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Abstract. We investigate the mutual relations between the centers of different
elements in the deconstruction lattice of a 2D conformal model, and show that
these are best described by suitable exact sequences of abelian groups. In
particular, we exhibit a long exact sequence connecting the centers of higher
central quotients and/or extensions, that proves helpful in actual computations.

1. Introduction

It has been understood for a long time that a substantial amount of information
about a rational conformal model [1, 2] is encoded in its fusion algebra, which
describes the possible couplings between primary fields, i.e. which primaries (together
with their conformal descendants) could appear in the operator product of any
two given primaries. A most famous result in this direction, instigating important
mathematical developments over the years, is the celebrated formula of Verlinde
[3] that relates the fusion rules of the model, i.e. the structure constants of the
fusion algebra, to the matrix describing the transformation properties of the chiral
characters under the modular transformation S : τ → −1/τ , and which allows to
reconstruct the latter from the knowledge of the fusion rules and the conformal
weights of the primaries. But it is fair to say that this is just the tip of the iceberg,
for several similar relations are known, e.g. for the Frobenius-Schur indicators of
the primaries [4], or for the traces of finite order mapping classes [5].

As has been discussed in [6, 7], an interesting structure related to the fusion algebra
results from the consideration of collections of primaries that, besides containing
the vacuum, are closed under the fusion product. These may be shown to form a
lattice with many nice properties, like being self-dual and modular [8, 9]. Some
elements of this so-called deconstruction lattice (the local ones) may be identified
with the representation rings of suitable finite groups, and this allows transferring
to them several standard notions from group theory, like commutativity, nilpotency,
etc., and these turn out to make perfectly good sense for generic elements.

In particular, there is a way to define the notions of center and of central quotients
and extensions [6], which correspond to the standard group theoretic notions in case
of local elements. The importance of all this stems from the fact that there is a well
understood relationship between many properties of central quotients and extensions,
and this can facilitate greatly the analysis of specific models. A notable exception
to this is the structure of the center itself, as there is no obvious connection between
the center of central quotients and/or extensions, in complete analogy with the case
of groups. The aim of the present note is to show that a useful characterization of
this relationship can be given in terms of exact sequences of abelian groups [10].

1
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In order to be accessible to a wider readership, we briefly summarize background
material on the deconstruction lattice in Section 2, on central quotients and ex-
tensions in Section 3, and on exact sequences in Section 4. Then we turn to our
main subject, and study in Section 5 the restriction homomorphism that connects
the centers of different elements in the deconstruction lattice. The most important
results can be found in Section 6, which investigates the Galois correspondence
between subgroups of the center and central quotients, resulting in exact sequences
able to describe the subtleties of this relationship. The theme of Section 7 is a
long exact sequence connecting the centers of higher quotients that proves useful in
actual computations, while Section 8 is concerned with the case of central extensions
instead of quotients, based on the dual nature of these two notions. In the last
section, we summarize the results, and comment on open questions and possible
future developments. Finally, as the modularity of the deconstruction lattice plays a
pivotal role in some of the results of Section 6, a streamlined simple proof of this fun-
damental result is presented in the Appendix, based on an explicit characterization
of the join operation that could prove interesting in itself.

2. The deconstruction lattice

Let’s consider a 2D rational conformal model [1, 2] with a finite number of
primaries. We shall denote by Nr

pq the fusion rule coefficients, that is the multiplicity
of a primary r in the fusion product of the primaries p and q. The collection of
all those subsets of primaries that contain the vacuum and are closed under the
fusion product (meaning that if Nr

pq>0 with both p and q belonging to it, then r
does also belongs to it) may be shown [6, 7] to form a modular lattice L , termed
the deconstruction lattice because of its fundamental role in the classification of the
different orbifold deconstructions of the model [11, 12]. The ordering in L is simply
set inclusion, and the meet operation is set intersection (the join operation being
less obvious, but see the Appendix).

Recall [6] that to each g∈L one can assign a partition of the primaries of
the model into so-called g-classes characterized by the fact that the irreducible
representations of the fusion algebra corresponding to different elements in the same
class coincide when restricted to the elements of g. Of utmost importance is the
g-class that contains the vacuum, the trivial class g⊥, which may be shown to be
itself an element of L . It is straightforward that g⊥ ⊆h⊥ whenever h⊆g, and that
the trivial class of g⊥ is g itself, hence the lattice L is self-dual, i.e. endowed with
an order-reversing and involutive duality map g 7→g⊥ that relates the join and meet
operations via (g∨h)⊥ =g⊥ ∩ h⊥.

