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Ah! ne jamais sortir des Nombres et des Êtres!

— Baudelaire
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Abstract

This thesis studies Alice electrodynamics. Alice electrodynamics is similar to
ordinary electrodynamics except that it features topological defects like magnetic
monopoles and so-called “Alice strings”. The interaction between Alice strings
and electric and magnetic charges is of a topological nature and highly unusual.
In this thesis we make a detailed study of these unusual properties, in particular
the occurence of non-localized “Cheshire charge”. We construct exact (though
numerical) solutions of the pure Alice string and of a new electrically charged
Alice string, which challenges the standard interpretation of “Cheshire charge”.





Contents

1 Introduction 1

1.1 Topological defects . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Alice electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Units and notation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Topological defects in gauge field theories 5

2.1 Local gauge field theories . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . 8
2.3 Topological defects and homotopy theory . . . . . . . . . . . . . . 9
2.4 Nielsen-Olesen vortex lines . . . . . . . . . . . . . . . . . . . . . . 12
2.5 The ’t Hooft-Polyakov monopole . . . . . . . . . . . . . . . . . . . 15

3 An introduction to Alice electrodynamics 19

3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Alice strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Magnetic monopoles . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Explicit Alice string solutions 29

4.1 The fields at infinity . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 The asymptotic behaviour of the fields . . . . . . . . . . . . . . . 36
4.4 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Alice strings and non-localized charge 43

5.1 The electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Cheshire charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Alice strings carrying electric charge 51

6.1 The ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Reduction of the field equations . . . . . . . . . . . . . . . . . . . 54
6.3 The asymptotic behaviour of the fields . . . . . . . . . . . . . . . 57
6.4 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



vi Contents

6.5 The gauge-invariant characteristics . . . . . . . . . . . . . . . . . 60

7 Magnetically charged Alice strings 65

7.1 A topological definition of magnetic charge . . . . . . . . . . . . . 65
7.2 Magnetic charge transfer . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 An ansatz for a magnetically charged string . . . . . . . . . . . . 73

8 Conclusion 75



Chapter 1

Introduction

1.1 Topological defects

Topological defects are closely related to the phenomenon of spontaneous sym-
metry breaking. They arise as stable, non-perturbative, collective excitations in
the medium and they carry a “charge” that is conserved for topological reasons.
Defects can occur as localized particle-like, string-like or planar-like objects, or
— when localized in both space and time — they can be understood as quantum
mechanical tunneling processes.

Topological defects have been extensively studied both in condensed matter
physics and in particle physics. Examples of defects in condensed matter systems
are: the domain walls of a ferromagnet; the magnetic flux lines in a type II
superconductor; and the quantized vortex lines in superfluid 4He. The defects can
be produced in systems in thermal equilibrium or in systems out of equilibrium,
i.e., during phase transitions (through “pair creation”).

Research on topological defects in particle physics started in the early sev-
enties when defect solutions were discovered in spontaneously broken Yang-Mills
theories, notably the Nielsen-Olesen vortex-line in 1973 and the ’t Hooft-Polyakov
monopole in 1974. Since then, much has become known about the properties of
defects, their physical interactions with ordinary particles and with other defects,
and the formation and evolution of defects.

It turns out that all Grand Unified Theories of elementary particles necessarily
contain defect solutions, in particular magnetic monopoles. If GUTs correctly
describe nature, these defects must somehow exist. But topological defects of
GUTs are very heavy and so it is unlikely that they can be made by accelerators
or supernovas. However, a key notion of grand unification is that the known
symmetries of elementary particles resulted from a larger symmetry group G
after a series of spontaneous symmetry breakings,

G→ H → SU(3)× SU(2)× U(1)→ SU(3)× U(1)em. (1.1.1)

1



2 1. Introduction

In a cosmological context, this implies that the early universe has gone through
a number of phase transitions. During such a cosmological phase transition,
topological defects could have been formed. Furthermore, it is possible that the
evolution and structure of the universe has been significantly influenced by these
defects. For example, it has been suggested that cosmic strings may have acted as
seeds for the formation of galaxies and other large scale structures in the present
day universe.

Therefore, the study of topological defects is essential to gain more insight
into GUTs and the early history of the universe. Apart from this, topological
defect are interesting objects in their own right. They are very different from
more familiar physical objects and they give rise to a rich variety of unusual
physical phenomena.

1.2 Alice electrodynamics

In this thesis we focus on a particular type of defect, the so-called Alice strings.
Alice strings are solutions to a minimal nonabelian extension of electrodynam-
ics. Locally, Alice electrodynamics appears to be indistinguishable from standard
electrodynamics, but Alice electrodynamics exhibits global and topological prop-
erties that are highly nontrivial.

For instance, if a charged particle is transported around an Alice string, the
sign of the charge flips. Similarly, a magnetic monopole that goes around an Alice
string, is turned into an anti-monopole. These interactions between charges and
an Alice string are of a topological nature as they only depend on the number
of times the charge goes around the string and are independent of the distance
between the charge and the string.

Closed loops of Alice string can have charged excitations, and a charged par-
ticle that goes through an Alice loop transfers charge to the loop. The charged
excitations of an Alice loop can be peculiar: the loop can have a long-range
electric field from which its charge can be inferred, but the source of the charge
cannot be localized, neither on the string nor in its vicinity. Such non-localizable
charge has been called “Cheshire charge”.

In this thesis we focus on the simplest model which exhibits Alice electrody-
namics. It is not a “real world” model, but it should be noted that Alice strings
could also occur in Grand Unified Theories. For example, it has been shown
that some SO(10) cosmic strings are Alice strings that can carry non-localizable
SU(3)color Cheshire charge.

In this thesis we propose a new interpretation of charged Alice strings. Briefly
put, we think that the electric-magnetic dual symmetry is a priori not broken by
the Alice string, but may be broken by either an electric or magnetic charge
excitation of the string core. These excitations may be obtained by imposing
suitable boundary conditions. We can paraphrase this view in the following
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three questions: 1) Can Alice strings have excitations where the electric/magnetic
charge is localized in the string core? 2) Can Cheshire charge be understood as
electric/magnetic flux confined by a magnetic/electric supercurrent? 3) Are the
electric and magnetic excitations each other’s dual image? In the last chapters
we try to verify this view.

1.3 Outline of the thesis

In chapter two we set the stage and briefly summarize the essential ingredients
of gauge field theories, spontaneous symmetry breaking and topological defects.
Two classic defect solutions are discussed in more detail: the Nielsen-Olesen
vortex-lines and the ’t Hooft-Polyakov magnetic monopole.

In chapter three we introduce the minimal Alice model and analyse the basic
properties of the model’s defect solutions: Alice strings and magnetic monopoles.

In chapter four we construct an explicit solution for an Alice string. We
derive the exact field equations for this solution, determine its asymptotics in
great detail and present numerical solutions.

In chapter five we describe how electric charge can be transferred to an Alice
string and we discuss the elusive concept of Cheshire charge.

In chapter six we argue that an Alice string can carry electric charge localized
at its core. We construct an ansatz for a charged Alice string, derive the exact field
equations, determine the asymptotic behaviour of a charged string and present
numerical solutions. We show that the gauge invariant characteristics of the
solution are consistent. The results in this chapter are new and provide a sensible
alternative to the esoteric option of Cheshire charge.

In chapter seven we give a topological definition of the magnetic charge carried
by an Alice loop. We show that if a magnetic monopole is carried through a loop,
magnetic charge is transferred to the loop. Finally, we construct an ansatz for a
string with magnetic charge and magnetic current.

1.4 Units and notation

The units employed in this thesis are the fundamental units (~ = c = 1). Space-
time indices are denoted by Greek letters and run through the four values 0, 1,
2, 3. Spatial indices are denoted by Latin letters from the middle of the alphabet
with values 1, 2, 3. Implicit summation over repeated indices is assumed, unless
stated otherwise. The metric signature is taken to be (+,−,−,−).





Chapter 2

Topological defects in gauge field

theories

In this chapter we present a concise review of the main features of topological
defects in gauge field theories. We enumerate the essentials of gauge field theories
and spontaneous symmetry breaking; we discuss the main ideas of topological
defects, touching lightly on homotopy theory; and finally, we tackle two simple
defect solutions: the Nielsen-Olesen vortex and the ’t Hooft-Polyakov magnetic
monopole.

This review provides the background material necessary to render this thesis
more or less self-contained. It is summarily and tailored to suit our needs. This
chapter should therefore not be taken for an introduction to gauge field theory
and topological defects. To this end, many excellent textbooks and review articles
exist.

The literature on gauge field theory is large and ever-growing. The present
writer happened to benefit much from Ryder (1985), a clear introductory text.

On topological defects in particular, see: Coleman (1985), one of the first
review articles, a pleasant reading and very rewarding; Preskill (1987), short but
wide-ranging, and especially of interest since it contains an elementary account
of the Z2 vortex and of superconducting strings, two topics which we will treat
in later chapters; Vilenkin and Shellard (1994), mainly on (cosmic) strings, its
convenient bibliography runs to twenty-five pages; Rajaraman (1982), focuses on
the quantisation of topological defects, but the first three chapters on classical
defects contain much information; van der Meer (1997), on magnetic monopoles,
has an eye for little details that are often unheeded: glancing through its pages
can save one from tiring hours of tracking down a faulty sign.

Most of these texts also treat the basics of homotopy theory. A more detailed
exposition of homotopy theory can be found in Mermin (1979) and, for those who
are not daunted by abstract mathematics, Nash and Sen (1983).

5



6 2. Topological defects in gauge field theories

2.1 Local gauge field theories

We consider field theories which are invariant under an N -dimensional Lie group
G of local gauge transformations, and which contain an n-component scalar field
φi. We assume that G is simple, compact and connected. The elements of the
group can then be written as

g = exp(−iωaLa), (2.1.1)

where the ωa are arbitrary real numbers and the La are the N group generators.
The generators La generate the Lie algebra of G and satisfy the commutation
relations

[

La, Lb
]

= −ifabcLc (2.1.2)

where the constants fabc are the structure constants of G. An n-dimensional
matrix representation of G is a mapping from G onto a group of matrix oper-
ators acting on an n-dimensional vector space, such that group multiplication
is preserved. We can generate a matrix representation by picking N hermitian
matrices T a that satisfy the commutation relations (2.1.2). The N -dimensional
representation generated by the structure constants themselves, (T a)bc = −ifabc,
is known as the adjoint representation.

A function g(x) from coordinate space to G, defines a local gauge transforma-
tion. The scalar fields transform through the action of an n-dimensional matrix
representation of G,

φi(x)→ φ′i(x) = Sij(g(x))φj(x). (2.1.3)

The transformation matrix S can be written as

S(x) = exp(−iθa(x)T a), (2.1.4)

where T a are n×n matrix representations of the group generators, and θi(x) are
functions of space time. For notational convenience, we identify the group G with
the representation S(g). Thus the abstract objects g(x) and La are interpreted
as S(x) and T a, respectively.

To construct a lagrangian which is invariant under local gauge transformations
we introduce N vector fields Aa

µ, one for each group generator,

Aµ = Aa
µT

a. (2.1.5)

These are the gauge fields. They transform according to

Aµ(x)→ S(x)Aµ(x)S(x) + ie−1S(x)−1∂µS(x), (2.1.6)
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where e is the gauge coupling constant. Further, we define the field strength
Fµν = F a

µνTa as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + e fabcA

b
µA

c
ν , (2.1.7)

and the gauge-covariant derivative

Dµφ = (∂µ − ieAa
µT

a)φ. (2.1.8)

These objects transform as

Dµφ→ SDµφ, (2.1.9)

Fµν → SFµνS
−1. (2.1.10)

Now we can construct the gauge-invariant lagrangian density

L = −1

4
F a
µνF

aµν +
1

2
DµφD

µφ− V (φ), (2.1.11)

where the potential function V (φ) must be invariant under gauge transforma-
tions, i.e. V (Sφ) = V (φ). The Euler-Lagrange equations of motion are

DµDµφ
a = − ∂V

∂φa
, (2.1.12)

DµF a
µν = eεabc(Dνφ

b)φc. (2.1.13)

The hamiltonian is obtained by a Legendre transformation of the lagrangian,

H =
∂L
∂φ̇
φ− L, (2.1.14)

yielding the generic energy of a non-abelian field theory

E =

∫

H dx3

=

∫ (

1

2
( ~Ea · ~Ea + ~Ba · ~Ba) +

1

2
DµφDµφ+ V (φ) +W

)

dx3
(2.1.15)

with

W = −F a
i0(∂iA

a
0 + eεabcA

b
iA

c
0) + e[A0,φ]D0φ.

The ground state of the theory is a field configuration for which, up to a
gauge transformation, the scalar field φ is a constant and a minimum of V and
the gauge fields Aµ are zero. Since we can always add a constant to V , we will
assume that V is normalized such that it is always greater than or equal to zero.
Then the energy of the ground states is zero.
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2.2 Spontaneous symmetry breaking

The gauge symmetry G is said to be spontaneously broken if the ground state of
the theory is not invariant under all gauge transformations. For such a ground
state φ0 6= 0, we can define a subgroup H of G which consists of all the elements
of G that leave φ0 unchanged,

H = {g ∈ G |S(g)φ0 = φ0} . (2.2.1)

The group H is called the unbroken subgroup of G with respect to φ0, or the
residual symmetry group, or the stabilizer of φ0). The generators tα of H all
annihilate φ0

tαφ0 = 0. (2.2.2)

We can choose the generators T a such that the tα are a subset of the T a. The
tαs are referred to as the unbroken generators of G, while the remainder of the
T as are referred to as the broken generators.

Since V is invariant under G, every state S(g)φ0 with g ∈ G is also a ground
state of the theory. We will assume that all ground states are of the form Sφ0
(i.e. we exclude accidental degeneracy and non-gauge internal symmetries). As a
consequence, we can identify the set of ground states with the coset space1 G/H.

The physical fields are the oscillations about the ground state. Representing
φ as φ = φ0 + φ

′, we obtain the lagrangian

L =
1

2
(∂µφ

′)2 − 1

2
µ2ijφ

′
iφ

′
j −

1

4
M2

abA
a
µA

bµ + Lint, (2.2.3)

where

µ2ij =
∂2V

∂φi∂φj

∣

∣

∣

∣

φ=φ0

, (2.2.4)

is the scalar field mass matrix,

M2
ab = e2(T aT b)ijφ0iφ0j, (2.2.5)

is the vector field mass matrix, and Lint includes the cubic and higher order terms
in φ′ and Aµ.

Since φ0 is a minimum of V ,

∂V

∂φi

∣

∣

∣

∣

φ=φ0

= 0 (2.2.6)

1Also known as the quotient space. Here, it is the set of all equivalence classes [g] =
{gh |h ∈ H} with g ∈ G.
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and the eigenvalues of the mass matrix µ2ij are non-negative. The potential is
invariant under gauge transformations, so

∂V

∂φi
T a
ijφj = 0. (2.2.7)

Differentiating this and using (2.2.6), we obtain

µ2ijT
a
jkφ0k = 0. (2.2.8)

All vectors T aφ formed from the broken generators (T aφ 6= 0) are linearly in-
dependent, so u2ij must have a zero eigenvalue for each broken generator. If
the gauge symmetry were global, these zero eigenvalues would have corresponded
to massless Goldstone bosons. In a local gauge theory however, the Goldstone
bosons disappear. The components of the vector φ′i in the subspace defined by
the vectors T aφ0, are unphysical; this becomes manifest in the unitary gauge,
the gauge in which these components vanish. The remaining scalar fields are, in
general, massive.

