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Representation theory

1 Introduction

Structural study of a group can be quite involved if either the elements

or the group multiplication are complicated.

Possible way out: consider another group whose algebraic structure is

almost the same (i.e. nearly isomorphic), but with well-known elements

and group multiplication (e.g. cyclic or permutation groups).

But cyclic groups are Abelian, while permutation groups are �nite, hence

one needs to consider a more general class: linear and unitary groups.
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2 Linear and unitary groups

Let V denote a linear space with �eld of scalars F (usually either the real

or the complex numbers). The general linear group

GL(V )={A : V →V | detA ̸= 0}

over V consist of all invertible linear operators on V , with product the

composition (multiplication) of operators.

A linear group is a subgroup of GL(V ).

Remark. A subgroup of a linear group is itself linear.

The dimension dimG of a linear group G < GL(V ) is the dimension

(cardinality of any basis) of the linear space V .
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Examples:

1. the group
Sc(V ) = {λidV |λ∈F×}

of scalar operators (isomorphic to the unit group F×);

2. the special linear group

SL(V ) = {A∈GL(V ) | detA=1}

of unimodular operators (having determinant 1);

3. the stabilizer subgroup

Stab(v) = {A∈GL(V ) |Av=v}

of some vector v∈V .
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Linear groups are more amenable to study because they allow the use of

· linear algebra methods (e.g. spectral decomposition, determinants,

etc.) in the study of their elements;

· constructions speci�c to linear groups (e.g. duality, direct sums

and tensor products);

· special algorithms applicable to collections of linear operators.

Linear groups are rather the exception than the rule, but some special

classes of groups (like �nite, compact Lie, etc.) may be shown to have

all members isomorphic to some linear group.
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A complex inner product space is a complex linear space endowed with

a map ⟨, ⟩ : H×H→C that is

· linear in its �rst argument, i.e. ⟨λa+µb, c⟩=λ ⟨a, c⟩+µ ⟨b, c⟩ for all

λ, µ∈C and a, b, c∈H;

· conjugate symmetric, i.e. ⟨b, a⟩= ⟨a, b⟩ for all a, b∈H, where the

bar denotes complex conjugation;

· positive de�nite, i.e. ⟨a, a⟩>0 for every non-zero element of H.

Example: the space Cn of n-tuples z=(z1, . . . , zn) of complex numbers

with the inner product

⟨z, w⟩ =
n∑

i=1

ziwi
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A Hilbert space H is a complex inner product space that is complete (as

a metric space) with respect to the norm topology induced by the metric

d(a, b) =
√

⟨a− b, a− b⟩

A unitary operator on the Hilbert-spaceH is a (bounded) linear operator

U : H→H preserving the inner product, i.e.

⟨Ux,Uy⟩ = ⟨x, y⟩

for x, y∈H, while an antiunitary operator A : H→H is antilinear, i.e.

A (αx+βy) = αAx+ βAy

for all α, β∈C and x, y∈H, and satis�es

⟨Ax,Ay⟩ = ⟨x, y⟩ = ⟨y, x⟩
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Unitary operators are invertible, and the product of unitary operators is

unitary, hence they form a group U(H) (denoted as U(n) in case H is of

�nite dimension n). A unitary group is any subgroup G<U(H).

The inverse of an antiunitary operator is antiunitary, while the product

of two antiunitary operators is unitary; as a consequence, the collection

Û(H) of all unitary or antiunitary operators is itself a group, having

U(H) as a subgroup of index 2.

Consequence: antiunitary operators form a coset of U(H), hence it is

enough to understand the structure of the latter

Û(H) = U(H)
⋃
KU(H)

for some �xed antiunitary K (chosen at will).
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Unitary groups are easier to study because

1. to each linear subspace of a Hilbert space one can associate its

so-called orthogonal complement;

2. the metric structure of a Hilbert space allows to single out espe-

cially useful bases (so-called orthonormal bases B = {e1, . . . , en}

that satisfy ⟨ei, ej⟩=δij);

3. any unitary operator can be diagonalized, and its eigenvalues lie

on the complex unit circle U(1)={z∈C | zz=1}.

