Lie groups

1 Lie groups and their parametrization

A topological group is a group G that is at the same time a topological space such that for $g \in G$ both the left translations

$$
\begin{aligned}
\boldsymbol{\lambda}_{g}: G & \rightarrow G \\
h & \mapsto g h
\end{aligned}
$$

and the inversion map

$$
\begin{aligned}
\iota_{G}: G & \rightarrow G \\
g & \mapsto g^{-1}
\end{aligned}
$$

are continuous.

A manifold is a topological space that is locally Euclidean: it is covered by open sets W, each homeomorphic to an open subset $\mathcal{U} \subseteq \mathbb{R}^{n}$, where \mathbb{R}^{n} denotes n-dimensional Euclidean space, i.e. the set of n-tuples of real numbers with the usual topology associated to the Euclidean metric.

Remark. A local homeomorphism $\boldsymbol{\alpha}_{W}: W \rightarrow \mathcal{U}$ is called a local chart, since it allows to parametrize each point $x \in W$ by real-valued curvilinear coordinates, the components of $\boldsymbol{\alpha}_{W}(x)$.

Overlapping local charts give rise to different local parametrizations of one and the same point, related to each other by transition functions.

If the positive integer n is the same for all local charts, then n is called the dimension of the space.

An n-parameter Lie group is a topological group that is locally Euclidean of dimension n. The local charts allow to parametrize (locally) the group elements: to a group element $g \in W$ is associated its parameter vector

$$
\overrightarrow{\boldsymbol{\alpha}}(g)=\left(\boldsymbol{\alpha}_{1}(g), \ldots, \boldsymbol{\alpha}_{n}(g)\right)
$$

For example, 3D space translations $\tau: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ form a 3-parameter Lie group, with a possible parameter vector $\overrightarrow{\boldsymbol{\alpha}}(\tau)$ given by the components (with respect to some given basis) of the image $\tau(\overrightarrow{\mathbf{0}})$ of the origin $\overrightarrow{\mathbf{0}}$.

Remark. It is usual (but by no means necessary) to associate the parameter vector $\overrightarrow{\mathbf{0}}=(0, \ldots, 0)$ to the identity element; whenever possible, we shall use the convention $\overrightarrow{\boldsymbol{\alpha}}\left(\mathbf{1}_{G}\right)=\overrightarrow{\mathbf{0}}$.

1 LIE GROUPS AND THEIR PARAMETRIZATION

Given a local chart $\boldsymbol{\alpha}_{W}: W \rightarrow \mathcal{U}$ in a neighborhood $W \subseteq G$ of the identity element $\mathbf{1}_{G}$, the group structure implies the existence of continuous maps
$\boldsymbol{\mu}: \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ and $\iota: \mathcal{U} \rightarrow \mathcal{U}$ (the structure functions) such that

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\alpha}}(g h) & =\boldsymbol{\mu}(\overrightarrow{\boldsymbol{\alpha}}(g), \overrightarrow{\boldsymbol{\alpha}}(h)) \\
\overrightarrow{\boldsymbol{\alpha}}\left(g^{-1}\right) & =\boldsymbol{\iota}(\overrightarrow{\boldsymbol{\alpha}}(g))
\end{aligned}
$$

$\boldsymbol{\mu}(\overrightarrow{\boldsymbol{\alpha}}, \overrightarrow{\boldsymbol{\beta}})$ is the parameter vector of the product of the group elements with parameter vectors $\overrightarrow{\boldsymbol{\alpha}}$ and $\overrightarrow{\boldsymbol{\beta}}$, while $\boldsymbol{\iota}(\overrightarrow{\boldsymbol{\alpha}})$ is that of the inverse.

Associativity of the group product implies the relation

$$
\boldsymbol{\mu}(\overrightarrow{\boldsymbol{\alpha}}, \boldsymbol{\mu}(\overrightarrow{\boldsymbol{\beta}}, \vec{\gamma}))=\boldsymbol{\mu}(\boldsymbol{\mu}(\overrightarrow{\boldsymbol{\alpha}}, \overrightarrow{\boldsymbol{\beta}}), \vec{\gamma})
$$

for $\overrightarrow{\boldsymbol{\alpha}}, \overrightarrow{\boldsymbol{\beta}}, \overrightarrow{\boldsymbol{\gamma}} \in \mathcal{U}$.