Inspecting (2.2.5), we see that the gauge fields associated with the broken
generators have acquired non-zero masses, while the gauge fields of the unbroken
group H remain massless. The massive gauge fields have, so to speak, absorbed
the would-be Goldstone bosons. This is the famous Higgs mechanism. In this
context, the scalar fields are often called Higgs fields.

2.3 Topological defects and homotopy theory

Some field theories possess striking classical solutions: solutions that are non-
dissipative and have a finite, localized energy. These solutions are called solitary
waves or — shortly and loosely — solitons.1

Here we will only be concerned with time-independent, topological soliton
solutions of gauge field theories. Topological solitons are non-dissipative due to
the topology of the phase space of the system.2 If the phase space is made up
of connected components separated by infinitely high potential barriers, then
a field configuration that starts in a given component can never reach another
component without an infinite cost of energy. Hence, corresponding with the
component of phase space in which they lie, topological solitons can be assigned
a conserved index or charge. This charge conservation does not arise out of a
symmetry of the theory — as for example ordinary charge conservation does
— but it is a consequence of the connectedness of the phase space. Hence the
adjective “topological”: the topological charge of a soliton is conserved owing to
a topological conservation law.

1A detailed discussion of the meaning of these two terms can be found in Rajaraman (1982).
2By phase space, we mean the space consisting of all pairs (π(x), φ(x)) for which the energy

is finite.
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The connectedness of the phase space of a gauge theory is directly related
to the topology of its ground state space G/H. To understand this, consider
the energy functional (2.1.15). In a gauge where the time components of the
gauge potentials, Aa

0, vanish, the energy of a field configuration is the sum of five
non-negative terms

E =

∫ [

1

2
( ~Ea · ~Ea + ~Ba · ~Ba) +

1

2
∂0φ∂0φ+

1

2
DiφDiφ+ V (φ)

]

. (2.3.1)

Each of these terms must be finite if the total energy is to be finite. In particular,
the Higgs field must approach a zero of the potential at spatial infinity. For
example, in (2+1) dimensions we must have

lim
r→∞

φ(t, r, θ) = φ∞(t, θ), (2.3.2)

with

V (φ∞) = 0. (2.3.3)

The function φ∞(t, θ) need not be constant, but may depend non-trivially on θ
provided thatDθφ vanishes sufficiently fast at infinity. Thus, in (2+1) dimensions
every field configuration, at any time t, is associated with a mapping of a circle
into the ground state space G/H

φ∞ : S1 → G/H. (2.3.4)

Since time evolution is continuous, two field configurations lie in the same con-
nected component of phase space if they can be continuously deformed into each
other without an infinite cost of energy. Two field configurations that have the
same mapping φ∞ associated with them can be continuously deformed into one
another, since a deformation in the finite part of space only takes a finite amount
of energy. On the other hand, two field configurations that have different map-
pings associated with them, can be continuously deformed into one another if and
only if their mappings can be continuously deformed into one another. From this
it follows that to determine whether two field configurations lie in the same com-
ponent of phase space, we need only determine whether their associated mappings
can be continuously deformed into each other.

A similar argument applies to (1+1) and (3+1) dimensions. So, in general, we
can classify the components of phase space and thus the possible soliton solutions
by classifying the distinct mappings

φ∞ : Sn → G/H. (2.3.5)

(The symbol Sn denotes the n-dimensional sphere.)
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A branch of mathematics is concerned with just this kind of topological clas-
sification: homotopy theory. We briefly consider a few of its terms and theorems
pertinent to our concerns.

All non-singular mappings from Sn into a space M can be classified into
homotopy classes. Two mappings are in the same class if they can be continuously
deformed into one another. The classes are endowed with a group structure by
appropriately defining the composition of two mappings. For two closed paths in
M (i.e. two mappings from S1 intoM), their composition may be defined as the
path that traverses the two paths in succession.

The group that classifies mappings from S1 intoM is called the fundamental
group of the manifold M; it is denoted by π1(M). The second homotopy group
π2(M) is the set of homotopically equivalent classes of maps from S2 into the
manifold M.1

Topological soliton solutions are solutions to the field equations that cannot
be continuously deformed to the ground state. The homotopy groups πn(G/H)
classify the possible soliton solutions.2 A soliton with a non-trivial mapping of
S1 into G/H is called a vortex in two spatial dimensions and a string in three
spatial dimensions. A soliton which maps S2 non-trivially into G/H is called
a monopole. These soliton solutions can be seen as topological defects in the
Higgs field. In their core, the scalar field deviates from the ground state and thus
respects symmetries different from those respected by the ground state.

The determination of the first and second homotopy group can often be sim-
plified by employing the first fundamental theorem

π1(G/H) ∼= π0(H), (2.3.6)

or the second fundamental theorem

π2(G/H) ∼= π1(H0), (2.3.7)

where H0 is the component of the unbroken group H that is connected to the
identity. These reductions are only valid if G is connected and simply connected
(i.e. π1(G) ∼= I). It is however possible to embed any compact Lie group G in
a larger group G̃, the universal covering group of G, which is simply-connected.
If we have enlarged G to G̃, the unbroken group H must also be appropriately
enlarged to H̃ by including any additional elements in G̃ that leave the ground
state φ0 invariant. These additions factor out of the ground state space G/H.

Elegant and revealing a topological analysis may be, it is always incomplete.
It provides little information about the detailed structure of a particular soliton.

1In fact, these two homotopy groups are defined with reference to a base point x0 in M.
But if M is connected, homotopy groups based at different points are identical, and we can
omit the base point.

2However, in general there is no one-to-one correspondence between the elements of the
homotopy group and the types of solitons. This is only so, for π1(G/H) if π1(G/H) is abelian;
and for π2(G/H) if π1(G/H) ∼= I. See for example ?) or Vilenkin and Shellard (1994).
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Furthermore, topological analysis may establish the existence of non-dissipative
solutions, but it cannot prove that these solutions are time-independent and
stable. A field configuration must of course remain in the topological sector in
which it starts, but it does not follow that for every sector there will be a time-

independent solution; nor, that if a time-independent solution exists, it will be
stable.

In the next two sections we will briefly consider two classical examples of topo-
logical defects: the Nielsen-Olesen vortex and the ’t Hooft-Polyakov monopole.
These defect solutions may serve as a prelude to the more complicated vortex
and monopole solutions of the Alice model discussed in the following chapters.

2.4 Nielsen-Olesen vortex lines

A simple example of a vortex occurs in the abelian-Higgs model: the Nielsen-
Olesen (1973) vortex lines. The model has a complex scalar field φ and a U(1)
gauge symmetry. The lagrangian is

L = −1

4
FµνF

µν +DµφD
µφ− V (φ), . (2.4.1)

We will suppose that the potential has the form

V (φ) =
1

4
λ(φφ− η2)2, (2.4.2)

with positive constants λ and η. The minima of the potential make up a circle
‖φ‖ = η, and the ground state of the theory can be expressed as φ = ηeiϑ with ϑ
an arbitrary phase. Thus, the U(1) symmetry is spontaneously broken and the
Higgs mechanism has occurred. The vector boson has acquired a mass mv = eη,
there is no Goldstone boson and the remaining scalar field has a mass ms =

√
λη.

The model contains vortex solutions. To see this, consider the properties of
finite-energy field configurations. The energy of a field configuration is comprised
of three nonnegative terms

E =

∫ [

1

2
( ~E · ~E + ~B · ~B) +

1

2
DiφDiφ+ V (φ)

]

. (2.4.3)

In order that the total energy is finite, each of these terms must be finite. The
third term is finite if the potential approaches zero at spatial infinity. Therefore
any finite energy solution must have

φ∞(θ) = ηeiϑ(θ). (2.4.4)

where the phase angle ϑ may depend on θ since finiteness of the third term places
no restriction on the phase of φ∞. Thus, every finite-energy field configuration
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is associated with a mapping from the circle at spatial infinity to the circle of
minima. In going along the circle at spatial infinity, the field φ can wrap a number
of times around the circle of minima, i.e. the phase ϑ of φ can develop a winding

n =
1

2π

∫ 2π

0

dϑ

dθ
dθ, (2.4.5)

where the winding number n is an integer. Since the winding number is an inte-
ger, field configurations with different winding numbers cannot be continuously
deformed into one another. Thus, the abelian-Higgs model can possess vortex
solutions and these vortex solutions are classified by their non-zero winding num-
ber (the vacuum has zero winding number). This result is succinctly expressed
in the formula

π1(G/H) ∼= π1(S1) = Z. (2.4.6)

Since the covariant derivative, Dθφ = (∂θ − ieAθ)φ, must also vanish at infinity,
the gauge fields must be

Aθ =
1

er

dϑ

dθ
. (2.4.7)

The gauge field has a “pure gauge”-form. This permits the field Fµν to decay
sufficiently fast at large r for the first term in (2.4.3) to be finite. If n 6= 0, the
gauge field cannot be pure gauge everywhere. Using Stokes’ theorem

ΦB =

∫

B · dS =

∮

A · dl = 2πn

e
(2.4.8)

we find from the asymptotics of the gauge field (2.4.7), that a vortex has a
quantised magnetic flux through the plane, ΦB.

Nielsen and Olesen studied the lagrangian (2.4.1) within the context of high-
energy physics, but it is interesting to note that this lagrangian is in fact the
relativistic generalization of the Landau-Ginsburg theory of type-II supercon-
ductors in a magnetic field. Thus, (2.4.8) expresses the well known fact that
magnetic flux can only penetrate a superconductor in quantised (Abrikosov) flux
lines.

Let us now turn to the construction of explicit solutions for the vortex lines. To
this end, we can try a cylindrically-symmetric ansatz of the form

φ(r, θ) = f(r)einθ, (2.4.9)

Aθ(r, θ) = n
α(r)

er
, (2.4.10)

Ar = A0 = 0. (2.4.11)
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Figure 2.1: Functions α(r) and f(r) for the Nielsen-Olesen vortex solution with n = 1 and
β = 1.

The boundary conditions (2.4.4) and (2.4.7) imply

f(r)→ η, and α(r)→ 1, (2.4.12)

as r →∞. To ensure regularity at the origin,

f(r)→ 0, and α(r)→ 0, (2.4.13)

as r → 0. Substituting the ansatz in the Euler-Lagrange equations yields

d2α

dr2
− 1

r

dα

dr
= 2f 2(α− 1), (2.4.14a)

d2f

dr2
+

1

r

df

dr
=
n2f

r2
(α− 1)2 − βf(f 2 − 1), (2.4.14b)

where we have rescaled to dimensionless variables

φ→ η−1φ, Aµ → η−1Aµ, r → eηr, (2.4.15)

leaving the ratio of the Higgs and vector masses,

β ≡ m2
s/m

2
v = λ/2e2 (2.4.16)

as the only significant parameter in the model.
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No analytic solution is known to these equations for any β, but it can be
shown that solutions, if they exist, will approach the boundary values (2.4.12)
exponentially fast (Perivolaropoulos, 1993),

f(r)→ 1 + cfr
−1/2e−

√
2βr β < 4, (2.4.17a)

f(r)→ 1− c2αe
−2

√
2r

2(β − 4)r
β > 4, (2.4.17b)

and

α(r)→ 1 + cαr
1/2e−

√
2r. (2.4.17c)

This shows that the energy of a vortex is confined within a finite-sized core.
Numerical work has supported the existence of vortex solutions with these

asymptotic properties, where at least the n = 1 solution seems to be stable.
Figure 2.1 shows the numerically calculated solution for n = 1 and β = 1.

In three spatial dimensions, the vortex solution may be thought of as a cross
section of an infinite string. Equation (2.4.3) is then interpreted as the energy
per unit length of the string.

2.5 The ’t Hooft-Polyakov monopole

A three dimensional topological defect solution was first discovered by ’t Hooft
(1974) and, independently, by Polyakov (1974). This solution is characterized
by a long-range magnetic monopole field, which prompted ’t Hooft to call it a
magnetic monopole.

’t Hooft and Polyakov considered the Georgi-Glashow model, which possesses
gauge symmetry G = SU(2) with a Higgs field φ in a triplet representation. The
SU(2) symmetry is spontaneously broken to U(1) due to the potential

V (φ) =
1

4
λ(φaφa − η2)2, (2.5.1)

which is zero for φaφa = η2. Hence, the ground state space is

G/H = SU(2)/U(1) ∼= S2. (2.5.2)

Since the group SU(2) is simply-connected, we may use the second fundamental
theorem (2.3.7) to find

π2(SU(2)/U(1)) ∼= π1(U(1)) ∼= Z. (2.5.3)

The monopole solutions of the model can classified by a topological index q ∈ Z.
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The ’t Hooft-Polyakov monopole has q = 1. In a particular gauge, this field
configuration will at spatial infinity take the form

φa∞ = η
xa

r
. (2.5.4)

The direction of φa(x) in internal space is aligned with the spatial direction
x̂ = x/x, so the Higgs field points “radially outwards”, which prompted Polyakov
to call the configuration a hedgehog.

In order that the field configuration has finite energy, the covariant derivative
Diφ must approach zero at large r sufficiently fast. Therefore, the gauge fields
are

Aa
i,∞ = −εaij

xj

er2
,

Aa
0,∞ = 0.

(2.5.5)

The interpretation of the gauge fields requires special attention. The unbroken
group U(1) can be regarded as the gauge group of electromagnetism. For example,
consider the vacuum configuration. For this configuration, there is a gauge such
that the Higgs field points in the same direction everywhere, say φ(x) = (0, 0, a).
The massless particle corresponding to the field A3µ must now be identified with
the photon, and the field Fµν = ∂µA

3
ν − ∂νA

3
µ with the electromagnetic field.

For the monopole configuration there is no gauge where the Higgs field points
in the same direction everywhere. We therefore need an expression of the elec-
tromagnetic field that is SU(2)-gauge invariant. ’t Hooft suggested

Fµν =
φa

‖φ‖F
a
µν +

1

e‖φ‖3 εabcφ
a(Dµφ

b)(Dνφ
c). (2.5.6)

This expression reduces to the standard expression in the gauge where φ points in
the same direction everywhere. It can be verified that Fµν satisfies the ordinary
Maxwell equations at all points where φ 6= 0.

Now, substituting (2.5.5) in (2.5.6), we find the monopole to have a long range
magnetic field,

B =
gr

r3
, (2.5.7)

with a magnetic charge,

g =
1

e
. (2.5.8)

We can conclude that the field configuration with asymptotic form (2.5.4–2.5.5)
carries quantized magnetic charge. This magnetic charge appears as a topologi-
cal charge, and elements of the homotopy group π2(G/H) can be identified with
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the particular values the magnetic charge can take. Thus, the topological con-
servation law expressed by (2.5.3) is equivalent to the conservation of magnetic
charge.

We can obtain an ansatz for a static solution by multiplying (2.5.4) and (2.5.5)
with functions of r,

φa∞ = ηh(r)
xa

r
, (2.5.9)

Aa
i,∞ = − [1−K(r)] εaij

xj

er2
, Aa

0,∞ = 0. (2.5.10)

The functions h(r) and K(r) are subject to the boundary conditions

h(r)→ 1, K(r)→ 0, (2.5.11)

as r →∞. Substituting this ansatz in the field equations for this model, we can
obtain regular solutions. We will not pursue this matter here.