As it turns out, self-dual lattices are closely related to undirected graphs (with
possible loops): any such graph determines a self-dual lattice, and any self-dual
lattice comes from a suitable graph1. A fairly non-intuitive result is that the
deconstruction lattice of a conformal model corresponds to its locality graph, i.e.
the graph whose vertices are the primary fields, with two of them adjacent if they
are mutually local, i.e. if their OPE is single-valued. Actually, instead of the locality
graph one can use the so-called locality diagram, whose vertices correspond to
equilocality classes of primaries, i.e. collections of primaries that are mutually local

1Note that quite different graphs may lead to the same lattice, but the collection of all such graphs
may be characterized in a simple manner [13].
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with the same set of primaries, providing a nice graphical representation of the
deconstruction lattice [14, 13].

Especially important are those elements g∈L , termed local ones, for which
g⊆g⊥, since these provide the input data for the orbifold deconstruction procedure
[11, 12], and correspond to the different orbifold realizations of the given model. In
particular, for each local g∈L there exists a finite group, the twist group of the
corresponding orbifold, whose representation ring (viewed as a λ-ring, i.e. taking
into account the different possible symmetrizations of tensor powers) is isomorphic2

with g. What is more, if g∈L is local and h∈L is contained in it, then h is local
too, and the group corresponding to h is a homomorphic image (i.e. factor group)
of the one corresponding to g. An important feature of local g∈L is that all of
their elements, besides having (rational) integer quantum dimension, have either
integer or half-integer conformal weight.

Let us note that in case of abelian models, when all the primaries are simple
currents [16, 17, 18], i.e. primaries of quantum dimension 1, the fusion closed sets
are nothing but the different subgroups of the group of simple currents, hence the
deconstruction lattice is isomorphic to the subgroup lattice of the latter, with the
duality map being determined by the relation of mutual locality (which is in turn
determined by the distribution of conformal weights). In such a case a simple
current extension by integer spin simple currents [19] has the same result as the
corresponding orbifold deconstruction of the model3.

It should transpire from the above that the deconstruction lattice L is an
important algebraic/combinatorial invariant of the conformal model under study: in
particular, it provides a concise description of the different realizations of the given
model as an orbifold of another one. Understanding the structure of L through the
relation of its elements to each other could provide information about the model
that would be hard to obtain by other means. One such piece of information is
related to the notion of central quotients and extensions, to which we now turn.

3. Central quotients and extensions

Given g∈L , an important numerical characteristic of any g-class C is its mass
µ(C)=

∑
p∈C

d2
p (3.1)

where dp denotes the quantum dimension of the primary p. An especially important
role is played by those g-classes whose mass is minimal (equal to that of the trivial
class g⊥), the central classes, which may be shown to form an abelian group Z(g),
the center of g, that permutes the collection of all g-classes, and whose identity
element is the trivial class. For local g∈ L corresponding to the finite group G,
the center Z(g) is isomorphic with the center of G. To each central class z ∈ Z(g)
one may associate a complex-valued function ϖz :g→C, its central character, such
that for α, β∈g one has ϖz(γ)=ϖz(α)ϖz(β) whenever Nγ

αβ>0, and one may show
[6] that the map that assigns to each central class its central character provides an
explicit isomorphism between Z(g) and its Pontryagin dual.

2Note that this does not fix the group uniquely, because of the existence of so-called Brauer-tuples,
i.e. non-isomorphic groups with identical character tables and power maps [15]. But such exceptions
are rather sparse, and the resulting ambiguity can be handled.
3More generally, simple current extensions of arbitrary conformal models can be understood as
orbifold deconstructions for g∈L consisting purely of integer spin simple currents.
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It turns out that each subgroup H<Z(g) determines another element of L , the
central quotient g/H , and there is a one-to-one correspondence between elements
h∈L that satisfy g/H ⊆h⊆g and subgroups of H. In particular, each g∈L has a
maximal central quotient

