
1 LIE GROUPS AND THEIR PARAMETRIZATION

Lie groups

1 Lie groups and their parametrization

A topological group is a group G that is at the same time a topological

space such that for g∈G both the left translations

λg :G → G

h 7→ gh

and the inversion map
ιG :G → G

g 7→ g-1

are continuous.
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A manifold is a topological space that is locally Euclidean: it is covered

by open sets W , each homeomorphic to an open subset U⊆Rn, where

Rn denotes n-dimensional Euclidean space, i.e. the set of n-tuples of real

numbers with the usual topology associated to the Euclidean metric.

Remark. A local homeomorphism αW : W → U is called a local chart,

since it allows to parametrize each point x∈W by real-valued curvilinear

coordinates, the components of αW (x).

Overlapping local charts give rise to di�erent local parametrizations of

one and the same point, related to each other by transition functions.

If the positive integer n is the same for all local charts, then n is called

the dimension of the space.
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An n-parameter Lie group is a topological group that is locally Euclidean

of dimension n. The local charts allow to parametrize (locally) the group

elements: to a group element g∈W is associated its parameter vector

α⃗(g) = (α1(g) , . . . ,αn(g))

For example, 3D space translations τ :R3 →R3 form a 3-parameter Lie

group, with a possible parameter vector α⃗(τ) given by the components

(with respect to some given basis) of the image τ(0⃗) of the origin 0⃗.

Remark. It is usual (but by no means necessary) to associate the param-

eter vector 0⃗=(0, . . . , 0) to the identity element; whenever possible, we

shall use the convention α⃗(1G)= 0⃗.
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Given a local chart αW : W→U in a neighborhood W ⊆G of the identity

element 1G, the group structure implies the existence of continuous maps

µ : U×U→U and ι : U→U (the structure functions) such that

α⃗(gh) = µ
(
α⃗(g) , α⃗(h)

)
α⃗
(
g-1
)
= ι(α⃗(g))

µ
(
α⃗, β⃗

)
is the parameter vector of the product of the group elements

with parameter vectors α⃗ and β⃗, while ι(α⃗) is that of the inverse.

Associativity of the group product implies the relation

µ
(
α⃗,µ

(
β⃗, γ⃗

))
= µ

(
µ
(
α⃗, β⃗

)
, γ⃗
)

for α⃗, β⃗, γ⃗∈U.
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Since α⃗(1G)= 0⃗, the other group axioms (existence of the identity and

of inverses) take the form

µ
(
α⃗, 0⃗

)
= µ

(
0⃗, α⃗

)
= α⃗

µ
(
α⃗, ι

(
α⃗
))

= µ
(
ι
(
α⃗
)
, α⃗
)
= 0⃗

Remark. Since U⊆Rn, the maps µ and ι that characterize locally the

group structure can be studied by means of calculus in several variables.

Gleason-Montgomery-Zippin: the structure functions µ :U×U→U

and ι :U→U are analytic, i.e. their Taylor-series around the origin have

a positive radius of convergence, if they are twice di�erentiable.
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Examples of Lie groups

1. The additive group (R,+) of real numbers is a one parameter Lie

group, with structure functions µ(α, β) = α+β and ι(α) =−α in

case of the trivial parametrization α(z)=z.

2. The multiplicative group U(1) = {z∈C | |z|=1} of complex phases

is again a one parameter Lie group. When using the exponen-

tial parametrization α(z) =−i log z, its structure functions are as

above: µ(α, β)=α+β and ι(α)=−α .

3. The isospin group SU(2) =
{
U ∈Mat2 (C) | detU=1, U†U=1

}
is a

three parameter Lie group.
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4. The 3D rotation group of rotations around axes having a common

point (the center) is a three parameter Lie group (rotations can

be parametrized by e.g. the 3 Euler angles). Topologically, it is

homeomorphic with the interior of a ball, with identi�cation of

some boundary points. Since rotations preserve orientation and

the distance from the center, the rotation group can be identi�ed

with the group SO3(R) of 3-by-3 orthogonal matrices.

5. The Poincaré group P, i.e. the symmetry group of 4D Minkowski

space-time, is 10 dimensional Lie group. Four parameters corre-

spond to space-time translations, while 6 to 4D rotations, out of

which 3 describe 3D rotations, and another 3 the Lorentz boosts.
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Every Lie group G has a canonical parametrization such that

µ
(
α⃗, β⃗

)
i
= αi + βi +

1

2

n∑
j,k=1

cjki αjβk + higher order terms

and ι
(
α⃗
)
=−α⃗.