With these two examples we have come to the end of this preliminary survey
of topological defects in gauge theories. In the next chapter we introduce Alice
strings, which exhibit a more intricate topological structure.





Chapter 3

An introduction to Alice

electrodynamics

There exist gauge field theories where charge conjugation is a local symmetry. In
these theories, the unbroken gauge group H contains both a electromagnetic U(1)
group generated by a charge operator Q, and an element X of a disconnected
component of H, such that XQX−1 = −Q. The discrete symmetry X “flips”
the electromagnetic subgroup U(1). As a consequence, the absolute sign of the
charges and the electromagnetic fields is undetermined.

In addition, such theories contain topological string-like solutions which have
the puzzling property that if a charged particle is taken around the string, its
charge changes sign. These strings were first studied by Schwarz (1982). Schwarz
dubbed them “Alice strings”, as they appear to act as a charge-conjugating
looking-glass (Carroll, 1871).

Models that possess Alice strings, also possess magnetic monopoles. A mag-
netic monopole that goes once around an Alice string is turned into an anti-
monopole.

In this chapter we introduce the simplest model that contains an Alice string:
a SO(3) gauge theory with the Higgs field belonging to the 5-dimensional rep-
resentation of SO(3). In the first section we discuss the model, the symmetry
breaking and the electrodynamics it gives rise to. In the second section we con-
sider the Alice string and in the final section we look at the magnetic monopoles
of the model.

A considerable number of articles have been devoted to Alice strings. Par-
ticularly useful articles include: Bucher et al. (1992), Preskill and Krauss (1990)
and Alford et al. (1991).

The type of Alice string we study in this thesis is not expected to exist in
nature since it is known that charge conjugation is not an exact symmetry. Still,
Alice strings could conceivably play a role in Grand Unified Theories. For ex-
ample, there might be an exact discrete symmetry in nature that interchanges
ordinary particles with “mirror particles”. In addition, Bucher and Goldhaber

19



20 3. An introduction to Alice electrodynamics

(1994) have shown that, without the need to introduce new discrete symmetries,
some SO(10) cosmic strings are non-abelian Alice strings carrying non-localizable
SU(3)color Cheshire charge.

3.1 The model

The model we consider has a gauge group SO(3), like the Georgi-Glashow model,
but its Higgs field transforms as the 5-dimensional irreducible representation of
SO(3). We describe the Higgs field as a real symmetric traceless 3 × 3 matrix,
Φab, which transforms as

Φ→ SΦS−1, (3.1.1)

where the S’s are the rotation matrices in the adjoint representation of SO(3).
We can construct a potential function V (Φ) such that the zeros of V take the

form

Φab = β (3φ̂aφ̂b − δab), (3.1.2)

with φ̂ a unit vector. The ground states break the SO(3) symmetry. To determine
the unbroken symmetry group, let us consider the ground state for which φ̂ lies
along the z-axis,

Φ0 = β diag(1, 1,−2). (3.1.3)

The Higgs field Φ0 leaves unbroken a subgroup of SO(3) which is locally isomor-
phic to SO(2); it consists of rotations about the z-axis, generated by

Q = T3 =





0 −1 0
1 0 0
0 0 0



 , (3.1.4)

and can be parametrized as

Hc = {exp(θT3) | 0 ≤ θ < 2π} . (3.1.5)

But in addition, the unbroken group contains a disconnected component gener-
ated by

X = diag(1,−1,−1). (3.1.6)

This component consists of rotations by 180◦ about axes that lie in the xy-plane,

Hd = {X exp(θT3) | 0 ≤ θ < 2π} . (3.1.7)
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d

X

Figure 3.1: The two components Hc and Hd embedded in G.

So the full unbroken group H is isomorphic to O(2). Figure 3.1 represents the
group space schematically. We can express the symmetry breaking as

SO(3)→ U(1) o Z2. (3.1.8)

where o denotes a semi-direct product, since the U(1) generator T3 does not
commute with the rotation X.

The unbroken U(1) symmetry may be identified with the gauge group of electro-
magnetism. If the system is in the ground state (3.1.3), then the electromagnetic
fields are given by the T3-component of the field tensor,

Fµν = F a
µνT

a, (3.1.9)

But since the unbroken group in addition contains a local Z2 symmetry, the model
globally deviates from ordinary electrodynamics. The X operator anti-commutes
with the charge operator Q,

XQX−1 = −Q, (3.1.10)

implying that a gauge transformation generated by X will flip the sign of the
electromagnetic fields. The X operator acts, so to speak, as a charge-conjugation
operator.

To illustrate this, consider the following example. Suppose there is a linear
electrical field, as sketched in figure 3.2a. If we perform a local transformation
X in a region R, the field lines in this region will turn into the opposite direction
(figure 3.2b). At first sight, this might seem to lead to an inconsistency: how can
the electric field ever act on a charge if its direction can be reversed at will? But
of course, the matter fields also transform under X. Suppose we add charged
particles to the theory, described by fields ψa. The fields are locally transformed
by

ψ(x)→ Xψ(x) (x ∈ R). (3.1.11)

Since the charge operator anti-commutes with X (3.1.10),

eiQXψ(x) = Xe−iQψ(x) (x ∈ R), (3.1.12)
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X

R
R

Figure 3.2: The local gauge transformation X in region R flips the sign of the electric field lines
in R.

we see that a particle entering the region R will have the sign of its charge flipped.
So the sign change of the electric fields and the sign change of the charges cancel
out. The second description then is consistent, and completely equivalent to the
first one — naturally, as the second description is obtained from the first one by
a gauge transformation.

Thus, in this model, the sign of the charges and of the electromagnetic fields
is gauge-dependent. We can flip the sign of any charge by making a local gauge
transformation. But although the absolute sign of charges is undetermined, the
relative sign is still well-defined: it can simply be inferred from the long-range
electromagnetic force between the charges, because this force is gauge-invariant.
But as we will see, even this observation has to be qualified if Alice strings are
present.

3.2 Alice strings

We now turn to the topological classification of the possible defect solutions in
this model. We need to establish whether there are loops or spheres in the ground
state manifold that cannot be contracted to a point. The ground states in this
model can be represented by three dimensional vectors of unit length: φ̂. The
space of these unit vectors is isomorphic to a two dimensional sphere, but since
the vectors φ̂ and −φ̂ define the same ground state, as follows from (3.1.2),
antipodal points on the sphere are identified. Thus the ground state space G/H
is a two-sphere with antipodal points identified. It is isomorphic to RP2, the real
projective space in three dimensions.

Non-contractible loops in G/H correspond to possible vortex solutions (or,
in three space dimensions, string solutions). On a two-sphere, any closed path
is contractible to a point. On RP2 however, there are two possibilities: either
the path is manifestly closed, or it connects two antipodal points. A manifestly
closed path can obviously be contracted to a point, but a path connecting two
antipodal points can not. Hence the mappings from S1 into G/H fall into two
homotopy classes,

π1(G/H) = π1(SU(2)/U(1)×S.D. Z2) ∼= Z2. (3.2.1)
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With the non-trivial element of π1, there may correspond a string solution. In the
next chapter, we will show that indeed such a string solution can be constructed.
This string is a Z2 string. The difference between a Z2 and a Z string (such as
the Nielsen-Olesen string) becomes manifest when we look at the composition of
two closed paths in G/H. The composition of two paths can be defined as the
path that traverses the two paths in succession. In the Nielsen-Olesen model,
if we compose two paths, one having winding number n and the other having
winding number m, the resulting path will have winding number n+m. But in
the present model, if we compose two non-contractible paths, the resulting path
is contractible to a point and consequently we have 1 + 1 = 0, i.e. the fluxes add
modulo two. Thus a configuration of two Z2 strings can be continuously deformed
to a ground state configuration. As a consequence, the combined string can decay,
since there is no topological constraint that forces the energy to remain localized
in the strings.

For a string solution, the field φ rotates along a circle at spatial infinity and
on its return points in a direction opposite to its starting direction. The Higgs
field must return to its original value and this condition is fulfilled since φ̂ and
−φ̂ represent the same Higgs field. A possible string configuration is shown in
figure 3.3, where the orientation of the Higgs field is represented by bidirectional
arrows.

The rotation of the Higgs field can be described by a transformation U(θ),

Φ∞(θ) = U(θ)Φ∞(0)U(θ)−1. (3.2.2)

In order for the energy of the string to be finite, the covariant derivative of the
Higgs field must be zero at infinity,

DµΦ = 0. (3.2.3)

Solving this equation, we find that

U(θ) = P exp

(

e

∫ θ

0

Aθrdθ

)

, (3.2.4)

������������������������
θ

Figure 3.3: An Alice string configuration. The orientation of the Higgs field is represented by
the bidirectional arrows.
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where P denotes path ordering.
The Higgs field is parallel transported by U(θ). For θ = 2π, the field must

return to its original value and therefore U(2π) must be an element of H(θ = 0).
If Φ is a string configuration, then U(2π) is an element of Hd and U(θ) is a path
in SO(3) from the connected component to the disconnected component of the
unbroken group O(2) (see figure 3.1). Thus we find that the string carries a Z2
“magnetic” flux, taking values in Hd.

A particle that is transported around an Alice string experiences a gauge
transformation by U(2π). Because U(2π), being an element ofHd, anti-commutes
with the charge operator Q (3.1.10), the particle returns with its charge reversed.
This statement may be elucidated by considering the behaviour of the unbroken
group H as it is parallel transported around the string. At each point on the
circle at spatial infinity, there is a subgroup H(θ) embedded in G that consists of
the elements of G that leave Φ(θ) unchanged (see figure 3.4). These subgroups
are all isomorph to H(0) and are related by the rotation U ,

H(θ) = U(θ)H(0)U(θ)−1. (3.2.5)

While it is of course true for the whole group that

H(2π) = U(2π)H(0)U(2π)−1 = H(0), (3.2.6)

the analogous relation does not hold for the individual generators of H. In
particular, the charge operator rotates as

S3(θ) = U(θ)T3U(θ)
−1. (3.2.7)

and hence is double-valued in the background of a string. Specifically, for θ = 2π
we obtain

S3(2π) = −T3 ≡ −Q, (3.2.8)

and so the generator Q is rotated into −Q upon parallel transport around the
string.

Η(0)

Η(θ)

θ

Figure 3.4: At each point of the circle there is an unbroken group H(θ) that leaves the field
Φ(θ) at that point unchanged.
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The embedding of H in G around the string is analogous to a Möbius strip.
The U(1) subgroups H(θ) can be represented as undirected lines in R3 that
coincide with the axes of the rotation of the U(1) subgroups. Choosing a generator
Q(θ) for H(θ) at each θ is equivalent to choosing a direction for each of these
lines. As θ varies from 0 to 2π, the lines are twisted into a Möbius strip. There
is no continuous way to choose a direction on each of them.

Actually, this fact implies that the local U(1) symmetry cannot be globally
extended: there are no global U(1) symmetries in the background of a string. It is
easy to see this. Global transformations are singled out as those transformations
that transform the fields at each point in the same way. The qualification “in the
same way” is understood as: “being the same after parallel transport”. Suppose
we start with a local transformation S(x0) at a particular point x0. Extending
this transformation globally, the transformation S(x1) at any point x1 would be
obtained by parallel transporting S(x0) from x0 to x1. But this will succeed only
if parallel transport is path independent and, as we know, in this model parallel
transport is not path independent: transport around the string inevitably induces
a rotation of Q.

It might be thought that since the sign of a charge is not a gauge invariant
notion, the sign flipping of a charge will not yield a physical effect. Remarkably
enough, this appears not to be the case. Consider the following gedanken ex-

periment. Suppose we have two charges of equal charge q and an Alice string.
We can bring the charges together and establish whether they attract or repel
each other. Suppose they attract. Then, let us take the particle with charge +q
around the string while leaving the other behind. When reunited, the charges
will repel!

The gedanken experiment raises an intriguing question: assuming that total
charge is conserved, what happened to the 2q units of charge we seem to have
lost? Some charge appears to be left behind while the particle passed “behind”
the string. How can that be? We will return to this puzzle in chapter 5.

The experiment reveals another important fact: in the background of a string,
it is meaningless to speak of two charges having the same or opposite sign globally ;
we can only determine the relative sign of two charges locally, when we bring them
together and the outcome clearly depends on the path that we choose in uniting
them.

3.3 Magnetic monopoles

Magnetic monopoles are associated with non-contractible two-surfaces in G/H.
In the present model where G/H = RP2, magnetic monopoles exist. We can
easily classify them by using the second fundamental theorem (2.3.7)

π2(G/H) ∼= π2(SU(2)/U(1) o Z2) ∼= π1(U(1)) ∼= Z. (3.3.1)
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Thus a monopole is characterized by an integer winding number n. However, since
the unbroken group contains the charge conjugation operator X, monopoles with
opposite winding, a monopole and an anti-monopole, are gauge equivalent. It fol-
lows that the absolute sign of the magnetic charge of a monopole is undetermined.
We can simply use positive integers to classify the monopoles.

Yet, we can determine the relative sign of two monopoles because of the
Coulomb force between them. For example, if we bring two monopoles m and
n together, we obtain either the m + n or |m − n| element. If Alice strings are
present, the result of this process depends on the path taken by the monopoles
relative to the Alice strings. It appears that a monopole which goes once around
an Alice string, is turned into an anti-monopole. In chapter 7 we give a topological
analysis of this process.

It appears that a magnetic monopole can be deformed to a closed loop of Alice
string. To see this, consider figure 3.5a which schematically represents a monopole
configuration. As before, the orientation of the Higgs field is represented by
bidirectional arrows. Continuity requires that the Higgs field is zero at the core
of the monopole.

We can “punch a hole” in the monopole core and deform it to a small loop.
In the core of the string the Higgs field must still be zero, but the field can
assume a non-zero value in the space “surrounded” by the loop (see 3.5b). This
deformation is allowed because the Higgs field is represented by a bidirectional
arrow. It is not possible to deform a ’t Hooft-Polyakov monopole to a loop, since
here the Higgs field has a direction and so continuity requires that the field is
zero within a sphere-like core.

Following a closed path C that goes around the loop, the Higgs field is rotated
by 180◦ (see 3.5b). This implies that the loop constitutes a closed Alice string.
Furthermore, since the long range fields have not been changed, the loop carries
magnetic charge as well.

This argument suggests that a closed Alice string can carry magnetic charge.

C

(a) (b)

Figure 3.5: A magnetic monopole configuration (a) can be deformed to a magnetically charged
loop of Alice string (b). The orientation of the Higgs field is represented by bidirectional arrows.
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Of course, it remains to be shown whether such an object really corresponds to
a solution of the field equations. We return to this question in chapter 7.





Chapter 4

Explicit Alice string solutions

In the preceding chapter we considered a simple non-abelian gauge theory. We
showed, using topological arguments, that the theory contains an Alice string. In
this chapter we construct explicit solutions for the simplest string in this model.
In itself of interest, this information will also be helpful to gain more insight into
the theory’s unusual electromagnetic properties.