∂g = g/ Z(g) (3.2)
that is contained in all central quotients, and each h∈L that satisfies ∂g⊆h⊆g
is a central quotient of g, i.e. h= g/H for some subgroup H<Z(g). Actually, the
relevant subgroup reads H={z∈Z(g) | z⊆h⊥}, and this implies that the union of
the central classes contained in H (viewed as collections of primaries) equals h⊥, i.e.
∪H=h⊥. In particular,

∪Z(g)=(∂g)⊥ (3.3)
The other way round, a central extension of g∈L is an element h∈L of which

g is a central quotient. Using the duality map g 7→g⊥ of L , one can show [6] that
there is a one-to-one correspondence between central extensions of g and subgroups
of Z(g⊥). In particular, there is a maximal central extension g⊺ = (∂(g⊥))⊥ that
contains all central extensions of g, and each h∈ L that satisfies g⊆ h⊆ g⊺ is a
central extension of g, i.e. g is a central quotient of h; put another way, the inclusion
∂g⊆h⊆g is equivalent to h⊆g⊆h⊺.

The map that assigns to an element g∈L its maximal central quotient (resp.
extension) ∂g (resp. g⊺) is order-preserving, i.e. ∂h⊆∂g (resp. h⊺ ⊆g⊺) whenever
h⊆g. What is more interesting is the fact that one has

∂(g⊺)⊆g⊆(∂g)⊺ (3.4)
for every g∈L . Indeed, since g is a central quotient of g⊺, it should contain the
maximal central quotient of the latter, and in the same vein, since ∂g is a central
quotient of g, the latter is a central extension of ∂g, consequently it has to be
contained in (∂g)⊺. Actually, one may show that the map g 7→ (∂g)⊺ is a closure
operation on L , whose fixed points are those elements of L that are themselves
maximal central extensions, i.e. of the form g⊺ for some g∈L .

The importance of central quotients and extensions stems from the fact that their
properties are determined to a large extent by group theory. For example, the mass
of the quotient g/H is |H| times that of g,

µ(g/H )= |H|µ(g) (3.5)
and one has a fairly good description of the classes of the quotient g/H in terms of
the classes of g and the action of H<Z(g) on them [6]. Based on this, one expects
that the center of g∈L and that of its quotients g/H are related somehow. As we
shall show in the sequel, such a relation does indeed exist, but to describe it neatly
we shall need the machinery of exact sequences [10].

As an illustration of the above, consider the minimal N=2 superconformal model
of central charge c=2. The Hasse diagram of its deconstruction lattice is depicted
in Figure 1 on page 5, each element being labeled by (the isomorphism type of) its
center. Inspecting the figure, one recognizes that it is made up of two sublattices
related by the duality map (which in this case is a flip, i.e. a 180◦ rotation around
the center of the diagram), each one isomorphic with the subgroup lattice of the
abelian group Z12×Z2, the latter being nothing but the group of simple currents4.

4It is a general fact that the center of the maximal element of the deconstruction lattice is
isomorphic with the group of simple currents.
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Figure 1. Deconstruction lattice of the minimal N=2 supercon-
formal model of central charge c= 2, the nodes being labeled by
their centers, with Cn denoting a cyclic group of order n.

But the picture is usually much more complicated, as exemplified by the Z2
orbifold of the compactified boson at radius R = 6. The Hasse diagram of its
deconstruction lattice is depicted in Figure 2 on page 6; once again, the duality
map is the flip around the center of the diagram, and the nodes are labeled by
their centers. While parts of the diagram mimic the subgroup lattice of some
abelian group, the overall pattern is clearly more complicated than in the previous
example. It was the desire to understand the structure underlying these patterns
that motivated the present work.

Finally, let’s remark that there is no reason to stop at the maximal central
quotient ∂g, for one can also consider the maximal central quotient of the latter,
and so on repeatedly. Defining ∂kg for g∈L and a positive integer k via ∂1g=∂g
and the recursion ∂k+1g=∂(∂kg), we get a descending chain

g⊇∂1g⊇ · · ·⊇∂ng (3.6)
of elements of L , an analogue of the upper central series from group theory [10].
In case the lattice L is finite, the inclusions in Eq.(3.6) imply that the sequence
stabilizes after finitely many steps, i.e. there exists some integer N such that
∂N−1g ̸=∂Ng=∂N+1g. We shall denote by ∂∞g this last term of the upper central
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Figure 2. Deconstruction lattice of the Z2 orbifold of the com-
pactified boson at radius R=6, the nodes being labeled by their
centers.

series Eq.(3.6), and call it the hypercentral quotient5 of g. Note that, because
∂∞g equals its own maximal central quotient by definition, it has trivial center,
Z(∂∞g)=1, and this means that any element of L may be obtained by repeated
central extensions from one with trivial center. As the structure of central extensions
is well under control, this helps to reduce the study of subtler aspects of L to that
of its centerless elements.