A group G<GL(V ) is unitarizable, if V may be endowed with an inner

product making it a Hilbert space H in such a way that G<U(H).
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Unitary groups in physics: quantum systems and gauge symmetries.

(pure) states ↭ rays (1D subspaces) of Hilbert space

observable quantities ↭ self-adjoint operators on Hilbert space

energy ↭ Hamiltonian (generator of time translations)

Wigner's theorem: the symmetries of a quantum system correspond

to (anti-)unitary operators commuting with its Hamiltonian.

Remark. Antiunitary symmetry operators are related to time reversal

symmetry (exchanges cause and e�ect).

Gauge symmetries of fundamental interactions are described by (special)

unitary groups in the Standard Model.
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3 Matrix representations

If V has �nite dimension n, then for any choice of basis B={e1, . . . , en}

there exist a (non-canonical) isomorphism ΓB : GL(V )→GLn(F)

A(ei) =

n∑
j=1

ΓB(A)ij ej

The matrix ΓB(A)∈GLn(F) associated to the linear operator A∈GL(V )

with respect to the basis B = {e1, . . . , en} provides a numerical repre-

sentation that captures many algebraic properties, but it is by no means

unique: one and the same operator could be represented by di�erent

matrices (with respect to di�erent bases), and one and the same matrix

may represent (with respect to di�erent bases) di�erent operators.
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If B′={e′
1, . . . , e

′
n} is another basis of V , then

ΓB′(A) = C−1ΓB(A)C

where e′
i=
∑

j Cijej (C is the matrix of basis change).

matrices ̸= linear operators

The image ΓB(G) of a linear group G<GL(V ) is a matrix group.

If the Hilbert space H has �nite dimension n, then for any choice of an

orthonormal basis B the isomorphism ΓB : GL(H)→ GLn(C) assigns to

each element of U(H) an n-by-n unitary matrix (recall that a matrix is

unitary if its inverse equals the complex conjugate of its transpose).
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4 Invariant subspaces and reducibility

A subset W ⊆V of a linear space V (with �eld of scalars F) is a linear

subspace if x+y∈W and αx∈W whenever x, y∈W and α∈F.

A linear subspace W ⊆ V is nontrivial if it is di�erent from the zero

subspace and the whole space: in other words, if 0<dimW<dimV .

A linear subspace W ⊆ V is an invariant subspace of the linear group

G< GL(V ) if all group elements map it onto itself, i.e. gx ∈W for all

g∈G and x∈W .

Remark. The zero subspace and the whole space are always invariant.
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The translates x+W ={x+y | y∈W} of a linear subspace W ⊆V (x runs

over the elements of V ) form themselves a linear space, the factor space

V/W , with addition and multiplication by a scalar de�ned as

(x+W ) + (y+W ) = (x+y)+W

α(x+W ) = αx+W

for x, y∈V and α∈F.

Remark. Any basis BW of a linear subspace W ⊆ V can be completed

(in many di�erent ways) to a basis BV ⊇BW of the whole space, and

each element of the di�erence set BV \BW corresponds to a basis vector

of the factor space.

Consequence: dim (V/W )=dimV − dimW



4 INVARIANT SUBSPACES AND REDUCIBILITY

Given an invariant subspace W ⊆V of G<GL(V ), the restrictions

gW :W →W

x 7→ gx

to W of the group elements g∈G, and the factored operators

g/W :V/W → V/W

x+W 7→ gx+W

are well de�ned linear operators making up linear groups

GW = {gW | g∈G} < GL(W )

and
G/W = {g/W | g∈G} < GL(V/W )

called respectively the reduction and factor of G.
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Remark. Given a basis BW of the invariant subspace W < V and its

completion BV to a basis of V , the representation matrices with respect

to BV are upper triangular block matrices, i.e. they read

ΓBV
(g) =

(
ΓBW

(g) T (g)
0 ΓBV\BW

(g)

)

for suitable matrices T (g) that satisfy for all g, h∈G

T (gh) = ΓBW
(g)T (h) + T (g)ΓBV\BW

(h)

A linear group is reducible or irreducible according to whether it has a

nontrivial invariant subspace.