The procedure followed in this chapter is general and rather straightforward.
First, we construct a simple expression for the fields at spatial infinity. This
expression must satisfy the energy constraints, in order that the string energy
is finite. With the help of this expression and some symmetry considerations,
we construct an ansatz for the string solution. Substituting the ansatz in the
Euler-Lagrange field equations, we arrive at the field equations for the ansatz.
These allow us to determine the asymptotic behaviour of the fields at the origin
and at infinity. As we do not know how to solve the equations analytically, we
study them numerically and thus obtain numerical solutions which are regular
everywhere.

The first two sections of this chapter rely on an article by Shankar (1976)
about SO(3) monopoles. In the course of a general survey, Shankar constructs
an ansatz for an Alice string1, though without being aware of the string’s peculiar
electromagnetic properties. (Note the dates: Shankar’s article was published six
years before Schwarz’s (1982) seminal article on Alice strings.) To our knowledge,
so far no one has studied the exact regular solutions for the Alice string.

4.1 The fields at infinity

The simple model we use has, as will be recalled, gauge group SO(3) and a Higgs
field Φ that transforms as the 5-dimensional irreducible representation of SO(3).
We express the Higgs field as a real symmetric traceless 3 × 3 matrix, Φab. The

1As a historical note, we mention that the correct ansatz was communicated to him by F.A.
Bais (private communication), who also pointed out the sign ambiguity for the charge.
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lagrangian density is:

L =
1

8
Tr(FµνF

µν) +
1

4
Tr(DµΦD

µΦ)− V (Φ), (4.1.1)

where

Fµν = ∂µAν − ∂νAµ − e[Aµ, Aν ],

Aµ = Aa
µT

a,

DµΦ = ∂µΦ− e[Aa
µT

a,Φ].

The 3×3 generators T a
ij = εaij are normalized such that Tr(T aT b) = −2δab. (The

term representing the kinetic energy of the Higgs field has factor 1/4 instead of
the usual 1/2 because, the field being a symmetric matrix, tracing doubles the
contribution of every field component.) Since in this chapter we look for static
solutions, the energy is (cf. (2.1.15))

E =

∫ (

1

2
( ~Ea · ~Ea + ~Ba · ~Ba) +

1

4
Tr(DiΦDiΦ) + V (Φ)

)

dx3, (4.1.2)

with the usual definitions of the electric and magnetic fields: Ea
i = F a

0i and
Ba
i = εijkF

a
jk.

The requirement that the string energy is finite imposes conditions on the
asymptotic field configuration. Far from the core the Higgs field Φ must in every
direction approach a vacuum value to minimize the potential term. Also, the
covariant derivative of the Higgs field must vanish sufficiently fast at infinity. We
first consider the potential term.

The most general, renormalizable potential is:

V = −1
2
µ2 TrΦ2 − 1

3
γ TrΦ3 + 1

4
λ (TrΦ2)2, (4.1.3)

since TrΦ4 and det(Φ) can be expressed in these three terms (Georgi and Glashow,
1972). Now suppose the field has a vacuum expectation value Φ0. By choosing a
suitable gauge we can take Φ0 to be diagonal:

Φ0 =





a 0 0
0 b 0
0 0 −(a+ b)



 . (4.1.4)

In order that Φ0 is an extremum, we must have

∂V (Φ)

∂Φ

∣

∣

∣

∣

Φ=Φ0

= 0. (4.1.5)



4.1. The fields at infinity 31

This condition yields two equations

∂V

∂a
= 0 = [−µ2 − γb+ 2λ(a2 + ab+ b2)](2a+ b), (4.1.6a)

∂V

∂b
= 0 = [−µ2 − γa+ 2λ(a2 + ab+ b2)](2b+ a). (4.1.6b)

So, either (2a+ b) = 0, or (2b+ a) = 0, or a = b. Choosing a = b gives:

Φ0 =





a 0 0
0 a 0
0 0 −2a



 , (4.1.7)

where

a = b =
γ ±

√

γ2 + 24µ2λ

12λ
. (4.1.8)

It can easily be checked that Φ0 is a minimum and not a maximum of the poten-
tial.

The ground state Φ0 is invariant under rotations about the T3-axis, and in-
variant under rotations by 180◦ about axes that lie in the T1T2-plane. So, the
unbroken subgroup is1 H = U(1) o Z2, in accordance with our analysis in sec-
tion 3.1. The other two options, (2a + b) = 0 and (2b + a) = 0, single out T1,
respectively T2 as rotation axis. These are completely equivalent.

It is possible to express the Higgs field as the symmetric product of two iso-
vectors ~φ1 and ~φ2

Φab = φa1φ
b
2 + φa2φ

b
1 − 2

3
δab( ~φ1 · ~φ2). (4.1.9)

Under gauge transformations, the two fields transform as:

~φ1 → S ~φ1, (4.1.10a)

~φ2 → S ~φ2, (4.1.10b)

with S ∈ SO(3). This notation will turn out to be useful for later purposes, but
it can also be used to make the aforesaid even more clear.

The transformation equations (4.1.10) plainly show that in general the field

Φ has no axis of invariance; if you rotate around ~φ1 you affect ~φ2 and vice versa.
There is a O(2) symmetry only if ~φ1 and ~φ2 are (anti-)parallel. Of course, this is
exactly what happens

~φ1 = ~φ2 =
√
3a





0
0
1



 . (4.1.11)

1That is, for at least a range of parameters of V (Φ). For example, equations (4.1.6) imply
that γ cannot taken to be zero. See also condition (4.3.14) on page 37.
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Rotations about the T3-axis leave φ1 and φ2 invariant. Rotations by 180◦ about
axes that lie in the T1T2-plane change the sign of both φ1 and φ2, but leave
the Higgs field invariant since since the Higgs field is the product of the two
iso-vectors.

For a field configuration to have finite energy, the fields must at spatial infinity
satisfy the equation

DµΦ = 0. (4.1.12)

The general solution to this equation is

Φ(x1) = [P e
e

∫ x1
x0

Aµdxµ ]Φ(x0)[P e
−e

∫ x1
x0

Aµdxµ ], (4.1.13)

where the integral is along an arbitrary path from x0 to x1 and path ordered by
P. Thus the field at point x1 is dependent on the field at point x0.

Since we are interested in string solutions, we impose cylindrical symmetry.
Equation (4.1.12) then reduces to

DθΦ = 0, (4.1.14)

because one can always choose a gauge in which Ar = 0. Thus, at spatial infinity
the Higgs field rotates as

Φ(θ) = S(θ)Φ(0)S(θ)−1, (4.1.15)

with

S(θ) = exp

[

e

∫ θ

0

rAθdθ

]

, (4.1.16)

which follows from (4.1.13) if we take θ0 = 0.
The asymptotic field configuration (4.1.15) is associated with a topologically

stable string if S(2π) is an element of Hd. A simple and convenient choice is:
S(2π) = exp(T1θ/2). Thus, the asymptotic form of a string configuration is

Φ = eT1θ/2Φ0e
−T1θ/2, (4.1.17a)

Aθ =
1

2er
T1. (4.1.17b)

This configuration carries a Z2 magnetic flux

ΦB =

∫

Bds =

∫

Aθrdθ =
π

e
T1. (4.1.18)
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4.2 The ansatz

The next step in our investigation is to find an ansatz that satisfies the field
equations. As a first guess, one might just take the fields at infinity (4.1.17)
and multiply each field with a function depending on r. This yields an ansatz
which is practically equivalent to the ansatz for the Nielsen-Olesen vortex (see
section 2.4). But if we substitute this ansatz in the field equations, we get stuck
with three inconsistent equations. Apparently, the Alice string structure is es-
sentially more complicated than the Nielsen-Olesen vortex structure. (Schwarz’s
(1982) statement to the contrary is mistaken.)

Considering that the Higgs field is matrix-valued and has, in diagonal form,
two independent components (4.1.4), the obvious next try would be to multiply
these components each with a different function of r. Thus we get the following
ansatz,

Φ = eT1θ/2





m′(r) 0 0
0 q′(r) 0
0 0 −m′(r)− q′(r)



 e−T1θ/2, (4.2.1a)

Aθ =
α(r)

2er
T1. (4.2.1b)

This ansatz does indeed yield three consistent differential equations. Further
analysis shows it to be the desired ansatz.

This trial and error method to produce the ansatz might not satisfy the reader.
The method seems arbitrary and gives us hardly an understanding of why the
ansatz must have the form it has. Therefore we will now sketch a more gen-
eral constructive procedure to generate the appropriate ansatz. The procedure
and its application to the present case are described in respectively Bais (1980)
and Shankar (1976).

We are looking then for the simplest ansatz with the proper topology. To find
this ansatz, we impose a set of symmetries that will strongly simplify the form
of the ansatz while making it still possible to get the proper topology. Since the
solution should be static and cylindrically symmetric, we may impose invariance
under

1. t- and z-translations;

2. rotations around the z-axis, R(θ) = exp[θ(Jz − 1
2
T1)];

3. parity, P = Ps exp(πT3), where Ps operates in coordinate space (θ →
−θ, z → −z).

It can easily be checked that the asymptotic form of the fields (4.1.17) has, at
least, these symmetries.



34 4. Explicit Alice string solutions

Imposing symmetry (1) leaves us with Φab, Aa
r , A

b
θ, (a, b = 1, 2, 3), which may

be functions of r and θ. If we take θ = 2π in R(θ) = exp[θ(Jz− 1
2
T1)], we see that

x1 → x1, x2 → −x2 and x3 → −x3 in isospace. This implies that Φ12,Φ13, A2θ, A
3
θ

are zero. Invariance under R(θ) for all θ demands that A1r and A1θ are functions
only of r. Parity forces A1r to be zero. So we can parameterize

A1θ = (1/2er)α(r). (4.2.2)

Now consider the remaining Φ11, Φ23, Φ22 and Φ33. We change the cartesian
indices x̂2 and x̂3 for those of x̂± = (x̂2 ± ix̂3)/

√
2. The latter transform simpler

under R(θ):

e−T1θ/2 x̂± eT1θ/2 = ±ie∓iθ/2 x̂±.

Invariance under R(θ) then requires

Φ11(r, θ) = m(r),

Φ++(r, θ) =
3

2
e−iθq(r),

Φ−−(r, θ) =
3

2
eiθq∗(r).

The factor 3
2
is there for convenience. The trace condition gives us 2Φ+−+Φ11 = 0.

Under P , Φ++(r, θ)→ Φ−−(r,−θ) = 3
2
q∗(r)e−iθ; so q = q∗. Returning to cartesian

components we have

Φ =





m 0 0
0 −1

2
m+ 3

2
q cos θ 3

2
q sin θ

0 3
2
q sin θ −1

2
m− 3

2
q cos θ



 .

Finally then, the complete ansatz is1

Φ = m(r)Φ1 + q(r)eT1θ/2Φ2e
−T1θ/2, (4.2.3a)

Aθ =
α(r)

2er
T1, (4.2.3b)

where

Φ1 =





1 0 0
0 −1

2
0

0 0 −1
2



 , Φ2 =





0 0 0
0 3

2
0

0 0 −3
2



 . (4.2.3c)

1The parameterization differs slightly from (4.2.1). The present parameterization is more
convenient. It turns out that Φ has a non-zero part at the origin; this non-zero part is completely
captured by m(r).
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The field equations corresponding to lagrangian (4.1.1) are:

for a = 1, 2 DµDµΦ
aa −DµDµΦ

33 = −2
(

∂V

∂Φaa
− ∂V

∂Φ33

)

, (4.2.4a)

for a 6= b DµDµΦ
ab = −2 ∂V

∂Φab
, (4.2.4b)

DµFµν = −e((DνΦ)T
cΦ)T c. (4.2.4c)

Substituting the ansatz, we get the following system of coupled nonlinear ordinary
differential equations

d2α

dr2
− 1

r

dα

dr
= 9e2q2(α− 1), (4.2.5a)

d2q

dr2
+

1

r

dq

dr
=

(α− 1)2q

r2
− 2µ2q + 2mqγ + λ(9q2 + 3m2)q, (4.2.5b)

d2m

dr2
+

1

r

dm

dr
= −2µ2m+ γ(3q2 −m2) + λ(9q2 + 3m2)m. (4.2.5c)

It is convenient to rescale the fields and the r-coordinate,

q →
√
λ

µ
q, m→

√
λ

µ
m, Aµ →

√
λ

µ
Aµ, r → eµ√

λ
r, (4.2.6)

thereby making these quantities dimensionless. We define two new parameters

ξ =
λ

e2
, χ =

γ
√
λ

µe2
. (4.2.7)

Finally, the set of dimensionless equations is

d2α

dr2
− 1

r

dα

dr
= 9q2(α− 1), (4.2.8a)

d2q

dr2
+

1

r

dq

dr
=

(α− 1)2q

r2
+ ξ(9q2 + 3m2 − 2)q + 2χmq, (4.2.8b)

d2m

dr2
+

1

r

dm

dr
= ξ(9q2 + 3m2 − 2)m+ χ(3q2 −m2). (4.2.8c)

These equations agree with those Shankar arrived at by extremizing the energy.
Analytic solutions are not known. We can however numerically solve these equa-
tions as will be discussed in section 4.4.

Comparing (4.2.8) with the equations for a Nielsen-Olesen vortex (2.4.14), we
find that although the form of the equations is more or less similar, the Alice
string structure is significantly different due to an extra component m, which, as
will be shown in the next sections, turns out to be non-zero at the origin.
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4.3 The asymptotic behaviour of the fields

We now determine the asymptotics of the fields. Let us first consider the be-
haviour of the fields close to the origin.

To ensure regularity at the origin, the fields α and q must smoothly go to zero
as r vanishes; but m need not go to zero, since the m-term of the ansatz has no
θ dependence (4.2.3a). So

α→ 0, q → 0, m→ c3, (4.3.1)

for r → 0. Using the trial functions:

α = c1r
n1 , (4.3.2)

q = c2r
n2 , (4.3.3)

m = c3, (4.3.4)

we find that near the origin the fields are, to leading order,

α ≈ c1r
2, (4.3.5a)

q ≈ c2r, (4.3.5b)

m ≈ c3. (4.3.5c)

For large r the Higgs and gauge fields must approach the topological stable
form (4.1.17). Therefore, the boundary conditions for r →∞ are:

α→ 1, q → a, m→ a, (4.3.6)

where a is the rescaled constant (4.1.8):

a± =
−χ±

√

χ2 + 24ξ2

12ξ
. (4.3.7)

To obtain the rate by which the fields approach their asymptotic values, we
use the ansatz

α→ 1 + δα, (4.3.8a)

q → a+ δq, (4.3.8b)

m→ a+ δm. (4.3.8c)

We keep only lowest order terms in δq and δm, but all terms in δα. The resulting
equations are

δα′′ − 1

r
δα′ = 9a2δα, (4.3.9a)

δq′′ +
1

r
δq′ =

aδα2

r2
+ (ξ(30a2 − 2) + 2χa)δq + (6ξa2 + 2χa)δm, (4.3.9b)

δm′′ +
1

r
δm′ = (18ξa2 + 6χa)δq + (ξ(18a2 − 2)− 2χa)δm. (4.3.9c)
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Substituting the trial function

δα = e−ρrrσ(cα1 + r−1cα2 ), (4.3.10)

in (4.3.9a) and equating the coefficients of e−ρrrσ and e−ρrrσ−1 to zero, we obtain

δα ≈ cα1 e
−3a rr1/2, (4.3.11)

where cα1 and cα2 are constants.
To obtain the asymptotic form of δq and δm, we proceed in a similar way.