Lie's theorem: the coe�cients cijk satisfy

cjki + ckji = 0 skew-symmetry∑
m

{
cjmi cklm + ckmi cljm + clmi cjkm

}
= 0 Jacobi identity

and determine all the higher order terms of the expansion. Moreover,

any system of real coe�cients cijk that satisfy the above requirements

corresponds to some Lie group.
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The coe�cients cijk , the so-called structure constants of G, characterize

the algebraic structure locally (i.e. near the identity element).

A Lie homomorphism ϕ : G1→G2 between the Lie groups G1 and G2 is a

continuous (analytic) group homomorphism, while a local isomorphism

is an analytic map that is a bijective homomorphism when restricted to

a suitable neighborhood of the identity.

While not necessarily isomorphic, locally isomorphic Lie groups have

identical structure functions in suitable parametrizations, hence look the

same in some neighborhood of the identity.

A one-parameter subgroup of a Lie group G is a homomorphic image

(inside G) of the additive group (R,+) of real numbers.
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2 Lie algebras

A Lie algebra is a linear space L endowed with a binary operation, the

Lie bracket [, ] : L×L→L, that is

• bilinear, i.e. [λa+µb, c]=λ[a, c]+µ[b, c] and [a, λb+µc]=λ[a, b]+µ[a, c];

• skew-symmetric, i.e. [b, a]=− [a, b];

• satis�es the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

for all a, b, c∈L and arbitrary scalars λ, µ.

A Lie algebra homomorphism is a linear map ϕ :L1→L2 such that

ϕ
(
[a, b]

)
=[ϕ(a), ϕ(b)]
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Examples:

1. R3 with the cross product as Lie bracket;

2. Matn (R) with the commutator [A,B]=AB−BA as Lie bracket;

3. the general linear algebra gl(V ) of all linear operators A: V → V

with the commutator [A,B]=AB−BA as Lie bracket;

4. continuous functions on the phase space ('observable quantities')

of a Hamiltonian system, with the Poisson bracket as Lie bracket;

5. angular momentum operators in quantum mechanics.
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Given a basis B={b1, . . . , bn} of L, the Lie brackets

[bi, bj ] =
n∑

k=1

cijk bk

of the basis vectors determine the algebra because of bilinearity[∑
i

xibi,
∑
j

yjbj

]
=
∑
k

(∑
i,j

cijk xiyj

)
bk

The coe�cients cijk , the structure constants of L, satisfy

cjki + ckji = 0 skew-symmetry∑
m

{
cjmi cklm + ckmi cljm + clmi cjkm

}
= 0 Jacobi identity

and characterize the Lie algebra up to isomorphism.
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The structure constants of a Lie group satisfy the same identities ⇝

correspondence between Lie groups and Lie algebras!

Can reduce questions about Lie groups to questions about Lie algebras.

Advantage: linear structure of Lie algebras!

For example, for a given x∈L let's consider the mapping

adx :L → L
y 7→ [x, y]

By bilinearity of the Lie bracket, adx is a linear operator on L, whose

properties may be described by linear algebraic means (spectral theory,

determinants, etc.).
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Question: how can we compute the Lie algebra of a Lie group?

E�ective methods for Lie transformation groups, i.e. continuous groups

of di�erentiable coordinate transformations xi 7→x′
i(x1, . . . , xm|α⃗) of Rm,

where α⃗∈U⊆Rn.

The �rst order partial di�erential operators (for i=1, . . . , n)

Ti =
m∑
j=1

(
∂x′

j

∂αi

)
α⃗=0⃗

∂

∂xj

(the in�nitesimal generators) have commutators

[Ti, Tj ] = Ti◦Tj − Tj◦Ti =
n∑

k=1

cijk Tk

with cijk the structure constants of the Lie algebra of the group.
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Examples

1. The group of 3D translations

tα⃗ :R3 → R3

x⃗ 7→ x⃗+ α⃗

with α⃗∈R3. The in�nitesimal generators read

Ti =
∑
j

∂(xj+αj)

∂αi

∂

∂xj
=

∂

∂xi

Since mixed partial derivatives of di�erentiable functions are equal, the

commutators (Lie brackets) vanish: [Ti, Tj ]=0.