Schur's lemma: an operator that commutes with all elements of an

irreducible linear group is a scalar multiple of the identity operator.
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5 Linear representations

Problem: given an abstract group, �nd a linear group isomorphic to it.

There is usually no solution for a generic group, hence one needs to look

for suitable (linear) homomorphic images.

A linear representation of the group G over the linear space V is a ho-

momorphism D :G→GL(V ) into the general linear group over V .

The representation is called faithful if its kernel is trivial.

The image of a representation is always a linear group that is isomorphic

to G precisely when the representation is faithful.



5 LINEAR REPRESENTATIONS

Remark. A linear representation D :G→ GL(V ) over a linear space of

dimension n (with �eld of scalars F) determines, for any choice of a basis

B={e1, . . . , en} of the linear space V , a degree n matrix representation

DB : G→GLn(F) via the rule DB=ΓB◦D, where ΓB : GL(V )→GLn(F)

is the isomorphism associated to the basis B.

As the theory becomes pretty complicated over generic linear spaces,

we shall concentrate on representations over �nite dimensional complex

linear spaces, the so-called complex (linear) representations.

Remark. Some applications (e.g. in crystallography) involve the consid-

eration of representations over the real and/or rational number �eld.
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Examples of representations:

1. For any group G and any linear space V , the map

1V :G→ GL(V )

g 7→ idV

assigning to each group element g∈G the identity operator idV on V is

a representation, the so-called trivial representation of G over V ;

2. For a linear group G<GL(V ), the inclusion map

DG :G→ GL(V )

g 7→ g

that assigns to each group element g∈G itself, is a representation of G,

the so-called de�ning representation of G;
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3. For a �eld F and a set X with n elements, the collection F(X) of all

F-valued functions on X is a linear space over F of dimension n (with

pointwise addition and multiplication by elements of F), and to each

permutation π∈Sn the map

D(π) :F(X) → F(X)

f 7→ f ◦ π−1

assigns a linear operator acting on F(X) such thatD(π1π2)=D(π1)D(π2).

Consequently, the map

D :G→ GL(F(X))

π 7→ D(π)

is a representation of any subgroup G<Sym(X) over F(X), the so-called

permutation representation associated to G.
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A unitary representation of G on a Hilbert-space H is a homomorphism

U : G→U(H) into the group of unitary operators on H, i.e. a linear

representation all of whose representation operators are unitary:

⟨U(g)x, U(g)y⟩ = ⟨x, y⟩

for all x, y∈H and g∈G.

A unitarizable representation D : G→GL(V ) is one for which there exists

a positive de�nite scalar product on V (making it a Hilbert-space) for

which all representation operators are unitary.

All representations of a �nite or compact group are unitarizable.
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6 Equivalence and reducibility

The representations D1 : G→GL(V1) and D2 : G→GL(V2) are (linearly)

equivalent, denoted D1
∼= D2, if there exists an invertible linear map

(intertwiner) A : V1→V2 such that D2(g)A=AD1(g) for all g∈G.

Remark. The dimension of equivalent representations is the same.

Linear equivalence is a re�exive, symmetric and transitive relation.

Equivalent representations are practically the same, e.g. the representa-

tion matrices of group elements coincide (w.r.t. suitable bases).

Problem: classify (up to equivalence) all representations of a given group.
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A representation D : G → GL(V ) is called reducible if its image is a

reducible linear group (i.e. D(G) < GL(V ) has a nontrivial invariant

subspace W<V ), otherwise it is called irreducible.

Remark. One dimensional representations are always irreducible.

Schur's lemma: any operator that commutes with all representation

operators of an irreducible representation is a multiple of the identity.