Using the trial functions

δq = e−ρrrσ(cq1 + r−1cq2), (4.3.12a)

δm = e−ρrrσ(cm1 + r−1cm2 ), (4.3.12b)

we obtain the particular and the homogeneous solutions of (4.3.9b) and (4.3.9c).
The calculation is more subtle than the previous one and we therefore amplify
on relevant parts of the calculation.

Let us first consider only the homogeneous equations. Substituting (4.3.12)
into (4.3.9b) and (4.3.9c) and equating the coefficients of e−ρrrσ to zero, yields:

ρ2cq1 = (ξ(30a2 − 2) + 2χa)cq1 + (6ξa2 + 2χa)cm1 ,

ρ2cm1 = (18ξa2 + 6χa)cq1 + (ξ(18a2 − 2)− 2χa)cm1 .

These equations have two solutions for ρ2,

ρ2± = 2ξ(12a2 − 1)± 4a(3ξa+ χ).

Substituting a± (4.3.7), we find

ρ+(a±)
2 = 4ξ +

χ2

6ξ
∓ χ

√

χ2 + 24ξ2

6ξ
, (4.3.13a)

ρ−(a±)
2 =

χ2

2ξ
∓ χ

√

χ2 + 24ξ2

2ξ
. (4.3.13b)

Since ρ2 is invariant under the transformation

a− → −a+, χ→ −χ, ξ → ξ,

we can confine ourselves to a+. In order that the field q and m fall off exponen-
tially, both ρ2+ and ρ2− must be positive. A little functional analysis shows this
condition to be fulfilled if

χ < 0 and ξ > 0. (4.3.14)
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The asymptotic behaviour is governed by the lower value of γ+ and γ−. So the
exponent is:

ρ =

{

√

ρ2− if χ > −
√
3ξ,

√

ρ2+ if χ < −
√
3ξ.

(4.3.15)

We can now, without much effort, determine the factor σ and the particular
solution. Putting everything together, we finally get:

δq ≈ δqh + δqp =
cq1e

−ρr
√
r

+ cqh(χ, ξ)
(cα1 )

2e−6ar

r
, (4.3.16a)

δm ≈ δmh + δmp =
cm2 e

−ρr
√
r

+ cmh (χ, ξ)
(cα1 )

2e−6ar

r
, (4.3.16b)

where cqh and cmh are complicated functions of ξ and χ.

4.4 Numerical solutions

We want to find solutions to the differential equations (4.2.8) that satisfy the
boundary conditions at zero (4.3.1) and at infinity (4.3.6). This kind of problem
is known as a two point boundary value problem. It can be solved by using
a relaxation method. In this method the differential equations are replaced by
finite-difference equations on a mesh of points that covers the range of interest.
Then starting with a trial function consisting of values for the dependent vari-
ables at each mesh point, all the values are iteratively adjusted so as to bring
them into successively closer agreement with the finite-difference equations, and
simultaneously, with the boundary conditions. If the trial function was not too
far off, the result will relax to the true solution. (A detailed treatment of this
technique can be found in Press et al. (1992).)

We consider the solution we obtained where we have set ξ = 1 and χ = −1.
Figure 4.1 shows a plot of the functions α(r), q(r) and m(r).

This string solution features a T1 magnetic field along the z-axis,

Bz =
1

2

∂

∂r

(α

r

)

T1. (4.4.1)

The r-dependence of this field is plotted in figure 4.2.

The energy of the solution is obtained by substituting the ansatz (4.2.3) in
the generic energy functional (2.1.15). Thus we find that the energy per unit
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Figure 4.1: Functions α(r), q(r) and m(r) for the cylindrically symmetric string solution, with
ξ = 1 and χ = −1.

length of string equals

E = 2π

∫

{

1

8r2

(

dα

dr

)2

+
9q2

8r2
(α− 1)2 +

3

8

(

dm

dr

)2

+
9

8

(

dq

dr

)2

+
1

4
ξ
[

−(3m2 + 9q2) +
1

4
(3m2 + 9q2)2

]

+
1

4
χ(9mq2 −m3) + Vc(a)

}

rdr

= 2π

∫

ρE(r) rdr,

(4.4.2)

where we have added the constant

Vc(a) = ξ(3a2 − 9a4)− 2χa3, (4.4.3)

to the potential so that its minimum value is zero. Figure 4.3 shows the energy
density of the solution. The energy per unit length of string is finite. Of course,
the total energy of an infinitely long string is infinite. But, based on the straight-
line strings, one can construct closed strings that have finite energy. Such Alice
loops are only approximate solutions of the field lagrangian and they will collapse
after a certain time since the topological argument only ensures local stability of
the string.
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Figure 4.2: The magnetic field, Bz, for the string solutions with ξ = 1 and χ = −1.

The figures illustrate that the string solution is well-localized, in spite of the
fact that we do have an unbroken U(1) symmetry. However, the Z2 flux is
not associated with the unbroken generator T3, but with a generator orthogonal
to T3, the broken generator T1. The A1 field is therefore massive and dies off
exponentially.

In contrast with the Nielsen-Olesen vortex, the Alice string does not have a
zero Higgs field at the origin. The value of m(0) is not to be chosen at will, but
appears to be enforced by the choice of the boundary values at infinity, implying
that it is a function of the two parameters ξ and χ. We did not succeed in finding
the explicit functional dependence.

Since the Higgs field is non-zero at the origin, the full SO(3) symmetry is not
restored in the string core. Taking the form

Φ(r = 0) =
m

2





2 0 0
0 −1 0
0 0 −1



 , (4.4.4)

the field at the origin is invariant under rotations about the T1 axis and under
rotations by 180◦ about axes that lie in the T2T3-plane. Thus the residual sym-
metry group for r = 0 is U(1) o Z2. For r → ∞, the residual symmetry is also
U(1) o Z2, but it is composed of different generators. For intermediate values of
r, only a Z2 symmetry remains.

The fact that the Higgs field is non-zero at the origin suggests that the Alice
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Figure 4.3: The energy density ρE for the string solutions with ξ = 1 and χ = −1.

string can be turned into an electric superconductor, and indeed, we have been
able to construct a superconducting Alice string solution. We present this solution
in chapter 6, but to stress the importance of it, we first discuss, in the next
chapter, the standard physical interpretation of charged Alice strings.





Chapter 5

Alice strings and non-localized

charge

Let us consider an experiment similar to the one described in section 3.2. We
take two charges of equal charge q and a closed loop of Alice string. The two
charges are brought together and found to attract each other. If we now carry
one of the charges through the Alice loop, it flips sign, and after reuniting the
two charges, they repel. If we assume that the total charge is conserved, a puzzle
presents itself: what happened to the 2q units of charge we seem to have lost?

The standard view contends that the missing charge cannot be transferred to
the string itself, nor to a sheet spanned by the string loop. Nevertheless, charge
is left behind. The loop has acquired a long-range electric field from which its
charge can be inferred, but the source of this charge cannot be localized. This new
type of ghostly, non-localizable charge, only noticeable by its long-range electric
field, has been called “Cheshire charge” (Carroll, 1865).

In this chapter we spell out the arguments that lead to this view. Two impor-
tant papers discussing Cheshire charge are Alford et al. (1991), who coined the
term ‘Cheshire charge’, and Preskill and Krauss (1990). An especially clear and
entertaining overview can be found in Preskill (1993). The following discussion
is based on these three papers.

Although we do not deny the possibility of Cheshire charge, we do think that
Cheshire charge does not exhaust the possible ways in which an Alice string can
be charged. In the next chapter we will argue that under certain circumstances
charge can also be localized on the string.

5.1 The electric field

Cheshire charge owes its existence to the peculiar boundary conditions of the
electric field in the presence of an Alice loop. Let us therefore first analyse the
characteristics of the electric field.

43
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We can define the electric field at a point x by measuring the force that acts
on a positive test charge located at x. To make this definition work, we obviously
need a procedure to ascertain the sign of the test charge. A simple procedure is
the following.

We take an arbitrary charge and call it positive by convention. This charge
is for calibration and we will always keeps it at the same place. With the help
of this calibration charge, we can establish the sign of any test charge by simply
taking it to the calibration charge and seeing whether the test charge is attracted
or repelled.

First suppose there are no Alice loops present, only charged particles. Then,
when we want to know the electric field at x, we can pick a test charge, verify its
sign, then move it to x and measure the force it experiences there. This way the
electric field is defined unambiguously. In effect, the procedure fixes the gauge
such that the charge operator Q points in the same direction everywhere (cf.
figure 3.2).

However, if Alice loops are present, the procedure will fail. The result of
calibrating a test charge is now ambiguous, since it depends on how many times
the charge winds through a loop before it arrives at the calibration charge. Thus
we cannot consistently fix the sign of the electric field everywhere.

Of course, if we take care that a test charge keeps out of the way of the Alice
loops, the electric field can still be determined unambiguously in the area beyond
the Alice loops. But we can extend this area to the whole space in the following
way. We take a sheath, stretch it tightly across the string loop and demand that
no test charge is to cross the sheath when it is sent out to measure the electric
field. As long as the test charge does not pass the sheath we can be sure of its
sign. With this procedure, the sign of the electric field is unambiguously defined,
at the cost though of introducing unusual boundary conditions at the sheath.
If the positive test charge were to go through the sheath, it would become a
negative test charge. (After all, after taking it to the calibration charge in order
to compare it, the test charge has in effect once circled the string.) But the sheath
is just an artifact and not physically observable; so if the test charge passes the
sheath, the force on the charge must not abruptly change. It follows that as the
charge of the particle changes sign at the sheath, the electric field we measure
must also change sign at the sheath. Summing up, we have fixed the sign of the
electric field on the whole space by introducing a sheath at which the electric
field changes sign and the charge of a particle flips.

We can restate the above in more abstract terms. In the presence of an Alice
loop, the charge operator Q is necessarily double valued. No gauge transfor-
mation can remove this double-valuedness. But we can make a singular gauge
transformation such that Q points in the same direction everywhere at the cost
of introducing a discontinuity, or a branch cut, on a surface bounded by the
string loop. At the cut, the electromagnetic field changes sign and the charge
of a charged particle flips. As a result, we have picked out a single sheet of the
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two-valued operator Q, joined to the second sheet at a branch cut. The branch
cut is just a gauge artifact and its location is therefore arbitrary. The cut is
not physically observable; by convention we have decreed that a charge changes
sign at the cut, but in reality, we cannot pinpoint where the change in sign takes
place.

5.2 Cheshire charge

Let us now return to the gedanken experiment discussed in the introduction of
this chapter. We suppose we have a region that contains a closed string and
two point charges, such that the total charge is zero as measured on a distant
boundary. The two point charges are united and found to be equal, but opposite
in sign: +q and −q. The charge inside the surface Σ that encloses the string
loop is zero. This state of affairs is shown in figure 5.1a. Now, we take the
particle with charge +q through the loop while leaving the other behind. When
the charges are reunited, both have charge −q (see figure 5.1b). If we hold on
to charge conservation, the total charge as measured on the distant boundary
cannot have changed and we must assume 2q units of charge have been deposited
inside Σ.

It is natural to think that the 2q charge has been transferred to the string
core. But this does not seem to be possible, because it is thought that an unclosed
Alice string has no charged excitations (see below). Moreover, it is unclear by
which mechanism a particle could transmit charge to the string core. Yet, charge
conservation requires that the string loop does carry a charge. So, apparently,
the point particle is able to excite a charged state of the string loop without really
transferring any charge to the string core. It is the two-valuedness of the electric
field which makes this possible.

The charge transfer process is sketched in figure 5.2. The figure shows one
branch of the two-valued electric field of a point charge q for a sequence of po-
sitions of the charge. The total electric charge as measured at a far boundary
is assumed to be q. The initial electric field of the particle in the vicinity of
a string loop is shown in 5.2a. When the charge reaches the cut, it disappears
behind the cut just as its image charge −q on the second sheet emerges from be-
hind the cut (figure 5.2c and 5.2d). The electric flux emanating from the image
charge returns to the second sheet through the cut, while the flux emanating from
the original positive charge (now on the second sheet) returns to the first sheet
through the cut. After the charge has passed the cut, an observer on a closed
surface that encloses the Alice loop, but not the point charge, measures electric
flux 4πq through the surface and infers that 2q units of charge are inside. The
cut seems to have acquired this charge 2q (figure 5.2f). But in fact this charge
is not localized anywhere. The branch cut that appears to be the source has no
invariant significance. We can move the cut without really changing the physics
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Figure 5.1: A region contains two charged particles and a string loop, of which only a cross
section is shown. Initially, the particles have charge q and −q. The particle with charge +q
travels through the string loop. On returning, the sign of its charge has changed and 2q units
of charge have been deposited inside Σ.
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of the process. Consequently, the loop carries a charge that is not localizable.
Such unlocalized charge has been named “Cheshire charge”.

Let us try to make the above discussion a bit more precise. For this purpose,
we rehash the arguments as given in Alford et al. (1991). First we analyze the
electric field in the presence of a charged particle and a single, unclosed Alice
string.

The U(1) electric field Ei is defined in terms of the SO(3) gauge field F0i,

F0i(r) = Ei(r)S3(r). (5.2.1)

Since S3 is a double-valued function of θ, Ei must also be a double-valued function
in order that the gauge field F0i is single valued.1

Aligning the string along the z-axis, we can project the first sheet of the
double cover onto the the xy-plane. This enables us to depict Ei as a single-
valued function with a branch cut. We will project the θ ∈ [3π, 4π) segment of
Ei onto the half-space y < 0, and the θ ∈ [0, π) segment onto y > 0, with a
branch cut along the y = 0, x < 0 plane.

Placing a charge +q at x = R, y = z = 0, we can now show that the elec-
tric field on the first sheet is the same as the one that would be obtained for
single-valued Ei with conducting plate boundary conditions at the branch cut
(figure 5.3). The full Ei(θ) (suppressing the r and z dependence) is defined over
θ ∈ [0, 4π). It obeys the source-free Gauss’ law,

∂iEi = 0, (5.2.2)

which follows from the lagrangian (4.1.1), and the boundary condition

Ei(θ) = −Ei(θ + 2π). (5.2.3)

We place a charge +q at x = R in physical space. This implies imposing point
charge boundary conditions for a charge +q at (r, θ, z) = (R, 0, 0) and a charge
−q at (R, 2π, 0). The configuration is symmetric under reflection in the y = 0
plane, i.e. under the transformation θ → 4π − θ, and so we must have

Ex,z(θ) = −Ex,z(4π − θ), Ey(θ) = Ey(4π − θ). (5.2.4)

Applying these conditions at θ = π, 3π, we find

Ex(π) = Ez(π) = Ex(3π) = Ez(3π) = 0, Ey(π) = −Ey(3π). (5.2.5)

This is exactly the “no parallel electric field” boundary condition for a conducting
plate at the the branch cut, where we jump from θ = π to θ = 3π.

1According to Alford et al.. No reasons are given why the gauge fields F a
µν must be single

valued.
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Figure 5.2: One branch of the electric field of a point charge in the vicinity of a string loop, for
a sequence of positions of the point charge.
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x
+q

Figure 5.3: Electric field of a point charge in the presence of an Alice string. The string is
aligned along the z-axis. Shown is the first sheet (θ = 0 to π and 3π to 4π), with a branch cut
on the negative x-axis.

