symmetry group of Maxwell's equations is the isometry

group of 4D (homogeneous and isotropic) Minkowski space, the so-called

Poincaré group P, and not the Galilei group.

Remark : the Galilei group may be obtained from the Poincaré group by

a limiting procedure (Wigner-Inönü contraction) when c→∞.



3 EXAMPLES OF GROUPS

The true symmetry group of physical laws (at arbitrary speeds, but

neglecting the e�ects of gravity) is the Poincaré group P, containing

· space-time translations (4 parameters)

· space-time rotations, including the spatial rotations and the Lorentz-

boosts (6 parameters)

Two relativistic �rst integrals: a 4D vector (four-momentum) and a 4D

antisymmetric tensor (angular momentum).

In general relativity, �at Minkowski space-time is replaced by a curved

manifold (a solution of Einstein's equations), and the Poincaré group by

its isometry group (e.g. the de Sitter group).
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