4. Exact sequences

As already alluded to previously, our goal is to understand the relations between
the centers of different elements of the deconstruction lattice, in particular those
that are central quotients or extensions of each other, and a most efficient way to
express these connections is through the use of exact sequences. Since the latter are
not part of the everyday toolkit of physicists, let’s briefly summarize those basics
facts about them that we shall need in what follows.

Recall [10] that an exact sequence of (abelian) groups is a sequence of group
homomorphisms ϕi :Ai−1 →Ai for i=1, . . . , n, such that the kernel of ϕi+1 equals
the image of ϕi for 1≤ i<n; note that the domain of ϕi+1 equals the range of ϕi.
Their usual notation is

A0
ϕ1−−−−→ A1

ϕ2−−−−→ · · · ϕn−1−−−−→ An−1
ϕn−−−−→ An (4.1)

In many cases one is not really interested in the actual homomorphisms that connect
the Ai, but only in the relationship between them that follows from the existence of
the exact sequence; in such cases one usually drops any explicit reference to the ϕi
(unless the specification of some of them provides useful extra information).

5This terminology stems from the fact that for local g∈L that corresponds to the finite group
G, the hypercentral quotient ∂∞g is itself local, and corresponds to the factor group of G by its
hypercenter [10].
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The most ubiquitous are the so-called short exact sequences
1 −−−−→ A −−−−→ B −−−−→ C −−−−→ 1 (4.2)

where 1 denotes the (isomorphism class of the) trivial group of order 1. The
homomorphism theorem [20, 10] tells us at once that the existence of such an exact
sequence is tantamount to the existence of a subgroup K <B, the kernel of the
homomorphism from B to C, which satisfies K∼=A and C∼=B/K.

Next in line come the four-term exact sequences
1 −−−−→ A −−−−→ B −−−−→ C −−−−→ D −−−−→ 1 (4.3)

which play an important role e.g. in algebraic number theory [21], and whose
existence tells us that there exists a homomorphism ϕ : B → C whose kernel is
isomorphic with A, and whose cokernel coker(ϕ)=C/im (ϕ) is isomorphic with D
(note that, since every subgroup of an abelian group is normal, the cokernel makes
perfectly good sense for homomorphism of abelian groups). In particular, it follows
from Lagrange’s theorem [10] that the orders of the groups appearing in a four-term
exact sequence are related by |A||C|= |B||D|.

Finally, there are the long exact sequences
1 −−−−→ A1 −−−−→ A2 −−−−→ · · · −−−−→ An −−−−→ 1 (4.4)

whose existence signals a more subtle and less immediate relation between the Ai.
Note that long exact sequences are equivalent to a suitable collection of overlapping
short exact sequences. To see how this comes about, let’s consider the exact
sequences

1 −−−−→ A1 −−−−→ · · · ϕn−1−−−−→ An
ψ−−−−→ B −−−−→ 1 (4.5)

and
1 −−−−→ B

ι−−−−→ An+1
ϕn+1−−−−→ · · · −−−−→ An+m −−−−→ 1 (4.6)

with B ̸= 1 (should B be trivial, the above sequences would shorten and would
not have a common anchor). Then, since ψ is surjective with ker(ψ)=im(ϕn−1),
while ι is injective with im(ι) = ker(ϕn+1), the composite ϕn = ι ◦ψ satisfies
ker(ϕn)=ker(ψ)=im(ϕn−1) and im(ϕn)=im(ι)=ker(ϕn+1), hence the sequence

1 A1 · · · An−1 An

An+1 · · · An+m 1

ϕn−1

ϕn

ϕn+1

is exact. This trick allows us to combine exact sequences into longer ones, or to
decompose a long exact sequence into a collection of short exact sequences. We
shall encounter the application of these ideas in the later sections.