Since $\overrightarrow{\boldsymbol{\alpha}}\left(\mathbf{1}_{G}\right)=\overrightarrow{\mathbf{0}}$, the other group axioms (existence of the identity and of inverses) take the form

$$
\begin{aligned}
\mu(\vec{\alpha}, \overrightarrow{0}) & =\mu(\overrightarrow{0}, \vec{\alpha})=\vec{\alpha} \\
\mu(\vec{\alpha}, \iota(\vec{\alpha})) & =\mu(\iota(\vec{\alpha}), \vec{\alpha})=\overrightarrow{0}
\end{aligned}
$$

Remark. Since $\mathcal{U} \subseteq \mathbb{R}^{n}$, the maps $\boldsymbol{\mu}$ and ι that characterize locally the group structure can be studied by means of calculus in several variables.

Gleason-Montgomery-Zippin: the structure functions $\boldsymbol{\mu}: \mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$ and $\iota: \cup \rightarrow \mathcal{U}$ are analytic, i.e. their Taylor-series around the origin have a positive radius of convergence, if they are twice differentiable.

Examples of Lie groups

1. The additive group $(\mathbb{R},+)$ of real numbers is a one parameter Lie group, with structure functions $\boldsymbol{\mu}(\alpha, \beta)=\alpha+\beta$ and $\boldsymbol{\iota}(\alpha)=-\alpha$ in case of the trivial parametrization $\alpha(z)=z$.
2. The multiplicative group $\mathrm{U}(1)=\{z \in \mathbb{C}| | z \mid=1\}$ of complex phases is again a one parameter Lie group. When using the exponential parametrization $\boldsymbol{\alpha}(z)=-\mathrm{i} \log z$, its structure functions are as above: $\boldsymbol{\mu}(\alpha, \beta)=\alpha+\beta$ and $\boldsymbol{\iota}(\alpha)=-\alpha$.
3. The isospin group $\operatorname{SU}(2)=\left\{U \in \operatorname{Mat}_{2}(\mathbb{C}) \mid \operatorname{det} U=1, U^{\dagger} U=1\right\}$ is a three parameter Lie group.

1 LIE GROUPS AND THEIR PARAMETRIZATION

4. The 3D rotation group of rotations around axes having a common point (the center) is a three parameter Lie group (rotations can be parametrized by e.g. the 3 Euler angles). Topologically, it is homeomorphic with the interior of a ball, with identification of some boundary points. Since rotations preserve orientation and the distance from the center, the rotation group can be identified with the group $\mathrm{SO}_{3}(\mathbb{R})$ of 3 -by- 3 orthogonal matrices.
5. The Poincaré group \mathcal{P}, i.e. the symmetry group of 4 D Minkowski space-time, is 10 dimensional Lie group. Four parameters correspond to space-time translations, while 6 to 4 D rotations, out of which 3 describe 3D rotations, and another 3 the Lorentz boosts.

Every Lie group G has a canonical parametrization such that

$$
\boldsymbol{\mu}(\overrightarrow{\boldsymbol{\alpha}}, \overrightarrow{\boldsymbol{\beta}})_{i}=\alpha_{i}+\beta_{i}+\frac{1}{2} \sum_{j, k=1}^{n} c_{i}^{j k} \alpha_{j} \beta_{k}+\text { higher order terms }
$$

and $\boldsymbol{\iota}(\overrightarrow{\boldsymbol{\alpha}})=-\overrightarrow{\boldsymbol{\alpha}}$.

Lie's theorem: the coefficients $c_{k}^{i j}$ satisfy

$$
\begin{array}{rlr}
c_{i}^{j k}+c_{i}^{k j} & =0 & \text { skew-symmetry } \\
\sum_{m}\left\{c_{i}^{j m} c_{m}^{k l}+c_{i}^{k m} c_{m}^{l j}+c_{i}^{l m} c_{m}^{j k}\right\} & =0 & \text { Jacobi identity }
\end{array}
$$

and determine all the higher order terms of the expansion. Moreover, any system of real coefficients $c_{k}^{i j}$ that satisfy the above requirements corresponds to some Lie group.

