In what follows, we list known locality diagrams associated to conformal models (see 1 and 2 for background), ordered by increasing number of vertices. The pictures represent the reduced locality diagrams, i.e. with the universal vertex (corresponding to the equilocality class of the vacuum) left out; note that the universal vertex is never essential but always self-adjacent. Vertices with a double boundary are the loopy vertices, i.e. those adjacent to themselves, while those filled red are the essential ones (whose omission would change the associated lattice), i.e. the red subgraph is the radical of the diagram. Each diagram is preceded by a conventional alphanumeric label (generated automatically by the classification algorithm) written in bold, and a list of conformal models having the corresponding locality diagram, with the following labeling conventions (when not stated explicitly otherwise, n and k denote arbitrary positive integers, while p,q and r stand for odd primes):
of radius R=), i.e. the coset ;
the U(1) WZNW model at level n;
coset model;
SVir2(n) denotes the minimal N=2 superconformal model of central charge c= , i.e. the
coset model;
respectively the cyclic, dihedral, symmetric, alternating and Mathieu groups of degree n;
icosahedral respective twist groups.
The following table summarizes some of the characteristics of locality diagrams, ordered by increasing number of vertices. The first column gives the conventional label of the diagram, the second the total number Υ of vertices, the third the number ϵ of essential ones, the fourth the size of the automorphism group (when known), the fifth the number ρ of loops (self-adjacent vertices), the sixth the size λ of the associated lattice, the seventh the dimension δ (length of a maximal chain) of the latter, and finally, the eighth lists some conformal models with the given locality diagram.
label | Υ | ϵ | ρ | λ | δ | examples | |
2 |
1 |
1 |
1 |
2 |
1 | G(1), A
1 1, A 1 2, A 1 4, A 1 6, E 1 6, E 1 7, |
|
E
n+2 8 (n<5), F n 4 (n<9), G n 2 (n<9) |
|||||||
3 |
2 |
1 |
2 |
3 |
2 | D(M11), PF(2), A
2 1, A 1 3, A 1 8, B 1 n, |
|
C
1 2, D 1 2n+3, E 2 8, G(2), Vir(4,3) |
|||||||
59A | 4 | 2 | 2 | 1 | 4 | 2 | PF(p), A
2n+1 1, A 3n∓1 2, G(p) |
9A | 4 | 3 | 1 | 2 | 4 | 3 | AT(1), A
2n 1, A 3 2, C 1 2n+2, G(4) |
62A | 4 | 3 | 6 | 4 | 5 | 2 | D(ℤ2), D
1 4n (n ≤ 3) |
62B | 4 | 3 | 2 | 2 | 5 | 2 | D
1 4n+2 (n ≤ 3) |
84A | 5 | 4 | 1 | 3 | 5 | 4 | D(𝕊5), D(𝕊6), D(M10), B
2 4, G(8) |
76A | 5 | 4 | 4 | 3 | 6 | 2 | D(ℤ3) |
76B | 5 | 4 | 8 | 1 | 6 | 2 | |
6 |
3 |
1 |
2 |
6 |
3 | PF(p2), A
2n+1 3, A 2 8, A 4 8, D 3 5, D 3 7, D 3 9, E 2 7 |
|
G(2p), G(p2), SVir2(1), SVir1(3)Vir(5,4) | |||||||
11A | 6 | 4 | 2 | 2 | 6 | 4 | PF(4),AT(p), A
2 3, A 3 8, D 2 5, D 2 7, D 2 11, D 2 13 |
61A | 6 | 5 | 1 | 3 | 6 | 5 | A
4 3, D 4 5, G(16), T |
186A | 6 | 5 | 2 | 2 | 8 | 3 | |
82A | 7 | 6 | 4 | 4 | 8 | 4 | D(𝕊3) |
93A | 7 | 6 | 16 | 3 | 8 | 2 | D(ℤ5) |
93B | 7 | 6 | 48 | 1 | 8 | 2 | |
172A | 7 | 6 | 1 | 4 | 7 | 6 | G(32) |
71A | 8 | 3 | 6 | 1 | 8 | 3 | PF(15), A
5 5, A 7 5, G(pq) |
63A | 8 | 4 | 6 | 4 | 10 | 3 | D
3 4, D 5 4, D 3 8 |