5. The restriction homomorphism

After all these preliminaries, it is time to focus on our basic problem, namely
the relation between the center of an element g∈L and the centers of its different
central quotients/extensions. As it turns out, it is worth to consider the more
general problem of relating the center of g∈L to that of any h∈L contained in it.
That this approach is meaningful is based on the following two results from [6]:

(1) if h⊆g, then any h-class is a union of g-classes;
(2) an h-class that contains a central g-class is itself central.
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It follows that for any g, h ∈ L with h ⊆ g there is a unique central h-class that
contains a given central g-class z∈Z(g).

Theorem 1. For g, h∈L with h⊆g, the map that assigns to each central g-class
the unique h-class that contains it is a homomorphism dh

g :Z(g)→Z(h), with image
I(g|h)=

{
z∈Z(h)| z∩(∂g)⊥ ̸= ∅

}
and kernel Z(g|h)={z∈Z(g) | z⊆h⊥}.

Proof. Let’s denote by zh the h-class containing the central g-class z⊆Z(g). Recall
from Section 3 that to each central class one can assign its central character,
and this provides an explicit isomorphism between the center and its Pontryagin
dual. Because z ⊆ zh and h ⊆ g implies ϖzh(α) = ϖz(α) for α ∈ h, it follows
that ϖ(z1z2)h(α) = ϖz1z2(α) = ϖz1(α) ϖz2(α) = ϖzh

1
(α) ϖzh

2
(α) for z1, z2 ∈ Z(g).

Since a central class is uniquely determined by its central character, this shows
that (z1z2)h =zh

1zh
2 , proving that dh

g is indeed a homomorphism. Now z∈ker(dh
g),

i.e. zh = h⊥ precisely when z ⊆ h⊥, and this proves that ker(dh
g) = Z(g|h). But a

central h-class belongs to the image of dh
g in case it contains at least one central

g-class, i.e. if its intersection with ∪Z(g) is not empty, one finally concludes that
im(dh

g)=
{

z∈Z(h)| z ∩ (∂g)⊥ ̸= ∅
}

=I(g|h) by using Eq.(3.3). □

Notice that one has Z(g|g) = 1 and I(g|g) = Z(g) as a consequence of Eq.(3.3),
while Z(g|h) = Z(g) and I(g|h) = 1 for h⊆∂g, and in particular Z(g|∂g) = Z(g).
Moreover, it follows from Theorem 1 and the homomorphism theorem [10] that

I(g|h)∼=Z(g)/Z(g|h) (5.1)
and by Lagrange’s theorem this implies that the order of I(g|h) (being a homomorphic
image, resp. subgroup) must divide both the order of Z(g) and that of Z(h). In
particular, if the order of Z(g) and of Z(h) are coprime, then I(g|h) = 1, hence
Z(g|h)=Z(g), and this implies (∂g)⊥ =∪Z(g)⊆h⊥, i.e. h⊆∂g.

We shall call dh
g :Z(g)→Z(h) the restriction homomorphism. Clearly, for h ⊆ j ⊆ g

the restriction homomorphisms dj
g and dh

j can be composed, and this observation
leads to the following basic result.

Lemma 1. Z(g|j) < Z(g|h) and I(g|h) < I(j|h) in case h ⊆ j ⊆ g, and the diagram
Z(g) Z(h)

Z(j)
dj
g

dh
g

dh
j

is commutative, hence dh
j (I(g|j)) = I(g|h) and dj

g(Z(g|h)) = I(g|j) ∩ Z(j|h).

Proof. h⊆ j⊆g implies j⊥ ⊆h⊥ and (∂g)⊥ ⊆(∂j)⊥, hence z∈Z(g|j) implies z∈Z(g|h),
while z∈I(g|h) gives z∈I(j|h), proving the two inclusions. The commutativity of
the diagram, i.e. the equality dh

j ◦dj
g =dh

g is immediate from the definitions, and it
implies at once the equality dh

j (I(g|j)) = dh
j

(
im(dj

g)
)

= im(dh
j ◦dj

g) = im(dh
g) = I(g|h).