Remark. Since the symmetries of a quantum system are described by

(anti-)unitary operators commuting with its Hamiltonian (by Wigner's

theorem), the degeneracy of energy levels can be related to symmetries

via Schur's lemma.
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7 Direct sum of representations

The direct sum of the linear spaces V1 and V2 is the linear space V1⊕V2
whose elements are ordered pairs (x1, x2) with x1∈V1 and x2∈V2, while

addition and multiplication by a scalar are de�ned component-wise:

(x1, x2)+(y1, y2) = (x1+y1, x2+y2)

α(x1, x2) = (αx1, αx2)

for α∈F and xi, yi∈Vi (i=1, 2).

Remark. If Bi denotes a basis of Vi, then a basis of V1⊕V2 is given by

B1⊔B2 = {(x1, 0) |x1∈B1} ∪ {(0, x2) |x2∈B2}

hence
dim(V1⊕V2)=dimV1 + dimV2
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The direct sum of A1 : V1→V1 and A2 : V2→V2 is the linear map

A1⊕A2 :V1 ⊕ V2 → V1 ⊕ V2

(x1, x2) 7→ (A1x1, A2x2)

The matrix of A1⊕A2 with respect to the basis B1⊔B2 is block-diagonal

ΓB1⊔B2(A1⊕A2) =

(
ΓB1(A1) 0

0 ΓB2(A2)

)

Given representations D1 : G→GL(V1) and D2 : G→GL(V2), the map

D1⊕D2 :G→ GL(V1⊕V2)
g 7→ D1(g)⊕D2(g)

is a new representation, the direct sum of D1 and D2, whose equivalence

class is completely determined by the classes of D1 and D2.
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The direct sum is commutative and associative (up to equivalence)

D1⊕D2
∼=D2⊕D1

D1⊕(D2⊕D3)∼=(D1⊕D2)⊕D3

Remark. The subspaces V̂1={(x1, 0) |x1∈V1} and V̂2={(0, x2) |x2∈ V2}

are invariant subspaces of the direct sum D1⊕D2, with corresponding

reductions to V̂i equivalent to Di for i=1, 2, i.e.

(D1⊕D2)V̂i

∼= Di

A representation is completely reducible if it can be decomposed into

a direct sum of irreducible representations (e.g. trivial representations,

which can be decomposed into a direct sum of trivial representations

over one dimensional subspaces).
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Completely reducible representations have an irreducible decomposition⊕
i∈Irr(G)

nii

into a direct sum of irreducibles, where ni∈Z+ is the multiplicity of the

irreducible i∈ Irr(G).

completely reducible representations ↭ maps from Irr(G) into Z+

Maschke's theorem: all complex representations of a �nite group are

completely reducible (a similar result, the Peter-Weyl theorem, holds for

the representations of compact topological groups).

More generally, all unitary representations are completely reducible.
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8 The contragredient

The dual V ∨ of a linear space V (with �eld of scalars F) is the set of all

linear functionals, i.e. maps ϕ :V →F from V into F such that

ϕ(αx+ βy) = αϕ(x) + βϕ(y)

for all α, β∈F and x, y∈V . The dual is itself a linear space over F with

pointwise operations

ϕ1+ϕ2 :V → F
x 7→ ϕ1(x) + ϕ2(x)

and
αϕ1 :V → F

x 7→ αϕ1(x)

for α∈F and ϕ1, ϕ2∈V ∨.
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If B={b1, . . . , bn} is a basis of V , then the functionals

b∨i :V → F
bj 7→ δij

form a basis of V ∨, the dual basis B∨={b∨i | bi∈B}.

Consequence: dimV ∨=dimV .

To each v∈V one can associate a linear functional

v♭ :V ∨ → F
ϕ 7→ ϕ(v)

of the dual space V ∨, and the mapping

♭ :V → (V ∨)∨

v 7→ v♭

is an invertible linear map.



8 THE CONTRAGREDIENT

The dual of the dual can be identi�ed naturally with the original space.

The transpose Atr of a linear map A : V1→V2 is the linear map

Atr :V ∨
2 → V ∨

1

ϕ 7→ ϕ ◦A

between dual spaces.