More generally, the Lie group of translations of n-dimensional Euclidean

space Rn has n in�nitesimal generators whose Lie brackets vanish.
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2. Consider the group of all rotations in 2D around the origin. This is a

one-parameter Lie group, and the 2D rotation by angle α∈ [0, 2π) acts

on Cartesian coordinates as

R(α) :

(
x

y

)
7→
(
cosα x−sinα y

sinα x+cosα y

)
There is only one in�nitesimal generator, which reads

T =
∂(cosα x−sinα y)

∂α

∂

∂x
+
∂(sinα x+cosα y)

∂α

∂

∂y
=−y

∂

∂x
+ x

∂

∂y

Clearly, [T, T ]=0 by skew-symmetry of the Lie bracket, which is exactly

what one would obtain for translations in 1D, hence the corresponding

Lie groups are locally isomorphic.
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3. The a�ne group Affn consists of the transformations of Rn

a(λ, a⃗) : x⃗ 7→λx⃗+a⃗

with a⃗ ∈Rn and λ∈R. The generators read

D =

n∑
i=1

(
∂(λxi+ai)

∂λ

)
λ=1,a⃗=0⃗

∂

∂xi
=

n∑
i=1

xi
∂

∂xi

Tj =

n∑
i=1

(
∂(λxi+ai)

∂aj

)
λ=1,a⃗=0⃗

∂

∂xi
=

∂

∂xj

and one has [Ti, Tj ]=0 and

[D,Tj ]=
n∑

i=1

xi
∂

∂xi

(
∂

∂xj

)
− ∂

∂xj

(
n∑

i=1

xi
∂

∂xi

)
=− ∂

∂xj
=−Tj
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3 Global properties

The Lie algebra Lie(G) re�ects only the local structure of the Lie group

G (in a suitable neighborhood of the identity), the global structure is

captured by topology.

Fundamental topological properties:

compactness, if every open covering contains a �nite subcovering;

connectedness, if any two group elements may be connected by a con-

tinuous curve;

simply connectedness, if any closed curve can be deformed continu-

ously to a point.
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In every Lie group, the endpoints of all continuous curves starting at the

identity element form a connected subgroup G0 <G, the component of

the identity, and there is a one-to-one correspondence between the cosets

of G0 in G and the connected components of G.

Every connected Lie group G is locally isomorphic with a unique simply

connected Lie group Ĝ, its universal cover, and there is a discrete central

subgroup Z<Z(Ĝ) such that G ∼= Ĝ/Z.

Every Lie algebra corresponds to a unique (up to isomorphism)simply

connected Lie group, hence the study of Lie algebras parallels that of

simply connected groups.
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Examples

1. (R,+) and U(1) are locally isomorphic, but (R,+) is simply con-

nected and non-compact, while U(1) is compact and connected,

but not simply connected ⇝ (R,+) is the universal cover of U(1).

2. SU(2) and SO(3) have the same Lie algebra, hence they are locally

isomorphic, but while the former is simply connected and compact,

the latter is compact and connected, but not simply connected ⇝

SU(2) is the universal cover of SO(3).

3. the Poincaré group is neither connected (re�ections!) nor compact

(translations!).
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4 The Haar measure

On several occasions one needs to average real-valued functions f : G→R

over the elements of a group G.

If G is �nite, then

⟨f⟩ = 1∣∣G∣∣ ∑
g∈G

f(g)

If G is continuous, then

⟨f⟩ = 1

vol(G)

∫
f(g) dµ

with the integral taken with respect to a suitable Lebesgue-measure µ,

and vol(G)=
∫
1dµ, the integral of the constant 1, is the 'volume' of G.

Compatibility with group structure: translation invariance.
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For �nite G

⟨f⟩ = 1∣∣G∣∣ ∑
h∈G

f(h) =
1∣∣G∣∣ ∑

h∈G

f(gh)

Should hold for topological groups as well!

An invariant measure µ on a topological group G is a Lebesgue-measure

such that for every g∈G and every measurable set U⊆G the translate

gU={gx |x∈U} is also measurable, and

µ(gU) = µ(U)

Haar's theorem: every compact topological group admits an

invariant measure, the Haar measure, unique up to normalization.
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5 The 3D rotation group

Consider the group of 3D rotations around axes having a point in com-

mon (the rotation center).

Because rotations transform Cartesian coordinates linearly, they form a

Lie transformation group. Choosing Cartesian coordinates x, y, z (origin

at the rotation center), the transformed coordinates readx′

y′

z′

 = O

x

y

z


for a suitable 3-by-3 matrix O∈Mat3 (R).
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Since rotations preserve orientation one has detO> 0, and because the

distance
√

x2+y2+z2 from the origin (rotation center) is invariant, O is

an orthogonal matrix, i.e. OtrO = 13, hence there exists a one-to-one

correspondence between 3D rotations and 3-by-3 orthogonal matrices

whose determinant equals 1.

The group of 3D rotations is isomorphic with the matrix group SO(3).