To prove the last claim, note that in case z ∈ dj
g(Z(g|h)) there exists z ∈ Z(g|h)

such that z = dj
g(z), hence dh

j (z) = dh
g(z) = h⊥, i.e. z ∈ Z(j|h), and this shows that

dj
g(Z(g|h))< Z(j|h); as the inclusion dj

g(Z(g|h))< im(dj
g) = I(g|j) is immediate, we

conclude that dj
g(Z(g|h)) ⊆ I(g|j)∩Z(j|h). On the other hand, z ∈ I(g|j) ∩ Z(j|h) if

there exists z∈Z(g) such that z=dj
g(z) belongs to Z(j|h)=ker(dh

j ), and this happens
precisely when dh

g(z) =
(
dh
j ◦dj

g

)
(z) = dh

j (z) = h⊥, i.e. z ∈ ker(dh
g), which implies

z∈dj
g(Z(g|h)), proving finally that dj

g(Z(g|h))⊇I(g|j) ∩ Z(j|h). □
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Before the next result, let’s recall the isomorphism theorems of group theory [10]:
for any two subgroups A and B of an abelian group C, one has

A/A ∩B ∼= AB/B (5.2)
Moreover, in case A<B one has

(C/A)/(B/A)∼=C/B (5.3)

Lemma 2. For h⊆ j⊆g one has isomorphisms
I(g|j)∩Z(j|h) ∼= Z(g|h)/Z(g|j) (5.4)

I(g|h) ∼= I(g|j)Z(j|h)/Z(j|h) (5.5)
and

I(j|h)/I(g|h) ∼= Z(j)/I(g|j)Z(j|h) (5.6)

Proof. Consider the restriction of dj
g to Z(g|h). By Lemma 1, its image equals

I(g|j)∩Z(j|h), while its kernel is Z(g|j), and Eq.(5.4) follows from the homomorphism
theorem. Next, denote by ϕ the restriction of dh

j to I(g|j): since, once again by
Lemma 1, one has im(ϕ)=dh

j (I(g|j))=I(g|h) and ker(ϕ)=dj
g(Z(g|h))=I(g|j)∩Z(j|h),

hence I(g|h)∼=I(g|j)/I(g|j) ∩ Z(j|h), and Eq.(5.5) follows from this by substituting
A=I(g|j) and B=Z(j|h) into Eq.(5.2). Finally, Eq.(5.6) follows from Eq.(5.5) by
substituting A=Z(j|h), B=I(g|j)Z(j|h) and C=Z(j) into Eq.(5.3)

I(j|h)/I(g|h)∼=(Z(j)/Z(j|h))/(I(g|j)Z(j|h)/Z(j|h))∼=Z(j)/I(g|j)Z(j|h)
and taking into account that I(j|h)∼=Z(j)/Z(j|h) by Eq.(5.1). □

Lemma 3. Z(g|h1) ∩ Z(g|h2) = Z(g|h1∨ h2) and Z(g|h1)Z(g|h2)<Z(g|h1∩h2) in case
h1, h2 ⊆g, and in particular Z(g|h∨∂g)=Z(g|h) and Z(g|h∩∂g)=Z(g) for any h⊆g.

Proof. z ∈ Z(g) belongs to Z(g|h1)∩Z(g|h2) if it is contained in both h1
⊥ and h2

⊥,
i.e. z⊆h1

⊥ ∩ h2
⊥ =(h1∨ h2)⊥, proving the first claim. But according to Lemma 2

the inclusions h1∩h2 ⊆h1, h2 ⊆g imply that both Z(g|h1) and Z(g|h2) are subgroups
of Z(g|h1∩h2), hence Z(g|h1)Z(g|h2)<Z(g|h1∩h2). The final claim follows from the
above by substituting h1 =h and h2 =∂g, and taking into account Z(g|∂g)=Z(g). □

6. The Galois correspondence

Let’s introduce the notation h∝g to indicate that h∈L is a central quotient of
g∈L (equivalently, that g is a central extension of h); in other words, h∝g means
∂g⊆h⊆g or, what is the same, h⊆g⊆h⊺ (c.f. Section 3). Note that this is not a
transitive relation, i.e. h∝ j and j∝g does not necessarily imply h∝g. On the other
hand, because every central quotient is a central extension of the maximal central
quotient, h∝g implies ∂g∝h, and this gives in turn ∂h∝∂g.