The coefficients $c_{k}^{i j}$, the so-called structure constants of G, characterize the algebraic structure locally (i.e. near the identity element).

A Lie homomorphism $\phi: G_{1} \rightarrow G_{2}$ between the Lie groups G_{1} and G_{2} is a continuous (analytic) group homomorphism, while a local isomorphism is an analytic map that is a bijective homomorphism when restricted to a suitable neighborhood of the identity.

While not necessarily isomorphic, locally isomorphic Lie groups have identical structure functions in suitable parametrizations, hence look the same in some neighborhood of the identity.

A one-parameter subgroup of a Lie group G is a homomorphic image (inside G) of the additive group $(\mathbb{R},+)$ of real numbers.

2 Lie algebras

A Lie algebra is a linear space \mathcal{L} endowed with a binary operation, the Lie bracket [,]: $\mathcal{L} \times \mathcal{L} \rightarrow \mathcal{L}$, that is

- bilinear, i.e. $[\lambda a+\mu b, c]=\lambda[a, c]+\mu[b, c]$ and $[a, \lambda b+\mu c]=\lambda[a, b]+\mu[a, c]$;
- skew-symmetric, i.e. $[b, a]=-[a, b]$;
- satisfies the Jacobi identity

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0
$$

for all $a, b, c \in \mathcal{L}$ and arbitrary scalars λ, μ.
A Lie algebra homomorphism is a linear map $\phi: \mathcal{L}_{1} \rightarrow \mathcal{L}_{2}$ such that

$$
\phi([a, b])=[\phi(a), \phi(b)]
$$

Examples:

1. \mathbb{R}^{3} with the cross product as Lie bracket;
2. $\operatorname{Mat}_{n}(\mathbb{R})$ with the commutator $[A, B]=A B-B A$ as Lie bracket;
3. the general linear algebra $\mathfrak{g l}(V)$ of all linear operators $A: V \rightarrow V$ with the commutator $[A, B]=A B-B A$ as Lie bracket;
4. continuous functions on the phase space ('observable quantities') of a Hamiltonian system, with the Poisson bracket as Lie bracket;
5. angular momentum operators in quantum mechanics.

Given a basis $\mathbf{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ of \mathcal{L}, the Lie brackets

$$
\left[b_{i}, b_{j}\right]=\sum_{k=1}^{n} c_{k}^{i j} b_{k}
$$

of the basis vectors determine the algebra because of bilinearity

$$
\left[\sum_{i} x_{i} b_{i}, \sum_{j} y_{j} b_{j}\right]=\sum_{k}\left(\sum_{i, j} c_{k}^{i j} x_{i} y_{j}\right) b_{k}
$$

The coefficients $c_{k}^{i j}$, the structure constants of \mathcal{L}, satisfy

$$
\begin{array}{cc}
c_{i}^{j k}+c_{i}^{k j}=0 & \text { skew-symmetry } \\
\sum_{m}\left\{c_{i}^{j m} c_{m}^{k l}+c_{i}^{k m} c_{m}^{l j}+c_{i}^{l m} c_{m}^{j k}\right\}=0 & \text { Jacobi identity }
\end{array}
$$

and characterize the Lie algebra up to isomorphism.

The structure constants of a Lie group satisfy the same identities \rightsquigarrow
correspondence between Lie groups and Lie algebras!

Can reduce questions about Lie groups to questions about Lie algebras.
Advantage: linear structure of Lie algebras!

For example, for a given $x \in \mathcal{L}$ let's consider the mapping

$$
\begin{aligned}
\operatorname{ad}_{x}: \mathcal{L} & \rightarrow \mathcal{L} \\
y & \mapsto[x, y]
\end{aligned}
$$

By bilinearity of the Lie bracket, ad_{x} is a linear operator on \mathcal{L}, whose properties may be described by linear algebraic means (spectral theory, determinants, etc.).

Question: how can we compute the Lie algebra of a Lie group?

Effective methods for Lie transformation groups, i.e. continuous groups of differentiable coordinate transformations $x_{i} \mapsto x_{i}^{\prime}\left(x_{1}, \ldots, x_{m} \mid \overrightarrow{\boldsymbol{\alpha}}\right)$ of \mathbb{R}^{m}, where $\overrightarrow{\boldsymbol{\alpha}} \in \mathcal{U} \subseteq \mathbb{R}^{n}$.