The charge is attracted to the string, analogous to a charge that is a attracted
to a conducting plate. A charge near a conducting plate induces an opposite
charge on the plate, attracting the original charge. Although there is not any
such induced charge at the branch cut, the electric field is the same. The energy
of the field will be decreased if the charge moves closer to the string, so the charge
is really attracted to the string.

Let us now consider a string loop carrying Cheshire charge. We represent the
loop by two strings, one at (x, y) = (0, 0) and another at (D, 0), and let the
plane joining the two strings be the branch cut. The electric field Ei must change
sign on circling one string, but is single valued on circling both strings. For this
reason, a single string cannot have a charged mode, but a system of two strings
can. (This is a consequence of the above mentioned constraint that demands the
gauge field F a

µν to be single valued. At this point, we cannot explain this. We
return to it in the next chapter.)

Far from the strings, this charged mode manifests itself as a radial electric
field,

Ei(r, θ) = Q/r. (5.2.6)

We cannot localize the source of this field. A surface enclosing no strings contains
no net charge because there is no source. Surfaces enclosing a single string have
no meaning because on them Ei is double-valued.

We can calculate Ei(x, y) to obtain more information. It can be shown, by
reflection symmetry in the x- and y-axes, that the branch cut is equivalent to
a conducting plate with charge Q (figure 5.4). Solving the electrostatic equa-
tion (5.2.2) with this boundary condition shows that, in the limit that the string
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Figure 5.4: Electric field of a charged mode on an Alice string pair, first sheet.

separation D is much greater than the core size,

Ey(x, 0) = q/
√

x(D − x), for 0 < x < D (5.2.7)

If we take one string to infinity (D →∞) the electric field a fixed distance x from
the other decreases towards zero, confirming that there is no charge localized near
that string.

To conclude this chapter, we like to point out that charge quantisation (which
necessary holds in this theory) forbids the electric field lines to cross the core of an
Alice string. Hence, an Alice loop is able to acquire Cheshire charge by trapping
electric flux.



Chapter 6

Alice strings carrying electric

charge

As we saw, an Alice loop can carry Cheshire charge by trapping electric flux. The
flux lines cannot cross the string and flow away since that would break charge
conservation and quantisation. This type of flux confinement reminds one of the
Meissner effect; it suggests that the electric flux is kept together by a magnetic

superconducting current flowing through the string. This view is supported by
the fact that in the present model a magnetic monopole can be smoothly de-
formed to a magnetically charged Alice loop (as was explained in chapter 3). So
at least, a magnetically charged Alice loop does not meet a topological obstruc-
tion. From a magnetically charged Alice loop, it is a natural step to a magnetic
superconducting loop. Indeed, it is commonly thought that if all components of
the order parameter vanish at the core of a string and the non-abelian symmetry
is fully restored there, the core will be turned into a magnetic superconductor.
Thus by applying the appropriate boundary conditions, we might expect to find
a magnetic superconducting Alice string.

In chapter 3 we noted that when a magnetic monopole is pulled through an
Alice loop, magnetic charge is transferred to the loop region. Where can this
charge go? Possibly, it could take the form of magnetic Cheshire charge, i.e. the
loop could acquire a long-range magnetic field, without there being a localized
source of magnetic charge on the loop or in its direct vicinity. In line with our
suggestion about electric Cheshire charge, we could conceive magnetic Cheshire
charge as an electric superconducting current that has trapped magnetic flux.

However, as we argued above, an Alice loop can also have magnetic charge
localized at its core. So we are lead to conclude that an Alice loop can carry
magnetic charge in two distinct ways: as magnetic Cheshire charge, with a tan-
gential magnetic field generated by an electric supercurrent; or as magnetic charge
localized at its core, producing a radial magnetic field.

Extending this line of thought, we expect there to be two similar alternatives
for an Alice loop carrying electric charge: the loop could have electric Cheshire

51
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charge, with a tangential electric field generated by a magnetic supercurrent; or
the loop could have electric charge localized at its core, producing a radial electric
field.

If correct, this view would mean that in the original SO(3) model broken
down to an effective unbroken U(1), the electric-magnetic dual symmetry (say
the analogon of the Olive-Montonen symmetry) is a priori not broken by the Alice
string, but may be broken by either an electric or magnetic charge excitation of
the string core. We are suggesting that there are two alternative ways to achieve
this, which are each others dual image. The Z2 flux itself has no U(1) electric
or magnetic content and it is by imposing suitable boundary conditions that we
may obtain either U(1) electric or U(1) magnetic excitations of the string.

In this chapter and the next one we provide evidence in support of this view.
The present chapter deals with Alice strings carrying electric charge. Specifically,
we show that an Alice string can support localized electric charge and electric cur-
rent if the appropriate boundary conditions are imposed. We use a general ansatz
(section 6.1) and derive reduced field equations for string solutions with either
localized electric charge, electric current, or both (section 6.2). We determine the
behaviour of these solutions for large and small r (section 6.3) analytically, and
for intermediate values by numerical calculations (section 6.4). Finally, we ex-
amine the gauge invariant physical characteristics of the solutions, showing them
to be consistent (section 6.5).

In the next chapter we subsequently explore the possibility of an Alice string
carrying magnetic charge.

6.1 The ansatz

Generally speaking, a string can be turned into a superconductor if electromag-
netic gauge invariance is broken inside the string (Witten, 1985; Everett, 1988).
This also applies to the Alice string. The Alice string solution discussed in chap-
ter 4 takes the form

Φ = m(r)Φ1 + q(r)eT1θ/2Φ2e
−T1θ/2, (4.2.3a)

Aθ =
α(r)

2er
T1. (4.2.3b)

Far from the core, the Higgs field is invariant under rotations generated by the
charge operator S3(θ), while at r = 0, it is invariant under rotations generated
by T1. A S3(θ) transformation would rotate the core condensate, but leave the
Higgs field at large distance invariant. To construct charged excitations, we let
the condensate undergo a S3 rotation in the z and t directions in such a way that
the resulting configuration is still a solution to the field equations. This can be
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effected by making the “truncated gauge transformation”

Φ = SΦS−1, (6.1.1)

Aµ = SAµS
−1 + δiµ

1

e
∂iSS

−1, (6.1.2)

where Φ and Aµ are the fields of the unperturbed string; S = S(x, t) ∈ G, but
tending to an element of H at infinity; and the index i varies over x and y.
Though (6.1.1)-(6.1.2) looks like a gauge transformation, it is not, but rather
represents a true physical excitation of the system: A0 and Az remain zero while
Ax and Ay are transformed. Applying a true gauge transformation S−1, we get
the alternative expressions

Φ = Φ, (6.1.3)

Aµ = Aµ − δαµ
1

e
S−1∂αS, (6.1.4)

where α ranges over z and t.

We assume that the transformation S is of the form (Alford et al., 1991)

S = exp(η(z, t)s(r, θ)), (6.1.5)

where s(r, θ) is Lie algebra-valued. With this choice for S, the field Aα may be
rewritten exactly as

Aα = −1

e
S−1∂αS = −1

e
s∂αη. (6.1.6)

The complete ansatz for a electrically-charged string then takes the form

Φ = m(r)Φ1 + q(r)eT1θ/2Φ2e
−T1θ/2, (6.1.7a)

Aθ =
α(r)

2er
T1, (6.1.7b)

Aα = −1

e
s∂αη, (6.1.7c)

which is just the ansatz for the bare string supplemented with a Az and a A0 com-
ponent for the gauge fields. The Az and A0 components are expected to generate
a tangential magnetic field (corresponding to an electric current running along
the string) and a radial electric field (corresponding to an electrically charged
string).
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6.2 Reduction of the field equations

The next step in our construction is to substitute the ansatz (6.1.7) in the field
equations

for a = 1, 2 DµDµΦ
aa −DµDµΦ

33 = −2
(

∂V

∂Φaa
− ∂V

∂Φ33

)

, (4.2.4a)

for a 6= b DµDµΦ
ab = −2 ∂V

∂Φab
, (4.2.4b)

DµFµν = −e((DµΦ)T
cΦ)T c. (4.2.4c)

We analyse these equations one by one. Consider first (4.2.4c) for ν = α

DiDiAα = e2Tr([Aα,Φ]T
cΦ)T c (6.2.2)

Substituting (6.1.7c) and dividing out the common factor ∂αη/e yields

DiDis = e2Tr([s,Φ]T cΦ)T c (6.2.3)

To proceed further, it is advantageous to expand s in a conveniently chosen local
basis. This basis is formed by the generators Sa obtained by parallel transporting
Ta in the background of the pure Z2 flux

Sa(θ) = U(θ)TaU(θ)
−1 = eT1θ/2Tae

−T1θ/2. (6.2.4)

Note that the generators S2(θ) and S3(θ) are double valued. The generator S3(θ)
is the charge operator Q(θ) used before (see chapter 3, particularly page 24). We
may now write s as

s = pa(r, θ)Sa(θ). (6.2.5)

Substituting this in (6.2.3) yields three partial differential equations for the func-
tions pa(r, θ)

1

r

∂

∂r

(

r
∂p1
∂r

)

+
1

r2
∂2p1
∂θ2

= 9e2q2p1, (6.2.6)

1

r

∂

∂r

(

r
∂p2
∂r

)

+
1

r2
∂2p2
∂θ2

− p2
4r2

(1− α)2 − 1

r2
∂p3
∂θ

(1− α) =
9

4
e2(m+ q)2p2,

(6.2.7)

1

r

∂

∂r

(

r
∂p3
∂r

)

+
1

r2
∂2p3
∂θ2

− p3
4r2

(1− α)2 +
1

r2
∂p2
∂θ

(1− α) =
9

4
e2(m− q)2p3.

(6.2.8)

Next consider (4.2.4c) for ν = r, which gives

∂α∂αη∂rs+ ∂aη∂αη[s, ∂rs] = 0. (6.2.9)
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Substituting the expanded s (6.2.5) results in the following three equations

∂α∂αη
∂p1
∂r

+ ∂αη∂αη

(

p2
∂p3
∂r

− p3
∂p2
∂r

)

= 0, (6.2.10)

∂α∂αη
∂p2
∂r

+ ∂αη∂αη

(

p3
∂p1
∂r

− p1
∂p3
∂r

)

= 0, (6.2.11)

∂α∂αη
∂p3
∂r

+ ∂αη∂αη

(

p1
∂p2
∂r

− p2
∂p1
∂r

)

= 0. (6.2.12)

And finally, for (4.2.4c) with ν = θ we obtain similarly

∂α∂αη
∂p1
∂θ

+ ∂αη∂αη

(

p2
∂p3
∂θ

− p3
∂p2
∂θ

+
p22 + p23

2
(1− α)

)

+

r
d

dr

(

1

2r

dα

dr

)

= e2
9q2

2
(α− 1),

(6.2.13)

∂α∂αη
( p2
∂θ

+
p3
2
(α− 1)

)

+ ∂αη∂αη

(

p3
∂p1
∂θ

− p1
∂p3
∂θ

− p1p2
2

(1− α)

)

= 0,

(6.2.14)

∂α∂αη
( p3
∂θ
− p2

2
(α− 1)

)

+ ∂αη∂αη

(

p1
∂p2
∂θ

− p2
∂p1
∂θ

− p1p3
2

(1− α)

)

= 0.

(6.2.15)

The remaining two equations, (4.2.4b) and (4.2.4c), yield respectively,

d2q

dr2
+

1

r

dq

dr
= ∂αη∂αη

(

4p21q + (m+ q)p22 + (q −m)p23
)

+
q(α− 1)2

r2
− 2µ2q + 2mqγ + λ(9q2 + 3m2)q,

(6.2.16)

d2m

dr2
+

1

r

dm

dr
= ∂αη∂αη

(

4p21q + 4(m+ q)p22 − 2(q −m)p23
)

−2µ2m+ γ(3q2 −m2) + λ(9q2 + 3m2)m.
(6.2.17)

So, by substituting the ansatz (6.1.7), we arrive at eleven partial differential
equations for the seven functions α, q, m, η and pa. Although these equations
look complicated they can be solved by making three reasonable assumptions.

1. For η we will consider three cases

• η = czz, implying that ∂α∂αη = 0 and ∂αη∂αη = −c2z;
• η = ctt, implying that ∂α∂αη = 0 and ∂αη∂αη = c2t ;
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• η ∝ f((z ± t)/λ), implying that ∂α∂αη = ∂αη∂αη = 0;

where cz, ct and λ are constants. We can cover all three cases by setting

∂α∂αη = 0, (6.2.18)

∂αη∂αη = cη, (6.2.19)

with cη a constant that can be either negative, positive or zero.

2. We can with impunity set p1 to zero.

3. We let p3 be a function of r only. This allows us to set p2 to zero.

With these three assumptions the equations (6.2.6, 6.2.7, 6.2.10-6.2.12, 6.2.14,
6.2.15) are trivially satisfied which shows that the assumptions are consistent with
the field equations. The remaining four equations take the form

d2α

dr2
− 1

r

dα

dr
= cηp

2
3(α− 1) + 9e2q2(α− 1), (6.2.20a)

d2q

dr2
+

1

r

dq

dr
= cη(q −m)p23 +

q(α− 1)2

r2
− 2µ2q + 2mqγ + λ(9q2 + 3m2)q,

(6.2.20b)

d2m

dr2
+

1

r

dm

dr
= −2cη(q −m)p23 − 2µ2m+ γ(3q2 −m2) + λ(9q2 + 3m2)m,

(6.2.20c)

d2p3
dr2

+
1

r

dp3
dr

=
p3
4r2

(1− α)2 +
9

4
e2(m− q)2p3. (6.2.20d)

At this point it is convenient to rescale the fields and the r-coordinate (like we
did in chapter 4, eq. (4.2.6)),

q →
√
λ

µ
q, m→

√
λ

µ
m, Aµ →

√
λ

µ
Aµ, r → eµ√

λ
r, cη →

λ

e2µ2
cη,

(6.2.21)

thereby making these quantities dimensionless. We define two new parameters:

ξ =
λ

e2
, χ =

γ
√
λ

µe2
. (6.2.22)

Finally then, we arrive at the dimensionless equations

d2α

dr2
− 1

r

dα

dr
= cηp

2
3(α− 1) + 9q2(α− 1), (6.2.23a)

d2q

dr2
+

1

r

dq

dr
= cη(q −m)p23 +

q(α− 1)2

r2
+ ξ(9q2 + 3m2 − 2)q + 2χmq, (6.2.23b)

d2m

dr2
+

1

r

dm

dr
= −2cη(q −m)p23 + ξ(9q2 + 3m2 − 2)m+ χ(3q2 −m2), (6.2.23c)

d2p3
dr2

+
1

r

dp3
dr

=
p3
4r2

(1− α)2 +
9

4
(m− q)2p3. (6.2.23d)
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Note that if η ∝ f((z ± t)/λ), cη = 0, then the equations for α, q and m are
reduced to the equations for the bare string (4.2.8), solved in chapter 4. So, for
this solution the T1 flux and the Higgs field Φ are unaffected by the added A0
and Az gauge component and only the equation for p3 remains to be solved.