Theorem 2. ∪Z(g|h) =h⊥ and ∪I(g|h) = (∂g)⊥ in case h∝g, hence h=g/Z(g|h)
and h/I(g|h)=∂g; in particular,

I(g|h)=Z(h|∂g) (6.1)

Proof. If h is a central quotient of g, then h=g/G for some G<Z(g) with ∪G=h⊥,
c.f. Section 3, hence all g-classes contained in h⊥ are central and ∪Z(g|h) = h⊥,
consequently G = Z(g|h). But h ∝ g implies ∂g ∝ h, hence ∂g = h/H for some
subgroup H<Z(h), and because ∪H=(∂g)⊥, every h-class contained in (∂g)⊥ is
central; since (∂g)⊥ is a union of h-classes, we get that ∪I(g|h)=(∂g)⊥ =∪Z(h|∂g),
proving that indeed I(g|h)=Z(h|∂g). □
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To better grasp the meaning of Theorem 2, let’s rewrite it in a (perhaps) more
suggestive form. To this end, consider a subgroup H<Z(g), and let h=g/H, so that
h∝g. Since h∝g implies ∂h∝ ∂g, there exists a subgroup ∂H<Z(∂g) such that
∂h=∂g/∂H , and by Theorem 2 one has Z(g|h)=H and Z(∂g|∂h)=∂H. It follows
from Eq.(5.1) that there is a short exact sequence

1 −−−−→ Z(g|h) −−−−→ Z(g) −−−−→ I(g|h) −−−−→ 1 (6.2)
As h∝g implies ∂g∝h, we can substitute ∂g for h, and simultaneously h for g in
Eq.(6.2) to yield the exact sequence

1 −−−→ Z(h|∂g) −−−→ Z(h) −−−→ I(h|∂g) −−−→ 1 (6.3)
But I(h|∂g) = Z(∂g|∂h) = ∂H and Z(h|∂g) = I(g|h) ∼= Z(g)/Z(g|h) = Z(g)/H by

Theorem 2 and Eq.(5.1), hence we arrive finally at the exact sequence
1 −−−−→ Z(g)/H −−−−→ Z(g/H ) −−−−→ ∂H −−−−→ 1 (6.4)

which shows clearly that ∂H measures the extent by which Z(g/H ) differs from
the naive expectation Z(g)/H. In particular, one has Z(g/H )∼=Z(g)/H only in case
∂H=1, i.e. when ∂g=∂h.
Lemma 4. If h∝g and h⊆ j⊆g, then Z(j|h)<I(g|j), consequently

Z(j|h) ∼= Z(g|h)/Z(g|j) (6.5)
and

Z(∂g|∂j) ∼= I(j|h)/I(g|h) (6.6)

Proof. h∝g and h⊆ j⊆g imply j∝g, hence ∂g∝ j, consequently I(g|j)=Z(j|∂g) and
I(j|∂g) = Z(∂g|∂j) according to Theorem 2. On the other hand, ∂g⊆ h⊆ j gives
Z(j|h)<Z(j|∂g) according to Lemma 1, hence Z(j|h)<Z(j|∂g)=I(g|j) by the above.
But Z(j|h)<I(g|j) implies I(g|j)∩Z(j|h)=Z(j|h) and I(g|j)Z(j|h)=I(g|j), and taking
this into account, Eq.(5.4) reduces to Eq.(6.5), while Eq.(5.6) leads to

I(j|h)/I(g|h)∼=Z(j)/I(g|j)=Z(j)/Z(j|∂g)∼=I(j|∂g)=Z(∂g|∂j)
in view of Theorem 2 and Eq.(5.1), proving Eq.(6.6). □

For subgroups H1 <H2 < Z(g), Eq.(6.5) with the choice j= g/H1 and h= g/H2
gives us an isomorphism

Z(g/H1|g/H2)∼=H2/H1 (6.7)
while combining Eq.(6.6) with Eq.(6.2) leads to the exact sequence

1 −−−→ Z(g)/H2 −−−→ I(g/H1|g/H2) −−−→ ∂H1 −−−→ 1 (6.8)
To formulate our next result, let’s introduce the notation L (h,g)={j∈L | h⊆ j⊆g}

for g, h ∈ L ; notice that L (h,g) is empty unless h ⊆ g. In particular, L (∂g,g)
equals the collection of central quotients, and L (g,g⊺) that of central extensions of
g according to the comments following Eq.(3.3). As a byproduct of Theorem 2, one
gets an interesting extension of the Galois correspondence that has been described in
Section 3, according to which there is, in case h is a central quotient of g, a one-to-one
correspondence between the subgroups of Z(g|h) and those central quotients of g
that contain h. But h∝g implies ∂g∝h, i.e. ∂g is a central quotient of h, hence
there is a one-to-one correspondence between the subgroups of Z(h|∂g)=I(g|h) and
those central quotients of h that contain ∂g. Since these are nothing but the central
quotients of g contained in h, in the end we get a one-to-one correspondence between
the latter and the subgroups of I(g|h). For later reference, let’s formulate this result
as a Lemma.
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Lemma 5. In case h∝g, there are one-to-one correspondences between L (h,g) and
subgroups of Z(g|h) on one hand, and between L (∂g,h) and subgroups of I(g|h) on
the other.