The first order partial differential operators (for $i=1, \ldots, n$)

$$
T_{i}=\sum_{j=1}^{m}\left(\frac{\partial x_{j}^{\prime}}{\partial \alpha_{i}}\right)_{\overrightarrow{\boldsymbol{\alpha}}=\overrightarrow{\mathbf{0}}} \frac{\partial}{\partial x_{j}}
$$

(the infinitesimal generators) have commutators

$$
\left[T_{i}, T_{j}\right]=T_{i} \circ T_{j}-T_{j} \circ T_{i}=\sum_{k=1}^{n} c_{k}^{i j} T_{k}
$$

with $c_{k}^{i j}$ the structure constants of the Lie algebra of the group.

Examples

1. The group of 3 D translations

$$
\begin{aligned}
\mathfrak{t}_{\overrightarrow{\boldsymbol{\alpha}}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
\overrightarrow{\boldsymbol{x}} \mapsto \overrightarrow{\boldsymbol{x}}+\overrightarrow{\boldsymbol{\alpha}}
\end{aligned}
$$

with $\overrightarrow{\boldsymbol{\alpha}} \in \mathbb{R}^{3}$. The infinitesimal generators read

$$
T_{i}=\sum_{j} \frac{\partial\left(x_{j}+\alpha_{j}\right)}{\partial \alpha_{i}} \frac{\partial}{\partial x_{j}}=\frac{\partial}{\partial x_{i}}
$$

Since mixed partial derivatives of differentiable functions are equal, the commutators (Lie brackets) vanish: $\left[T_{i}, T_{j}\right]=0$.

More generally, the Lie group of translations of n-dimensional Euclidean space \mathbb{R}^{n} has n infinitesimal generators whose Lie brackets vanish.
2. Consider the group of all rotations in 2D around the origin. This is a one-parameter Lie group, and the 2 D rotation by angle $\alpha \in[0,2 \pi)$ acts on Cartesian coordinates as

$$
R(\alpha):\binom{\mathrm{x}}{\mathrm{y}} \mapsto\binom{\cos \alpha \mathrm{x}-\sin \alpha \mathrm{y}}{\sin \alpha \mathrm{x}+\cos \alpha \mathrm{y}}
$$

There is only one infinitesimal generator, which reads

$$
T=\frac{\partial(\cos \alpha \mathrm{x}-\sin \alpha \mathrm{y})}{\partial \alpha} \frac{\partial}{\partial \mathrm{x}}+\frac{\partial(\sin \alpha \mathrm{x}+\cos \alpha \mathrm{y})}{\partial \alpha} \frac{\partial}{\partial \mathrm{y}}=-\mathrm{y} \frac{\partial}{\partial \mathrm{x}}+\mathrm{x} \frac{\partial}{\partial \mathrm{y}}
$$

Clearly, $[T, T]=0$ by skew-symmetry of the Lie bracket, which is exactly what one would obtain for translations in 1D, hence the corresponding Lie groups are locally isomorphic.
3. The affine group Aff $_{n}$ consists of the transformations of \mathbb{R}^{n}

$$
\mathfrak{a}(\lambda, \overrightarrow{\boldsymbol{a}}): \overrightarrow{\boldsymbol{x}} \mapsto \lambda \overrightarrow{\boldsymbol{x}}+\overrightarrow{\boldsymbol{a}}
$$

with $\overrightarrow{\boldsymbol{a}} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$. The generators read

$$
\begin{aligned}
D & =\sum_{i=1}^{n}\left(\frac{\partial\left(\lambda x_{i}+a_{i}\right)}{\partial \lambda}\right)_{\lambda=1, \overrightarrow{\boldsymbol{a}}=\overrightarrow{\mathbf{0}}} \frac{\partial}{\partial x_{i}}=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}} \\
T_{j} & =\sum_{i=1}^{n}\left(\frac{\partial\left(\lambda x_{i}+a_{i}\right)}{\partial a_{j}}\right)_{\lambda=1, \overrightarrow{\boldsymbol{a}}=\overrightarrow{\mathbf{0}}} \frac{\partial}{\partial x_{i}}=\frac{\partial}{\partial x_{j}}
\end{aligned}
$$

and one has $\left[T_{i}, T_{j}\right]=0$ and

$$
\left[D, T_{j}\right]=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}\left(\frac{\partial}{\partial x_{j}}\right)-\frac{\partial}{\partial x_{j}}\left(\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}\right)=-\frac{\partial}{\partial x_{j}}=-T_{j}
$$