Given a basis B={b1, . . . , bn} of V , the matrix of the transpose of

A∈GL(V ) with respect to the dual basis B∨={b∨i | bi∈B} reads

ΓB∨(Atr) = ΓB(A)
⊺

where M⊺ denotes the transpose of M ∈Matn (F), i.e. M⊺
ij=Mji.

Transposition is an antihomomorphism, i.e. (AB)
tr
=BtrAtr .
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For a representation D:G→GL(V) over the linear space V , the mapping

D∨ :G→ GL(V ∨)

g 7→ Dtr
(
g−1

)
which assigns to each group element the transpose of the representation

operator of its inverse is a representation of G on the dual space V ∨, the

contragredient of D (note that dimD∨ = dimD).

The contragredient of the contragredient is the original representation

(D∨)∨ ∼= D

and the contragredient of a direct sum is the sum of the contragredients(⊕
i

Di

)∨ ∼=
⊕
i

D∨
i

The contragredient of an irreducible representation is itself irreducible.
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9 Tensor products and the fusion ring

A bilinear functional on the linear spaces V1 and V2 (with common �eld

of scalars F) is a map b :V1×V2→F that is linear in each of its arguments:

b(αx1 + βy1, x2) = αb(x1, x2) + βb(y1, x2)

b(x1, αx2 + βy2) = αb(x1, x2) + βb(x1, y2)

for scalars α, β∈F and xi, yi∈Vi (i=1, 2).

The set B(V1, V2) of bilinear functionals is a linear space with the obvious

pointwise operations

b1 + b2 :V1×V2 → F
(v, w) 7→ b1(v, w)+b2(v, w)
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and
αb :V1×V2 → F

(v, w) 7→ αb(v, w)

for α∈F and b1, b2∈B(V1, V2).

The dyadic product v1⊗v2 of v1∈V1 and v2∈V2 is the linear functional

v1⊗v2 :B(V1, V2) → F
b 7→ b(v1, v2)

i.e. evaluation of bilinear functionals at the given arguments.

Dyadic products span the dual of the space of bilinear functionals,

called the tensor product V1⊗V2 of the linear spaces V1 and V2

V1⊗V2 = B(V1, V2)∨
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Physical signi�cance: the state space of a composite quantum system

is the tensor product of the Hilbert spaces of its components; dyadic

products correspond to separable states, with no correlation between

the subsytems.

Given bases Bi of Vi (i= 1, 2), the set {e⊗f | e∈B1, f ∈B2} of dyadic

products is a basis (the product basis) of the tensor product V1⊗V2.

Consequence: dim (V1⊗V2)=dimV1 dimV2

Remark. While every element of V1⊗V2 is a linear combination of dyadic

products, not all of them are dyadic products themselves (corresponding

to inseparable states in quantum theory, leading to the phenomenon of

quantum entanglement).
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The tensor product of the linear operators A1 : V1→W1 and A2 : V2→W2

is the linear operator A1⊗A2 : V1⊗V2→W1⊗W2 that maps each dyadic

product v1⊗v2 into A1v1⊗A2v2 (well-de�ned, since dyadic products span

the tensor product space).

Given operators Ai∈GL(Vi) and bases Bi of Vi (i=1, 2), the matrix of

the tensor product A1⊗A2∈GL(V1⊗V2) with respect to the product basis

{e⊗f | e∈B1, f ∈B2} is the Kronecker product of the matrices ΓB1(A1)

and ΓB2(A2), with matrix elements

[ΓB1(A1)⊗ ΓB2(A2)] (ip)(jq) = [ΓB1(A1)]ij [ΓB2(A2)]pq

for i, j∈B1and p, q∈B2.
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Remark. The trace of a tensor product is the product of the traces

Tr {A1⊗A2}=Tr {A1}Tr {A2}

The tensor product of D1 : G→GL(V1) and D2 : G→GL(V2) is the

representation
D1⊗D2 :G→ GL(V1⊗V2)

g 7→ D1(g)⊗D2(g)