For the solutions where η = czz or η = ctt, cη 6= 0 and the three functions
α, q, m are dependent on p3. Thus, in the interior of the string the T1 flux and
the Higgs field Φ must change in order to support a long-range A0 or Az gauge
component.

6.3 The asymptotic behaviour of the fields

As a first step in explicitly solving the differential equations for α, q, m and
p3 (6.2.23), we determine the asymptotic behaviour of these four functions. There
are two basic configurations to consider: the one where cη = 0 and those where
cη 6= 0. We start with the former.

If cη = 0, the equations for α, q and m are reduced to the equations for the
bare string (4.2.8). These equations were solved in chapter 4 and so here we need
only to look at the equation for p3. For r →∞, this equation takes the form

1

r

∂

∂r

(

r
∂p3
∂r

)

= 0, (6.3.1)

if we assume that α, q and m fall off faster than p3. This assumption is justified
by the solution of (6.3.1)

p3 = cp31 log r + cp32 . (6.3.2)

This shows that p3 has the right asymptotics; since

F 3αr ∝ ∂αη
∂p3
∂r

∝ ∂αη
cp31
r
, (6.3.3)

this configuration has the radial electric field and tangential magnetic field that
goes with an electric charge and current carrying string.

For Aα ∝ p3S3(θ) to be regular, p3 must approach zero as r → 0. Substituting
the asymptotic terms of α, q and m for small r (4.3.5) in (6.2.23d), we find that

p3 ≈ c4r
1/2 (6.3.4)

as r → 0.

For the configurations where cη 6= 0, the differential equations are completely cou-
pled, thus affecting the asymptotics of α, q and m. First, consider the behaviour
of the functions near the origin. To ensure regularity, the functions α, q and p3
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must go smoothly to zero as r vanishes; the function m need not go to zero, since
the m-term of the ansatz has no θ dependence. Assuming the functions develop
at the core as,

α = c1r
n1 , (6.3.5)

q = c2r
n2 , (6.3.6)

m = c3r
n3 , (6.3.7)

p3 = c4r
n4 , (6.3.8)

we find by substitution that

α ≈ c1r
2, (6.3.9)

q ≈ c2r
3, (6.3.10)

m ≈ c3, (6.3.11)

p3 ≈ c4r
1/2. (6.3.12)

For large r the functions α, q and m must approach the the topological stable
form (4.1.17) and so tend to the boundary values

α→ 1, q → a, m→ a. (6.3.13)

(The charge or current carrying string is of course still an Alice string.) Assuming
α, q and m fall of faster than p3, we again find that p3 evolves as the logarithm
of r

p3 ≈ cp31 + cp32 log r. (6.3.14)

These field configurations have a long-range electromagnetic field

F 3αr ∝ ∂αη
∂p3
∂r

∝ ∂αη
cp31
r
. (6.3.15)

For η = czz, the string configuration only carries an electric current that generates

a long-range tangential magnetic field, F 3zr ∝ cz
c
p3
1

r
. For η = ctt, the string

configuration only carries an electric charge and a long-range radial electric field,

F 3zr ∝ cz
c
p3
1

r
.

To obtain the asymptotic equations for α, q and m, we substitute

α→ 1 + δα, (6.3.16a)

q → a+ δq, (6.3.16b)

m→ a+ δm, (6.3.16c)
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in (6.2.23a)-(6.2.23c) and keep only the highest order terms

δα′′ − 1

r
δα′′ = cη(c

p3
2 )2δα log2 r, (6.3.17a)

δq′′ +
1

r
δq′ = cη(c

p3
2 )2(δq − δm) log2 r, (6.3.17b)

δm′′ +
1

r
δm′ = −2cη(cp32 )2(δq − δm) log2 r. (6.3.17c)

As yet, we have not explicitly solved these equations.

6.4 Numerical solutions

To obtain solutions for finite r, we must solve the four differential equations (6.2.23)
numerically. This can be achieved by solving the boundary value problem with a
relaxation technique. (See section 4.4 for a short description of this technique.)

Again, the discussion of the results is divided into two parts. First we consider
the field configurations for which cη = 0, and then the configurations for which
cη 6= 0.

For cη = 0 the differential equations for α, q and m can be solved inde-
pendently of the equation for p3. Their solutions were discussed in section 4.4.
Knowing these solutions, we can solve the new function p3 without difficulty.
Figure 6.1 shows a solution for ξ = 1, χ = −1, and cη = 0.

We obtain the energy of this solution by substituting the ansatz (6.1.7) in the
generic energy functional (2.1.15). Isolating the part of the energy contributed
by p3, the extra energy per unit length of the string is

∆E = Etot − Ebare

= 2π

∫

1

2

[

(∂0η)
2 + (∂zη)

2]

[

(

∂p3
∂r

)2

+
1

r2

(

p3
α− 1

2

)2

+
9

4
(m− q)2 p23

]

rdr

= 2π

∫

ρ∆E(r) rdr,

(6.4.1)

where Ebare is the energy of the “bare string” per unit length of the string (4.4.2).
In figure 6.2 we have plotted the energy density multiplied by the factor r, for
convenience’s sake assuming that ∂0η = ∂zη = 1. Note that although the energy
density ρ∆E(r) diverges at the origin,

ρ∆E(r) → r−1 for r → 0, (6.4.2)

the energy contribution at the core is nevertheless finite because of the volume
factor rdr. The energy does however logarithmically diverge as r goes to infinity.
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Figure 6.1: Functions α(r), q(r), m(r) and p3 for the string solution carrying electric charge
and current, with ξ = 1, χ = −1, and cη = 0.

This is obviously a consequence of the string being infinitely long and so it is an
artifact that need not worry us.

We have arrived at explicit solutions that carry localizable electric charge and
current. All the fields are regular and the energy density is finite everywhere.
Still, an important question remains to be settled: are the solutions physically
consistent in spite of the double-valuedness of some of the gauge fields? In the
next section, this question will be answered in the affirmative.

The numerical program unfortunately failed to find solutions for configurations
with cη 6= 0. Several explanations are possible: the numerical program is not
sophisticated enough; we used trial functions that are too far off from the “right
solutions”; the program or the differential equations contain errors; or of course,
solutions of the form (6.1.7) with cη 6= 0 simply do not exist. Further investigation
is needed to sort this out. Therefore, we stop at this point and focus on the
solution with cη = 0 in the remainder of this chapter.

6.5 The gauge-invariant characteristics

In this section we look at the gauge invariant characteristics of the new charged
string solutions. These characteristics help us uncover the physical content of
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Figure 6.2: The energy density multiplied by r, rρ∆E , for the string solution carrying electric
charge and current, with ξ = 1, χ = −1, cη = 0, and ∂0η = ∂zη = 1.

the solutions, since naturally, physically measurable quantities must always be
gauge-invariant.

To construct gauge-invariant quantities we need to properly combine the Higgs
field with the gauge fields. ’t Hooft has done this for a SU(2)-gauge theory,
defining the gauge-invariant electromagnetic field as (cf. section 2.5)

Fµν =
φa

‖φ‖F
a
µν +

1

e‖φ‖3 εabcφ
a(Dµφ

b)(Dνφ
c), (6.5.1)

This definition was devised for a Higgs field in the three dimension representation
of SU(2). Although our model contains a five dimensional Higgs field, we can
make use of ’t Hooft’s formula, since the five dimensional Higgs field is expressible
as the symmetric product of two three dimensional iso-vectors (see page 31):

Φab = φa1φ
b
2 + φa2φ

b
1 − 2

3
δab(φ1 · φ2). (6.5.2)

The two iso-vectors φ1 and φ1 transform under a gauge transformation S ∈
SO(3) as

φ1 → Sφ1, (6.5.3a)

φ2 → Sφ2. (6.5.3b)

So, by splitting up the Higgs field Φ in two iso-vectors φ1 and φ2 we can exploit
’t Hooft’s formula (6.5.1) to obtain two gauge-invariant fields.
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According to the ansatz (6.1.7), the Higgs field takes the form

Φ = eθT1/2





m 0 0
0 −1

2
m+ 3

2
q 0

0 0 −1
2
m− 3

2
q



 e−θT1/2, (6.5.4)

which is equivalently expressed as

φ1 = eθT1/2

√
3

2





√
m− q
0√
2q



 , (6.5.5a)

φ2 = eθT1/2

√
3

2





√
m− q
0

−√2q



 (6.5.5b)

The two iso-vectors are anti-parallel at r → ∞, defining the unbroken T3-com-
ponent and parallel at the origin, where T1 is unbroken. In between these two
extremes, the alignment is disrupted and only the Z2 symmetry remains.

Instead of directly using φ1 and φ2, it is more convenient to define the gauge-
invariant fields with respect to the following linear combinations of φ1 and φ2

ϕ1 = φ1 + φ2 ∝ eθT1/2





1
0
0



 =





1
0
0



 , (6.5.6a)

ϕ2 = φ1 − φ2 ∝ eθT1/2





0
0
1



 , (6.5.6b)

Inserting the ansatz (6.1.7) and iso-vector ϕ1 respectively iso-vector ϕ2 in the
formula (6.5.1), we finally obtain two gauge invariant fields,

F1rθ =
1

2

∂

∂r

(α

r

)

, (6.5.7)

F2αr = ∂αη
∂p3
∂r

. (6.5.8)

The field F1 contains the T1 magnetic flux flowing along the string in the z-di-
rection. The field F 2 contains the long-range electromagnetic field associated
with the charge generator S3. Clearly, both these fields are single valued, just
as it should. We are lead to conclude that our solutions are indeed physically
acceptable.

For the field configuration with cη = 0, we have plotted the field F 2, assum-
ing for convenience’s sake that ∂αη = 1 (figure 6.3). The field F 2 diverges at
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Figure 6.3: The gauge invariant field F2αr for the string solutions with ξ = 1, χ = −1 and
cη = 0.

the origin, but fortunately this behaviour is innocent as it is caused by the nor-
malization factor ‖ϕ‖ going to zero there. The quantity ϕaF a

µν assumes a finite,
non-zero value at r = 0.

The orientation of the fields F 20r, the electric radial field, and F 2zr, the magnetic
tangential field, is sketched in figure 6.4.

To conclude this chapter, we note that the expressions (6.1.1), (6.1.2), (6.1.5)
were adopted from Alford, Benson, Coleman, March-Russel, and Wilczek (1991).
In their article, Alford et al. apply the transformation to a general class of non-
abelian strings. They find solutions that correspond to zero modes of non-abelian
strings. A pair of Alice strings has charged zero modes, but, they contend, a single
Alice string does not have charged zero modes. Their argument is deceptively
simple. The gauge fields Aµ (or equivalently, the fields Fµν) must be single
valued, it is assumed, and this condition restricts the set of possible boundary
conditions and thus precludes a single charged string solution. The premise, the
single valuedness of the gauge fields, is not further explained, and indeed, one
might question the necessity of this requirement. What must be single valued
are of course the gauge-invariant quantities. The solutions presented above have
gauge fields that are double valued; nonetheless their gauge-invariant quantities
are single valued.
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Figure 6.4: The gauge invariant electric- and magnetic fields of an Alice string that carries
electric charge and current.



Chapter 7

Magnetically charged Alice

strings

Alice strings can carry magnetic charge. If a magnetic monopole goes through an
Alice loop, the monopole is turned into an anti-monopole and magnetic charge
is transferred to the loop. In this chapter we discuss Alice strings that carry
magnetic charge.

In the first section we define the magnetic charge carried by a string loop using
a closed surface bounded to an arbitrary basepoint. In general, the surface can
be bounded in many topologically inequivalent ways and the enclosed magnetic
charge depends on this choice.

If a monopole goes through an Alice loop, the surfaces enclosing the monopole
and the loop are deformed to new, topologically inequivalent surfaces. Thus we
find that the charges of the loop and monopole have been changed by this process.
We analyse this in section two.

In the third section, we present an ansatz for a string solution that carries
magnetic charge and magnetic current.

The first two sections are based on Bucher et al. (1992).

7.1 A topological definition of magnetic charge

An Alice string carries a magnetic Z2 flux flowing along the string. This flux, we
recall, is defined by a closed path C that starts and ends at a basepoint x0 and
encircles the string exactly once (see figure 7.1),

h(C, x0) = P exp

(∫

(C,x0)

Ai dx
i

)

(7.1.1)

The flux h takes values in Hd(x0), the component of the stabilizor group of Φ at
x0 that is not connected to the identity. (Cf. chapter 3.) The value of the flux
h depends, among other things, on the course of the path C. If we continuously

65
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x0

L

C

C’

Figure 7.1: Two closed loops C and C ′ that each once encircle the loop of string L.

deform the path C to C ′, the associated flux continuously varies in Hd(x0) from
h(C, x0) to h(C

′, x0).

Consider the family of closed paths based at x0, {Cφ | 0 ≤ φ < 2π} (figure 7.2).
As the parameter φ goes from 0 to 2π, the paths sweep out a degenerate torus
enclosing the loop. Each path Cφ is associated with an element h(Cφ, x0) of
Hd(x0). In this way, from the family of paths, we obtain a closed path in Hd.
The precise course of this path depends on many things — e.g., the sequence of
paths Cφ we choose, the gauge in which we are working —, but it depends on
them continuously and therefore the homotopy class associated with the path in
Hd is invariant. Thus the homotopy group π1(Hd) defines a topological charge
of the string that is different from its Z2 flux. Since π1(Hd) = Z this topological
charge takes integer values.

Furthermore, the family {CφC
−1
φ=0} is equivalent to the family of paths {C ′

φ}
shown in figure 7.3, that sweeps over the surface of a sphere. The sequence {C ′

φ}
traces out a path in H, or Hc if we assume no path C ′

φ crosses a string loop or
monopole. Lubkin (1963) showed that the associated element of π1(H) represents
the value of the topological magnetic charge inside the two-sphere1 Since there is
a natural mapping from a path in Hd(x0) to a path in Hc(x0),

h(Cφ, x0)→ h(Cφ, x0) h
−1(Cφ=0, x0), 0 ≤ φ < 2π, (7.1.2)

we can conclude that the element of π1(Hd) ∼= π1(Hc) is the same as the magnetic
charge on the string loop.

More generally, in the presence of string loops and monopoles, we can define
the magnetic charge inside any region R whose boundary ∂R is homeomorphic to
S2. The surface ∂R is associated with a closed path inHc and so with a homotopy
element of π1[Hc] that represents the magnetic charge within R. Continuously
deforming the surface ∂R will change the path in Hd but not its associated

1A clear exposition of Lubkin’s construction can be found in Coleman (1983).
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Cφ

x0

L

Figure 7.2: The family of closed paths {Cφ | 0 ≤ φ < 2π} sweeps out a degenerate torus that
encloses the string loop L.

C"
C"

C"

φ=6π/5

φ=8π/5

φ=4π/5

C" x0φ=2π/5

Figure 7.3: A family of loops C ′φ that sweeps over the surface of a sphere. The loops C ′0 and
C ′2π are degenerate.

homotopy element. Thus there is a homomorphism

h(1) : π2[M, x0]→ π1[Hc(x0)], (7.1.3)

whereM denotes the manifold that is obtained when all string loops and monopoles
are removed from R3.

In the presence of Alice loops, it is important to specify a base point when defining
the magnetic charge within a surface. A surface can be based in topologically
inequivalent ways and the sign of the enclosed magnetic charge is dependent on
this. The following will make this clear.