3 Global properties

The Lie algebra Lie (G) reflects only the local structure of the Lie group
G (in a suitable neighborhood of the identity), the global structure is captured by topology.

Fundamental topological properties:
compactness, if every open covering contains a finite subcovering;
connectedness, if any two group elements may be connected by a continuous curve;
simply connectedness, if any closed curve can be deformed continuously to a point.

In every Lie group, the endpoints of all continuous curves starting at the identity element form a connected subgroup $G_{0}<G$, the component of the identity, and there is a one-to-one correspondence between the cosets of G_{0} in G and the connected components of G.

Every connected Lie group G is locally isomorphic with a unique simply connected Lie group \hat{G}, its universal cover, and there is a discrete central subgroup $Z<Z(\hat{G})$ such that $G \cong \hat{G} / Z$.

Every Lie algebra corresponds to a unique (up to isomorphism)simply connected Lie group, hence the study of Lie algebras parallels that of simply connected groups.

Examples

1. $(\mathbb{R},+)$ and $U(1)$ are locally isomorphic, but $(\mathbb{R},+)$ is simply connected and non-compact, while $\mathrm{U}(1)$ is compact and connected, but not simply connected $\rightsquigarrow(\mathbb{R},+)$ is the universal cover of $U(1)$.
2. $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ have the same Lie algebra, hence they are locally isomorphic, but while the former is simply connected and compact, the latter is compact and connected, but not simply connected \rightsquigarrow $\mathrm{SU}(2)$ is the universal cover of $\mathrm{SO}(3)$.
3. the Poincaré group is neither connected (reflections!) nor compact (translations!).

4 The Haar measure

On several occasions one needs to average real-valued functions $f: G \rightarrow \mathbb{R}$ over the elements of a group G.

If G is finite, then

$$
\langle f\rangle=\frac{1}{|G|} \sum_{g \in G} f(g)
$$

If G is continuous, then

$$
\langle f\rangle=\frac{1}{\operatorname{vol}(G)} \int f(g) \mathrm{d} \mu
$$

with the integral taken with respect to a suitable Lebesgue-measure μ, and $\operatorname{vol}(G)=\int 1 \mathrm{~d} \mu$, the integral of the constant 1 , is the 'volume' of G.

Compatibility with group structure: translation invariance.

For finite G

$$
\langle f\rangle=\frac{1}{|G|} \sum_{h \in G} f(h)=\frac{1}{|G|} \sum_{h \in G} f(g h)
$$

Should hold for topological groups as well!
An invariant measure μ on a topological group G is a Lebesgue-measure such that for every $g \in G$ and every measurable set $U \subseteq G$ the translate $g U=\{g x \mid x \in U\}$ is also measurable, and

$$
\mu(g U)=\mu(U)
$$

Haar's theorem: every compact topological group admits an invariant measure, the Haar measure, unique up to normalization.

5 The 3D rotation group

Consider the group of 3D rotations around axes having a point in common (the rotation center).

Because rotations transform Cartesian coordinates linearly, they form a Lie transformation group. Choosing Cartesian coordinates x, y, z (origin at the rotation center), the transformed coordinates read

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\mathcal{O}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

for a suitable 3 -by- 3 matrix $\mathcal{O} \in \operatorname{Mat}_{3}(\mathbb{R})$.

5 THE 3D ROTATION GROUP

Since rotations preserve orientation one has $\operatorname{det} \mathcal{O}>0$, and because the distance $\sqrt{x^{2}+y^{2}+z^{2}}$ from the origin (rotation center) is invariant, \mathcal{O} is an orthogonal matrix, i.e. $\mathcal{O}^{\operatorname{tr}} \mathcal{O}=\mathbf{1}_{3}$, hence there exists a one-to-one correspondence between 3D rotations and 3-by-3 orthogonal matrices whose determinant equals 1 .