The tensor product is compatible with linear equivalence, i.e. the class

of a product is determined by the classes of its factors. Moreover, it is

commutative and associative (up to equivalence),

D1⊗D2
∼=D2⊗D1 és D1⊗(D2⊗D3)∼=(D1⊗D2)⊗D3

and distributive with respect to direct sums

D1⊗(D2⊕D3)∼=(D1⊗D2)⊕(D1⊗D3)
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The identity representation 1, which is (the equivalence class of) any 1D

trivial representation, is an identity element for the tensor product:

1⊗D ∼= D ⊗ 1 ∼= D

In general, the tensor product of any irreducible with a representation

of dimension 1 is itself irreducible.

Remark. The tensor product of two irreducibles may contain the identity

at most once, in which case they are contragredients of each other.

Equivalence classes of representations with the operations of direct sum

and tensor product form the fusion ring of the group under study (which

is actually not a ring, since representations have no additive inverses).
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For completely reducible representations (e.g. �nite or compact groups)

it is enough to know the fusion rules

i⊗j =
⊕

p∈Irr(G)

Np
ijp

i.e. the irreducible decomposition of the tensor products of irreducibles

(where i, j∈ Irr(G) denote irreducibles of G).

The non-negative integer multiplicities Np
ij∈Z+ are the so-called fusion

coe�cients of the group.

Physics relevance: composition of symmetry charges (e.g. angular mo-

mentum of composite systems).



10 REPRESENTATION CHARACTERS

10 Representation characters

Basic tasks of representation theory:

1. Classify all representations of a given group (up to equivalence).

This involves in particular deciding whether two representations

are equivalent, and (for completely reducible representations) com-

pute irreducible decompositions.

2. Determine the fusion and branching rules, symmetric powers, etc.

3. Use all the above to get structural information on the given group.
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Question: is there a simple numerical characterization of the equivalence

classes of representations.

Frobenius' observation: for a representation D :G→GL(V ) over the

complex numbers, the function

χ
D
:G→ C
g 7→ Tr {D(g)}

that assigns to each group element the trace of its representation operator

(called the character of the representation) provides such a tool.

Two linear representations are equivalent precisely when their characters

coincide (especially useful for �nite groups).
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Remark. Since all elements of a �nite group have �nite order, all eigen-

values of the representation operators are roots of unity, hence

χ
D

(
g−1

)
= χ

D
(g)

|χ
D
(g)| ≤ χ

D
(1)=dimD

for representations of �nite groups.

The character of the contragredient reads

χ
D∨(g) = χ

D

(
g−1

)
while those of direct sums and tensor products is given by

χ
D1⊕D2

(g) = χ
D1

(g) + χ
D2

(g)

χ
D1⊗D2

(g) = χ
D1

(g)χ
D2

(g)
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The character of a completely reducible representation D reads

χ
D
=

∑
i∈Irr(G)

niχi

with ni denoting the multiplicity of the irreducible i∈ Irr(G) in the

decomposition of D.

Representation characters are class functions, i.e. they are constant on

conjugacy classes of elements:

χ
D

(
h−1gh

)
=χ

D
(g)

for all g, h∈G, because

Tr
{
D
(
h−1gh

)}
=Tr

{
D
(
h−1

)
D(g)D(h)

}
=Tr

{
D
(
hh−1

)
D(g)

}
=Tr {D(g)}
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Remark. Class functions form a linear space over C.

In case the group G is �nite, the space of class functions becomes

a �nite dimensional Hilbert-space with scalar product

⟨ϕ, ψ⟩ = 1

|G|
∑
g∈G

ϕ(g)ψ(g)

Orthogonality relations: the irreducible characters of a �nite

group form an orthonormal basis in the space of class functions.