Consider the situation sketched in figure 7.4a, where we have an Alice loop L
and a free surface Σ̄ that is homeomorphic to S2. The surface can be attached to a
basepoint x0 in many topologically inequivalent ways, two of which are illustrated
in figure 7.4b and 7.4c.
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Figure 7.4: The free surface Σ̄ in (a) can be threaded to the basepoint x0 in inequivalent ways,
two of which are illustrated in (b) and (c). The surface (c) can be deformed to (d), which
differs from (b) by the degenerate tube β that begins and ends at the base point and goes once
through the string loop L.

We can construct a correspondence between the two surfaces Σ and Σ′ by
means of a closed path β (figure 7.4d). The surface Σ′ can be deformed into a
“degenerate tube” β, joined to the surface Σ. Thus the surfaces Σ and Σ′ “differ”
by the closed path β, or more generally, by an homotopy element of π1[M, x0].
Let us make this statement a bit more precise.

A surface based at x0 can be defined by a mapping Σ(u, v) of the unit square
into M,

Σ(u, v)→M 0 ≤ u, v ≤ 1, (7.1.4)

subject to the restriction that Σ takes the entire circumference of the square into
the basepoint x0,

Σ(0, v) = Σ(1, v) = Σ(u, 0) = Σ(u, 1) = x0. (7.1.5)

Thus the surface is represented by closing up the border of the square. A closed
path based at x0 can be defined as a mapping β(t) of the unit interval into M,

β(t)→M 0 ≤ t ≤ 1, (7.1.6)
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with the constraint

β(0) = β(1) = x0. (7.1.7)

To define a mapping which takes Σ to a new surface Σ′ by adding the path β to
Σ

τβ : Σ→ Σ′, (7.1.8)

we can make the following construction (see figure 7.5). We take the the unit
square in the u− v plane and inscribe in it a square half as big at its center. On
the inner square we define τβ(Σ) to act precisely as Σ acts on its entire square,
so that τβ(Σ) takes the inner square into exactly the same surface as Σ takes
its entire square into. We divide the remaining part of the square between the
inner and outer circumferences into a sequence of square circumferences growing
continuously from the outer to the inner one, as t goes from 0 to 1. We let τβ(Σ)
take the circumference parametrized by t into the single point β(t).

Clearly, if Σ1 and Σ2 are in the same homotopy class of π2(M, x0), then τβ(Σ1)
and τβ(Σ2) will be in the same homotopy class of π2(M, x0). In addition, if β1
and β2 are homotopic, then τβ1

(Σ1) and τβ2
(Σ) will be in the same homotopy

class of π2(M, x0). Thus the mapping τ defines a homomorphism

τ : π1[M, x0]→ Aut(π2[M, x0]), (7.1.9)

that takes homotopy classes of closed paths to mappings of π2[M, x0] onto itself,
so called automorphisms of π2[M, x0].

Changing the threading of a free surface to the basepoint modifies the mag-
netic charge enclosed by the surface. Recall that we defined the magnetic charge
within a surface by a family of closed paths {Cφ} that sweeps over the surface.
After adding a closed path β to a surface, the sequence of closed paths {C ′

φ}
defining the new surface can be related to the first sequence by

C ′
φ = β ◦ Cφ ◦ β−1, (7.1.10)

i.e., a path C ′
φ first completes the path β, then Cφ, and finally returns to its

starting point via β−1.
A closed path in M that starts and ends at x0 is associated with an element

of the group H(x0) by the equation (7.1.1). If we smoothly deform the path, the
group element smoothly varies, but it will remain in the same connected compo-
nent of the group. This implies that equation (7.1.1) defines a homomorphism

h(2) : π1[M, x0]→ π0[H(x0)]. (7.1.11)

The paths Cφ and C
′
φ can each be mapped to an element ofHc(x0). From (7.1.10)

it follows that

h(2)(C ′
φ) = h(2)(β)h(2)(Cφ)h

(2)(β)−1. (7.1.12)
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Σ

Figure 7.5: The shaded square in the lower right represents a surface Σ inM based at x0. The
entire circumference of the square is taken into the basepoint x0. The square in the upper left
represents the surface τβ(Σ). The inner part of that square is just the shaded square, scaled
down in size. It is surrounded by a sequence of square circumferences which expand outward
to fill the rest of the square. Each circumference is taken into a single point along the path
β, the innermost going into the ending-point and the outermost into the starting-point of β.
Since the path β starts and ends at x0, the new surface τβ(Σ) is again based at x0.

The sequences {Cφ} and {C ′
φ} are each associated with a closed path in Hc defin-

ing the magnetic charges enclosed by the surfaces Σ and Σ′, respectively (7.1.3).
Equation (7.1.12) shows that the charges are related according to

h(1)(Σ′) = h(2)(β)h(1)(Σ)h(2)(β)−1. (7.1.13)

Thus h(1)(Σ′) is the closed path in Hc that is obtained when h(2)(β) acts on the
closed path h(1)(Σ) by conjugation.

Consider again figure 7.4. The path β once encircles a string loop and so
h(2)(β) ∈ Hd. Since h

(1)(Σ) is a path in Hc, equation (7.1.13) effectively says that
the magnetic charges enclosed by Σ and Σ′ differ by sign.

The preceding observations show that the sign of the magnetic charge enclosed
within a surface is ambiguous, depending on how we have chosen to connect the
surface to the basepoint. Still, we can keep track of the transfer of magnetic
charge as long as we keep the basepoint fixed. In the next section we study a
simple process of charge transfer.

7.2 Magnetic charge transfer

We study a simple process of magnetic charge transfer. We take an Alice loop
and a magnetic monopole, and we carry the monopole through the loop. By this
process, the magnetic charge of the monopole changes sign and magnetic charge
is transferred to the loop.

The initial situation is depicted in figure 7.6a. The surface a1 encloses the
loop L and the surface a2 encloses the monopole M . Both surfaces are based at
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Figure 7.6: The magnetic flux of the string loops L1 and L2 is defined in terms of the paths β1
and β2 shown in (a), and the magnetic charges of the loops are defined in terms of the surfaces
a1 and a2; the paths and surfaces are based at the point x0. When L2 goes through L1 as in
(b), the surface a′1 shown in (c) is dragged to a1 and the surface a′2 shown in (d) is dragged to
a2. The arrows on the surfaces indicate outward-pointing normals.

x0. The path β begins and ends at x0 and encircles the loop. At present, the
magnetic charge of the loop is given by h(1)(a1) and the magnetic charge of the
monopole is given by h(1)(a2) (using the homomorphism (7.1.3)).

We carry the monopole M through the loop L along the path shown in 7.6b.
What are the magnetic charges of the loop and the monopole at the end of this
process? To determine this, consider the surfaces a′1 and a

′
2 in 7.6c-d. (The surface

a′1 is composed of an outer surface enclosing the loop and monopole, and and an
inner surface equal to a′2

−1.) During the process, these surfaces are dragged back
to a1 and a2 respectively, if the surfaces are deformed so that no surface ever
touches the string loop or monopole. Therefore, the magnetic charge enclosed
by a1 after the process is the same as magnetic charge enclosed by a′1 before the
process. Similarly, the magnetic charge enclosed by a2 after the process is the
same as the magnetic charge enclosed by a′2 before the process. So, to determine
the magnetic charges of the loop and monopole after the process, we only need
to determine the magnetic charges enclosed by a′1 and a

′
2 before the process.

First consider the surface a′2. Deforming a′2 to the degenerate tube β plus the
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surface a2, as depicted in figure 7.7a, shows that a′2 can be expressed as

a′2 = τβ(a2) (7.2.1)

where tβ is the automorphism of π2[M, x0], (7.1.8).
Figure 7.7b shows that surface a′1 can be expressed as the sum of two surfaces.

The first surface, the outer surface, is a1 ◦ a2, the surface that encloses both the
loop and the monopole. The second surface, the inner surface, is (a′2)

−1, the same
as a′2 except with the opposite orientation. So we can write a′1 as

a′1 = a1 ◦ a2 ◦ (a′2)−1. (7.2.2)

We can apply (7.1.13) to find the magnetic charges enclosed by a′1 and a′2.
For the latter we obtain

h(1)(a′2) = h(2)(β1)h
(1)(a2)h

(2)(β1)
−1, (7.2.3)

and for a′1

h(1)(a′1) = h(1)(a1 ◦ a2)h(1)(a′2
−1
). (7.2.4)

Combining these results, we find the magnetic charges enclosed by a2 and a1 after
the transfer process

h(1)
′

(a2) ≡ h(1)(a′2) = −h(1)(a2), (7.2.5)

since h(2)(β1) ∈ Hd, and

h(1)
′

(a1) ≡ h(1)(a′1) = h(1)(a1)h
(1)(a2)h

(1)(a2), (7.2.6)

since h(1)(a′2
−1) =

[

h(1)(a′2)
]−1

= −h(1)(a′2) = h(1)(a2).
If the magnetic charge on the string loop is initially m1 and the charge of

the monopole m2, then the equations (7.2.5) and (7.2.6) tell us that after the
monopole has gone through the loop, the magnetic charge of the loop has become
m1 + 2m2, and the charge of the monopole has become −m2. As expected, the
overall magnetic charge is conserved.

β

(a) (b)

x0

L M
a 2
-1

a a1 2o
β

x0

L M

a2

Figure 7.7: Deformations of the surfaces shown in figure 7.4c-d. In (a) the surface a′2 has been
deformed to the degenerate tube β plus the surface a2. In (b) the surface a′1 has been deformed
to the surface a1◦a2 that encloses both loops, plus the inverse of a′2 (i.e., a

′

2 with the orientation
reversed); the surface (a′2)

−1 is the sum of the degenerate tube (β)−1 and the surface (a2)
−1.
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7.3 An ansatz for a magnetically charged string

We now turn to the construction of solutions for a magnetically charged Alice
string. We only treat the first step: the generation of an ansatz.

The following considerations can help us find an ansatz. First, recall the
ansatz for a “bare” string derived in chapter 4,

Φ = m(r)Φ1 + q(r)eT1θ/2Φ2e
−T1θ/2, (4.2.3a)

Aθ =
α(r)

2er
T1. (4.2.3b)

This string carries a Z2 flux

h = P exp

(∮

C

Aθ(r =∞) rdθ

)

= exp (T1π) , (7.3.1)

which is an element of Hd. The path C is a circle “at infinity” in the xy-plane
for a particular value of z. For the “bare” string, it does not matter which z we
take; the flux h is independent of z.

In the first section of this chapter we showed that a string is magnetically
charged if its flux h traces out a closed path in Hd. Hence, to turn the “bare”
string into a magnetically charged string, we must modify the ansatz (4.2.3) such
that h becomes a periodic function of z.

The space Hd consists of rotations by 180◦ about axes in the T1T2-plane (see
chapter 3). We can parametrise it as

Hd =
{

exp[(eT3zT1e
−T3z)π] | 0 ≤ z ≤ 2π

}

(7.3.2)

since the conjugation of T1 by eT3z rotates T1 about the T3 axis by a phase z.
Hence, to obtain a string with a flux that twists along the z axis, we can take
the bare string ansatz and substitute T1 with a generator R1(z),

R1(z) = eT3ζ(z)T1e
−T3ζ(z), (7.3.3)

which is T1 rotated about T3 by a phase ζ(z). (Note that exp
(

eT3ζ(z)T1e
−T3ζ(z)

)

=

eT3ζ(z)eT1e−T3ζ(z).) This yields the ansatz

Φ = eR1(z)θ/2 [m(r, z)Φ1 + q(r, z)Φ2] e
−R1(z)θ/2, (7.3.4)

Aθ =
α(r, z)

2er
R1(z). (7.3.5)

Note that by simply replacing the z dependence for a t dependence, we obtain
an ansatz for a string that carries a magnetic current.

Let us consider the boundary conditions that go with this ansatz. For r →∞,
the boundary values for α, q and m are unchanged,

α→ 1, q → a, m→ a. (7.3.6)
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For r → 0 we must have

α→ 0, q → 0, m→ 0. (7.3.7)

In constrast with the solutions for a pure and an electrically charged string, the
function m must go to zero for a magnetically charged string since it is combined
with terms that depend on θ (7.3.4). So for this ansatz the order parameter
vanishes at the core of the string and the SO(3) symmetry is fully restored there.
This property is the hallmark of a defect carrying magnetic charge.

The ansatz features a gauge field

Fzθ =
1

2er

∂α

∂z
R1(z)−

α

2er

dζ

dz
eT3ζT2e

−T3ζ . (7.3.8)

Since the charge generator is

Q = eR1(z)θ/2T3e
−R1(z)θ/2, (7.3.9)

we find that the longe range gauge-invariant field is

Fzθ =
1

2er

dζ

dz
sin(θ/2) (7.3.10)

which however is double-valued. The double-valuedness leads one to suspect that
the ansatz is not correct. This suspicion is confirmed if we substitute the ansatz
in the energy functional and derive differential equations for α, q, m and ζ by
extremizing the energy. The equations we obtain are long and complicated and
more seriously, contain numerous unpleasant terms that are dependent on θ.

At this moment, we don’t know how to correct the ansatz. Nevertheless, the
above observations show that this is an interesting topic for further research.



Chapter 8

Conclusion

In the preceding chapters we have given a detailed account of Alice electrodynam-
ics. We focussed on a simple Alice model with a SO(3) symmetry spontaneously
broken to U(1) o Z2. We discussed the properties of the topological defects of
this model, Alice strings and magnetic monopoles.

We saw that loops of Alice string can carry charge. The standard interpreta-
tion of a charged Alice loop is that the loop carries unlocalized Cheshire charge:
it has a long range electric (or magnetic) field from which its charge can be in-
ferred, but the charge cannot be localized, neither on the string core nor in its
vicinity.

We have presented a new view on charged Alice strings. We propose that
the electric-magnetic dual symmetry is a priori not broken by the Alice string,
but may be broken by either an electric or magnetic charge excitation of the
string core. We suggest that there are two alternative ways to achieve this, which
are each others dual image. On the one hand, an Alice string can carry electric
charge, either as Cheshire charge produced by a magnetic supercurrent on the
string, or as electric charge localized at the string core. On the other hand, an
Alice string can carry magnetic charge, either as Cheshire charge produced by an
electric supercurrent, or as magnetic charge localized at the string core.

We have constructed explicit solutions for Alice strings that support this view.
We first presented a solution for a “pure” Alice string. We found that the Higgs
field is combined of two functions, not one. In addition, it turned out that the
Higgs field is non-zero at the origin, leading to an unbroken U(1)oZ2 symmetry at
the origin, but the unbroken generator here is T1 instead of T3 at spatial infinity.
This fact allows the Alice string to be turned into an electric superconductor.

We have constructed explicit solutions for an Alice string with localized elec-
tric charge and current. The existence of this solution shows that in spite of what
has been commonly thought, Alice strings can carry electric charge localized at
its core. The electric current produces a tangential magnetic field around the
loop. However, this configuration does not correspond to a magnetic cheshire
charge.
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Finally, we have constructed an ansatz for an Alice string with magnetic
charge and current. Although basically it has the correct form, it does not cor-
respond with a consistent solution.

These results are important. They show that the current view on Alice elec-
trodynamics is incomplete and they strongly support the new view we propose.
But the results are not conclusive and further research is needed to complete the
picture.
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