The group of 3D rotations is isomorphic with the matrix group $S O(3)$.

Each rotation is characterized by its rotation angle and the direction of its rotation axis, hence one needs 3 angular coordinates to parametrize 3D rotations (e.g. the Euler angles): the rotation group is a 3-parameter Lie group.

Any rotation can be decomposed into a product of three consecutive rotations around perpendicular axes:

$$
\mathcal{O}(\overrightarrow{\boldsymbol{\alpha}})=\mathcal{O}_{x}\left(\alpha_{x}\right) \mathcal{O}_{y}\left(\alpha_{y}\right) \mathcal{O}_{z}\left(\alpha_{z}\right)
$$

where

$$
\mathcal{O}_{z}(\alpha):\left(\begin{array}{l}
x \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right) \mapsto\left(\begin{array}{c}
\cos \alpha \mathrm{x}-\sin \alpha \mathrm{y} \\
\sin \alpha \mathrm{x}+\cos \alpha \mathrm{y} \\
\mathrm{z}
\end{array}\right)
$$

with infinitesimal generator

$$
L_{z}=x \frac{\partial}{\partial y}-\mathrm{y} \frac{\partial}{\partial \mathrm{x}}
$$

5 THE 3D ROTATION GROUP

Similarly, one has

$$
\begin{aligned}
& L_{x}=\mathrm{y} \frac{\partial}{\partial \mathrm{z}}-\mathrm{z} \frac{\partial}{\partial \mathrm{y}} \\
& L_{y}=\mathrm{z} \frac{\partial}{\partial \mathrm{x}}-\mathrm{x} \frac{\partial}{\partial \mathrm{z}}
\end{aligned}
$$

The Lie-algebra is spanned by (real) linear combinations of L_{x}, L_{y}, L_{z}.
Lie brackets from commutators of infinitesimal generators

$$
\begin{aligned}
& {\left[L_{x}, L_{y}\right]=\left(\mathrm{y} \frac{\partial}{\partial \mathrm{z}}-\mathrm{z} \frac{\partial}{\partial \mathrm{y}}\right)\left(\mathrm{z} \frac{\partial}{\partial \mathrm{x}}-\mathrm{x} \frac{\partial}{\partial \mathrm{z}}\right)-\left(\mathrm{z} \frac{\partial}{\partial \mathrm{x}}-\mathrm{x} \frac{\partial}{\partial \mathrm{z}}\right)\left(\mathrm{y} \frac{\partial}{\partial \mathrm{z}}-\mathrm{z} \frac{\partial}{\partial \mathrm{y}}\right) } \\
&=\mathrm{y} \frac{\partial}{\partial \mathrm{z}}\left(\mathrm{z} \frac{\partial}{\partial \mathrm{x}}-\mathrm{x} \frac{\partial}{\partial \mathrm{z}}\right)-\mathrm{z} \frac{\partial}{\partial \mathrm{y}}\left(\mathrm{z} \frac{\partial}{\partial \mathrm{x}}-\mathrm{x} \frac{\partial}{\partial \mathrm{z}}\right)-\mathrm{z} \frac{\partial}{\partial \mathrm{x}}\left(\mathrm{y} \frac{\partial}{\partial \mathrm{z}}-\mathrm{z} \frac{\partial}{\partial \mathrm{y}}\right) \\
&+ \mathrm{x} \frac{\partial}{\partial \mathrm{z}}\left(\mathrm{y} \frac{\partial}{\partial \mathrm{z}}-\mathrm{z} \frac{\partial}{\partial \mathrm{y}}\right)=\mathrm{y} \frac{\partial}{\partial \mathrm{x}}-\mathrm{x} \frac{\partial}{\partial \mathrm{y}}=-\mathrm{L}_{\mathrm{z}}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& {\left[L_{x}, L_{z}\right]=L_{y}} \\
& {\left[L_{y}, L_{z}\right]=-L_{x}}
\end{aligned}
$$

The generator of rotations around an axis parallel to $\overrightarrow{\boldsymbol{n}}$ is

$$
L_{\overrightarrow{\boldsymbol{n}}}=n_{x} L_{x}+n_{y} L_{y}+n_{z} L_{z}
$$

and their commutator reads

$$
\left[L_{\overrightarrow{\boldsymbol{n}}}, L_{\overrightarrow{\boldsymbol{m}}}\right]=L_{\overrightarrow{\boldsymbol{n}} \times \overrightarrow{\boldsymbol{m}}}
$$

the Lie algebra of the rotation group is isomorphic with that of 3D vectors (with the cross product as Lie bracket).