⟨χ
i
, χ

j
⟩ = 1

|G|
∑
g∈G

χ
i
(g)χ

j
(g) = δij

Remark. A similar result holds for compact groups, with summation

replaced by the Haar-integral in the de�nition of the scalar product.
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Consequences:

1. # of inequivalent irreducible representations = # of conjugacy classes

2. ∑
i∈Irr(G)

(dim i)
2
=
∑
i

χ
i
(1)

2
= |G| Burnside's theorem

3.

ni = ⟨χ
D
, χ

i
⟩ = 1

|G|
∑
g∈G

χ
D
(g)χ

i
(g)

is the multiplicity of an irreducible i∈ Irr(G) in the decomposition of D.

In particular, the fusion coe�cients are given by

Np
ij =

〈
χ

i⊗j
, χ

p

〉
=

1

|G|
∑
g∈G

χ
i
(g)χ

j
(g)χ

p
(g)

Knowledge of the characters solves most fundamental problems!
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Character table of D3

C1={1} C2=
{
C,C−1

}
C3={σ1, σ2, σ3}

1 1 1 1

1∗ 1 1 −1

2 2 −1 0

Fusion rules of D3

1 1∗ 2

1 1 1∗ 2

1∗ 1∗ 1 2

2 2 2 1⊕1∗⊕2
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11 Symmetric powers

For any linear space V , the braiding operator R : V ⊗V →V ⊗V that

permutes the factors of dyadic products

R(v1⊗v2)=v2⊗v1

is an involution (its square is the identity), hence its eigenvalues are ±1.

As a consequence, one has the spectral decomposition

V ⊗V = ∧2
+V ⊕∧2

−V

into eigenspaces of R (symmetric and antisymmetric subspaces).
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If B={b1, . . . , bn} is a basis of V , then the sets

∧2
+B = {bi ⊗ bj + bj ⊗ bi | 1 ≤ i ≤ j ≤ n}

∧2
−B = {bi ⊗ bj − bj ⊗ bi | 1 ≤ i < j ≤ n}

are natural bases of ∧2
±V , hence

dim∧2
±V =

n(n±1)

2

For any operator A∈GL(V ), its tensor square A⊗A commutes with the

braiding operator R, since dyadic products span the tensor product and

{R◦(A⊗A)}(v1 ⊗ v2) = R(Av1 ⊗Av2) = Av2 ⊗Av1 =

= (A⊗A)(v2 ⊗ v1) = {(A⊗A) ◦ R}(v1 ⊗ v2)

for any v1, v2∈V .
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As a consequence, the eigenspaces ∧2
±V of R are invariant subspaces

of the operator A ⊗ A, and the reduction of the tensor square to these

subspaces are the symmetric and antisymmetric squares ∧2
±A of A.

Remark.

Tr
{
∧2

±A
}
=

Tr {A}2 ± Tr
{
A2
}

2

Since the representation operators of the tensor square D⊗D of any

representation D : G→GL(V ) have the form D(g)⊗D(g), the maps

∧2
±D :G→ GL

(
∧2

±V
)

g 7→ ∧2
±D(g)

de�ne representations ∧2
±D of G, the symmetric and antisymmetric

squares of D.
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Physics relevance: second quantization of composite systems made up

of identical subsystems. According to the Pauli principle, the physical

states belong to either the symmetric or the antisymmetric powers (for

bosonic, resp. fermionic excitations).

Remark. In space-time dimension 2 = 1+1, the braiding of particles is

no more involutive (because of the topology of the light cone), hence it

may have eigenvalues di�ering from ±1. This leads, e.g. in (quasi-)2D

electronic systems relevant to the quantum Hall e�ect, to the possibility

of anyonic excitations that obey so-called braid statistics, a signal of

quantum symmetries that cannot be described via the group concept,

but need a more general framework.
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12 Branching rules

The restriction of a representation D :G→GL(V ) to a subgroup H<G

is the representation

resHD :H → GL(V )

h 7→ D(h)

of the subgroup H.