63B | 8 | 4 | 2 | 2 | 10 | 3 | D
3 6, D 3 10 |
8 |
4 |
1 |
2 |
8 |
4 | A
2 5, A 3 5, A 4 5, A 8 5, A 5 7, Vir(n+5,n+4), |
|
PF(2p), G(4p), G(p3), PF(27) | |||||||
90A | 8 | 5 | 2 | 4 | 8 | 5 | A
6 5 |
15A | 8 | 5 | 1 | 3 | 8 | 5 | PF(8),AT(p2), A
2 7, D 2 9 |
118A | 8 | 7 | 12 | 5 | 9 | 4 | D(𝔸4) |
91A | 8 | 6 | 2 | 3 | 8 | 6 | A
4 7 |
12A | 8 | 7 | 6 | 4 | 10 | 5 | AT(4), D
2 4, D 4 4, D 6 4, D 4 6, D 4 8 |
174A | 8 | 7 | 1 | 4 | 8 | 7 | G(64) |
187A | 8 | 7 | 6 | 2 | 10 | 3 | |
83A | 9 | 7 | 6 | 6 | 9 | 6 | D(𝕊4) |
10A | 9 | 8 | 4 | 4 | 13 | 4 | AT(2) |
95A | 9 | 8 | 96 | 3 | 10 | 2 | D(ℤ7) |
95B | 9 | 8 | 384 | 1 | 10 | 2 | |
14A | 9 | 8 | 6 | 5 | 11 | 6 | AT(8), D
2 8 |
170A | 9 | 4 | 2 | 4 | 9 | 4 | G(2p2) |
180A | 9 | 8 | 1 | 5 | 9 | 8 | G(128) |
184A | 9 | 8 | 16 | 4 | 10 | 4 | D(𝔻5) |
17A | 10 | 5 | 6 | 2 | 10 | 5 | AT(pq) |
21A | 10 | 6 | 1 | 3 | 10 | 6 | AT(27), PF(16) |
171A | 10 | 5 | 1 | 3 | 10 | 5 | G(8p) |
92A | 10 | 9 | 16 | 8 | 15 | 4 | D(ℤ4) |
92B | 10 | 9 | 48 | 4 | 15 | 4 | |
92C | 10 | 9 | 8 | 4 | 15 | 4 | |
92D | 10 | 9 | 8 | 6 | 15 | 4 | |
13A | 10 | 7 | 2 | 4 | 12 | 5 | AT(2p), D
2 6, D 2 10, SVir1(4) |
18A | 10 | 9 | 6 | 5 | 12 | 7 | AT(16) |
192A | 10 | 9 | 1 | 5 | 10 | 9 | G(28) |
23A | 11 | 10 | 6 | 6 | 13 | 8 | AT(32) |
193A | 11 | 10 | 1 | 6 | 11 | 10 | |
190A | 11 | 10 | 12 | 2 | 14 | 4 | |
190B | 11 | 10 | 12 | 4 | 14 | 4 | |
185A | 11 | 10 | 96 | 4 | 12 | 4 | D(𝔻7) |
12 |
4 |
2 |
2 |
12 |
4 | G(p2q), G(2pq), SVir2(p-2) for p > 3, | |
SVir1(2n+1) | |||||||
70A | 12 | 5 | 2 | 2 | 12 | 5 | PF(12) |
72A | 12 | 5 | 1 | 4 | 12 | 5 | PF(18), G(4p2), G(2p3) |
31A | 12 | 7 | 1 | 4 | 12 | 7 | AT(81), PF(32) |
16A | 12 | 8 | 2 | 4 | 14 | 6 | AT(4p), D
2 12 |
29A | 12 | 11 | 6 | 6 | 14 | 9 | AT(64) |
4A | 12 | 11 | 2 | 4 | 18 | 5 | SVir2(2) |
173A | 12 | 6 | 1 | 3 | 12 | 6 | G(16p) |
188A | 12 | 11 | 120 | 2 | 14 | 3 | |
19A | 13 | 8 | 2 | 6 | 15 | 6 | AT(2p2) |
99A | 13 | 12 | 7680 | 3 | 14 | 2 | D(ℤ11) |
165A | 13 | 12 | 7 | 15 | 10 | AT(128) | |
25A | 14 | 6 | 2 | 3 | 14 | 6 | AT(p2q) |
121A | 14 | 8 | 1 | 4 | 14 | 8 | AT(243), PF(64) |
169A | 14 | 8 | 2 | 4 | 16 | 6 | SVir1(2n+2) |
20A | 14 | 9 | 2 | 5 | 16 | 7 | AT(8p) |
89A | 14 | 12 | 144 | 9 | 16 | 8 | D(M9) |
176A | 14 | 7 | 4 | 14 | 7 | G(32p) | |
101A | 15 | 14 | - | 3 | 16 | 2 | D(ℤ13) |
108A | 15 | 14 | - | 4 | 16 | 4 | D(𝔻11) |
175A | 15 | 6 | 6 | 15 | 6 | G(8p2), G(2p4) | |
77A | 16 | 15 | 16 | 67 | 4 | D(𝔻2) | |
124A | 16 | 5 | 2 | 16 | 5 | PF(30), G(4pq), G(135) | |
73A | 16 | 6 | 3 | 16 | 6 | PF(24) | |
22A | 16 | 8 | 4 | 18 | 6 | AT(2pq) | |
24A | 16 | 9 | 6 | 18 | 7 | AT(4p2) | |
26A | 16 | 10 | 5 | 18 | 8 | AT(16p) | |
27A | 16 | 9 | 6 | 18 | 7 | AT(54) | |
122A | 16 | 9 | 5 | 16 | 9 | AT(36) | |
177A | 16 | 4 | 1 | 16 | 4 | G(105) | |
178A | 16 | 6 | 4 | 16 | 6 | G(108) | |
110A | 17 | 16 | 4 | 18 | 4 | D(𝔻13) | |
97A | 17 | 16 | 96 | 7 | 23 | 4 | D(ℤ9) |
8A | 18 | 5 | 4 | 18 | 5 | G(2p2q), SVir2(2p2) | |
162A | 18 | 6 | 2 | 18 | 6 | AT(105) | |
168A | 18 | 6 | 4 | 18 | 6 | PF(36) | |
181A | 18 | 7 | 6 | 18 | 7 | G(144) | |
33A | 18 | 11 | 6 | 20 | 9 | AT(96) | |