Noether's theorem: each 1-parameter group of symmetries of a physical system corresponds to a conserved quantity (with rotational invariance corresponding to the conservation of angular momentum).

Question: is there a relation between angular momentum and infinitesimal generators of the rotation group?

In QM, to any observable quantity corresponds a self-adjoint operator, whose eigenvalues are the possible measurement outcomes.

Guess: the infinitesimal generators are linear operators acting on the Hillbert space $L^{2}\left(\mathbb{R}^{3}\right)$ of square-integrable functions, i.e. the space of wave functions, hence they could be related to the components of the angular momentum operator.

Problem: the eigenvalues of the infinitesimal generators are dimensionless quantities, unless those of the angular momentum operator, hence one needs to rescale them by a quantity with the dimension of angular momentum: a natural choice is Planck's constant \hbar.

Still not enough, because the infinitesimal generators are anti-hermitian operators on $L^{2}\left(\mathbb{R}^{3}\right)$

$$
\left\langle f, L_{i} g\right\rangle=\int \overline{f(\mathrm{x}, \mathrm{y}, \mathrm{z})} L_{i} g(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{dxdydz}=-\left\langle L_{i} f, g\right\rangle
$$

hence their eigenvalues are not real, but purely imaginary numbers (whose square is negative), consequently they cannot correspond to 'observable quantities' (whose eigenvalues are real numbers).

Solution: multiply the infinitesimal generators L_{i} with the imaginary number $-\mathfrak{i} \hbar$.

The operators $J_{i}=-\mathfrak{i} \hbar L_{i}$ are self-adjoint, and their Lie brackets $\left(\epsilon_{i j k}\right.$ is the Levi-Civita tensor)

$$
\left[J_{i}, J_{j}\right]=\mathfrak{i} \epsilon_{i j k} \hbar J_{k}
$$

reproduce the commutation rules of the components of the angular momentum operator!

Note that the J_{i} do not belong to the Lie algebra properly, only to its so-called complexification.

The Lie algebra $\mathfrak{s u}(2)$ of the isospin group $\mathrm{SU}(2)$ consists of the traceless and self-adjoint 2-by-2 matrices

$$
\mathfrak{s u}(2)=\left\{A \in \operatorname{Mat}_{2}(\mathbb{C}) \mid A^{\dagger}=A \text { and } \operatorname{Tr}(A)=0\right\}
$$

with Lie bracket the commutator of matrices.
A basis of $\mathfrak{s u}(2)$ is provided by the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & \mathfrak{i} \\
-\mathfrak{i} & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

whose commutators read

$$
\left[\frac{\sigma_{i}}{2}, \frac{\sigma_{j}}{2}\right]=\frac{\sigma_{i}}{2} \frac{\sigma_{j}}{2}-\frac{\sigma_{j}}{2} \frac{\sigma_{i}}{2}=\mathfrak{i} \epsilon_{i j k} \frac{\sigma_{k}}{2}
$$

The matrices $\frac{\hbar}{2} \sigma_{i}$ have the same Lie brackets as the generators J_{i}, hence $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ have isomorphic Lie algebras, i.e. they are locally isomorphic. Since $\operatorname{SU}(2)$ is simply connected, it is the universal cover of SO(3), hence the latter is a factor group by a central subgroup. Because $\mathrm{SU}(2)$ is not isomorphic with $\mathrm{SO}(3)$ (while being locally isomorphic to it), the central subgroup cannot be trivial. As the center Z of $\mathrm{SU}(2)$ consists of the two matrices

$$
\pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

the only non-trivial central subgroup of $\mathrm{SU}(2)$ is Z itself, from which we conclude that

$$
\mathrm{SO}(3) \cong \mathrm{SU}(2) / \mathrm{Z}
$$