Restriction is compatible with direct sums and a tensor products

resH(D1 ⊕D2) = resHD1 ⊕ resHD2

resH(D1 ⊗D2) = resHD1 ⊗ resHD2

One can restrict in stages: if K<H<G and D :G→GL(V ), then

resK(resHD) = resKD
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For completely reducible representations it is su�cient to know the so-

called branching rules

resH i =
⊕

p∈Irr(H)

Bp
i p

(where the Bp
i are non-negative integer multiplicities), the restrictions

of the irreducible representations i∈ Irr(G).

Branching rules are important in the description of the phenomenon of

symmetry breaking, when the ground state of a system does not respect

all the symmetries of the dynamics.
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13 Projective representations

Because the (pure) states of a quantum system correspond to the one

dimensional subspaces of its Hilbert�space H, the action of symmetry

operators is only determined up to scalar factors. As a consequence,

the product of two symmetry operators is not necessarily a symmetry

operator itself, but a scalar multiple of a symmetry operator.

If the action of the symmetry transformation g∈G is described by the

unitary operator U(g) acting on the Hilbert�space, then

U(g)U(h) = α(g, h)U(gh)

with some suitable scalar factors α(g, h)∈C.
Note that U(1G)= idH implies α(1G, g)=α(g,1G)=1 for all g∈G.
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In complete generality, a mapping D:G→GL(V ) for which D(1)= idV

is called a projective representation of the group G over the linear space

V if there exists a function α :G×G→C× (the cocycle of D) such that

D(g)D(h) = α(g, h)D(gh)

for all g, h∈G.

Since the product of operators is associative, the cocycle satis�es

α(g1, g2)α(g1g2, g3) = α(g1, g2g3)α(g2, g3) cocycle equation

and is normalized, i.e. α(g, 1)=α(1, g)=1.

The pointwise product of two cocycles is again a cocycle, hence cocycles

form an Abelian group, whose identity element is the trivial cocycle (with

all values equal to 1).
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Remark. Ordinary representations are the projective representations with

trivial cocycle.

The projective representations D1 : G→GL(V1) and D2 : G→GL(V2) are

projectively equivalent if there exists a bijective linear map A :V1→V2

and a function λ :G→C× (the scale factor) such that for all g∈G

D2(g)A = λ(g)AD1(g)

Cocycles of equivalent projective representations are cohomologous, i.e.

there exists a function λ :G→C× such that

α2(g, h)

α1(g, h)
=
λ(g)λ(h)

λ(gh)

for all g, h∈G.
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Being cohomologous is a congruence relation of the group of cocycles,

hence its equivalence classes form a group, the Schur multiplier of G.

The Schur multiplier of a �nite or compact group (and of most groups

of practical interest) is �nite, but it can be in�nite for some important

groups (e.g. for the 2D conformal group, a fact of extreme importance

in string theory).

Remark. Higher cohomology groups can be de�ned analogously (with 2-

cocycles replaced by scalar valued functions on Gn that satisfy a suitable

cocycle equation). These form the basis of the cohomology theory of

groups, and �nd interesting physics applications, e.g. in the study of

gauge and gravitational anomalies, Chern-Simons dynamics,etc.
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Ĝ is called a covering group of G if it has a central subgroup A<Z
(
Ĝ
)

isomorphic with the Schur-multiplier of G such that the corresponding

factor group is isomorphic with G itself

Ĝ/A ∼= G

There is a one-to-one correspondence between projective representations

of a group G and ordinary representations of its covering group Ĝ, with

irreducibles corresponding to irreducibles.

Schur: every �nite group has a covering group (but there might

be several non-isomorphic ones)!
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Examples:

1. T̂ ∼= SL(2,Z3), the binary tetrahedral group;

2. Î ∼= SL(2,Z5), the binary icosahedral group;

3. Â6
∼= 3·SL(2,Z9), due to the exceptional outer automorphism;

For Lie-groups, the covering group of G is the unique simply connected

group Ĝ locally isomorphic to G (the universal cover).

In particular, since SU(2) is simply connected and locally isomorphic to

SO(3)∼=SU(2)/Z(SU(2)), the Schur multiplier of SO(3) is Z2, leading to

two classes of projective representations for the rotation group: tensorial

(ordinary) and spinorial ones.
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