Each rotation is characterized by its rotation angle and the direction of

its rotation axis, hence one needs 3 angular coordinates to parametrize

3D rotations (e.g. the Euler angles): the rotation group is a 3-parameter

Lie group.
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Any rotation can be decomposed into a product of three consecutive

rotations around perpendicular axes:

O(α⃗) = Ox(αx)Oy(αy)Oz(αz)

where

Oz(α) :

x
y
z

 7→

cosα x−sinα y
sinα x+cosα y

z


with in�nitesimal generator

Lz = x
∂

∂y
− y

∂

∂x



5 THE 3D ROTATION GROUP

Similarly, one has

Lx = y
∂

∂z
− z

∂

∂y

Ly = z
∂

∂x
− x

∂

∂z

The Lie-algebra is spanned by (real) linear combinations of Lx, Ly, Lz.

Lie brackets from commutators of in�nitesimal generators

[Lx, Ly] =

(
y
∂

∂z
−z

∂

∂y

)(
z
∂

∂x
−x

∂

∂z

)
−
(
z
∂

∂x
−x

∂

∂z

)(
y
∂

∂z
−z

∂

∂y

)
= y

∂

∂z

(
z
∂

∂x
−x

∂

∂z

)
− z

∂

∂y

(
z
∂

∂x
−x

∂

∂z

)
− z

∂

∂x

(
y
∂

∂z
−z

∂

∂y

)
+ x

∂

∂z

(
y
∂

∂z
−z

∂

∂y

)
= y

∂

∂x
− x

∂

∂y
= −Lz
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Similarly

[Lx, Lz] =Ly

[Ly, Lz] =− Lx

The generator of rotations around an axis parallel to n⃗ is

Ln⃗ = nxLx + nyLy + nzLz

and their commutator reads

[Ln⃗, Lm⃗] = Ln⃗×m⃗

the Lie algebra of the rotation group is isomorphic with that of 3D vectors

(with the cross product as Lie bracket).
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Noether's theorem: each 1-parameter group of symmetries of a physical

system corresponds to a conserved quantity (with rotational invariance

corresponding to the conservation of angular momentum).

Question: is there a relation between angular momentum and in�nitesi-

mal generators of the rotation group?

In QM, to any observable quantity corresponds a self-adjoint operator,

whose eigenvalues are the possible measurement outcomes.

Guess: the in�nitesimal generators are linear operators acting on the

Hillbert space L2
(
R3
)
of square-integrable functions, i.e. the space of

wave functions, hence they could be related to the components of the

angular momentum operator.
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Problem: the eigenvalues of the in�nitesimal generators are dimension-

less quantities, unless those of the angular momentum operator, hence

one needs to rescale them by a quantity with the dimension of angular

momentum: a natural choice is Planck's constant ℏ.

Still not enough, because the in�nitesimal generators are anti-hermitian

operators on L2
(
R3
)

⟨f, Lig⟩ =
∫

f(x, y, z)Lig(x, y, z) dxdydz = −⟨Lif, g⟩

hence their eigenvalues are not real, but purely imaginary numbers (whose

square is negative), consequently they cannot correspond to 'observable

quantities' (whose eigenvalues are real numbers).
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Solution: multiply the in�nitesimal generators Li with the imaginary

number −i ℏ.

The operators Ji = −i ℏLi are self-adjoint , and their Lie brackets (ϵijk

is the Levi-Civita tensor)

[Ji, Jj ] = i ϵijkℏJk

reproduce the commutation rules of the components of the angular mo-

mentum operator!

Note that the Ji do not belong to the Lie algebra properly, only to its

so-called complexi�cation.
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The Lie algebra su(2) of the isospin group SU(2) consists of the traceless

and self-adjoint 2-by-2 matrices

su(2) =
{
A∈Mat2 (C) |A†=A and Tr(A)=0

}
with Lie bracket the commutator of matrices.

A basis of su(2) is provided by the Pauli matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 i

−i 0

)
σ3 =

(
1 0

0 −1

)

whose commutators read[σi

2
,
σj

2

]
=

σi

2

σj

2
− σj

2

σi

2
= i ϵijk

σk

2
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The matrices ℏ
2σi have the same Lie brackets as the generators Ji, hence

SU(2) and SO(3) have isomorphic Lie algebras, i.e. they are locally

isomorphic. Since SU(2) is simply connected, it is the universal cover of

SO(3), hence the latter is a factor group by a central subgroup. Because

SU(2) is not isomorphic with SO(3) (while being locally isomorphic to

it), the central subgroup cannot be trivial. As the center Z of SU(2)

consists of the two matrices

±

(
1 0

0 1

)

the only non-trivial central subgroup of SU(2) is Z itself, from which we

conclude that

SO(3) ∼= SU(2)/Z
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