Combined with the modularity of the lattice L , Lemma 5 leads to important
results, notably the following strengthening of Lemma 3.

Lemma 6. Z(g|h1)Z(g|h2)=Z(g|h1∩h2) if both h1 and h2 are central quotients of g.

Proof. Indeed, the inclusions ∂g ⊆ h1, h2 ⊆ g imply ∂h1 ⊆ ∂g ⊆ h1 ∩h2 ⊆ h1 and
∂(h1∨ h2) ⊆ ∂g ⊆ h2 ⊆ h1∨ h2, hence h1∩h2 ∝ h1 and h2 ∝ h1∨ h2, so there is, by
Lemma 5, a one-to-one correspondence between L (h2,h1∨ h2) and subgroups of
Z(h1∨ h2|h2) on one hand, and between L (h1∩h2,h1) and subgroups of Z(h1|h1∩h2)
on the other. Z(g|h1)Z(g|h2) is a subgroup of Z(g|h1∩h2) by Lemma 3: should it be
a proper subgroup, the factor group Z(g|h1)Z(g|h2)/Z(g|h1), which is isomorphic to
Z(g|h2)/Z(g|h1∨ h2)∼=Z(h1∨ h2|h2) according to Eq.(5.2) and Lemma 4, would have
less subgroups than the factor group Z(g|h1∩h2)/Z(g|h1)∼=Z(h1|h1∩h2), contradicting
the one-to-one correspondence between L (h2,h1∨ h2) and L (h1∩h2,h1) that follows
from the modularity of L . □

The above result has the following important consequence: consider subgroups
H1, H2<Z(g), and let h1 =g/H1 and h2 =g/H2, so thatH1 =Z(g|h1) andH2 =Z(g|h2).
Since H1 ∩H2 = Z(g|h1∨h2) by Lemma 3, while H1H2 = Z(g|h1∩h2) according to
Lemma 6, one has by Theorem 2

(g/H1)∨(g/H2)=g/(H1∩H2) (6.9)
and

(g/H1)∩(g/H2)=g/(H1H2) (6.10)
which means that the correspondences of Lemma 5 are actually lattice isomorphisms.

In the same vein, one gets the following far-reaching generalization of Theorem 2.

Theorem 3. g/Z(g|h)=h∨∂g and h/I(g|h)=h∩∂g for h⊆g, and in particular
I(g|h)=Z(h|h∩∂g) (6.11)

Proof. As h ⊆ g implies both ∂g ⊆ h∨ ∂g ⊆ g and ∂h ⊆ h∩ ∂g ⊆ h, we have
g/Z(g|h∨∂g) = h∨∂g and h/Z(h|h∩∂g) = h∩∂g according to Theorem 2. But
Z(g|h∨∂g)=Z(g|h) by Lemma 3, proving the first assertion, while the second one
would follow from the equality I(g|h) = Z(h|h∩∂g). To prove the latter, consider
j= h/I(g|h); we claim that j⊆ h∩∂g. The inclusion j⊆ h is obvious, while j⊆ ∂g
follows from the observation that, because every central g-class is contained in a
central j-class, the union ∪Z(g)=(∂g)⊥ of all central g-classes should be contained
in the union ∪I(g|j)= j⊥ of all those central j-classes that contain at least one central
g-class, hence (∂g)⊥ ⊆ j⊥ or, what is the same, j⊆ ∂g. But j⊆ h∩∂g means that
h/I(g|h)⊆h/Z(h|h∩∂g), hence Z(h|h∩∂g) is a subgroup of I(g|h) by Lemma 5. We
claim that they are actually equal.

According to Lemma 5, there is a one-to-one correspondence between subgroups of
I(g|h∨∂g) and L (∂g,h∨∂g) on one hand, and between subgroups of Z(h|h∩∂g) and
L (h∩∂g,h) on the other. But I(g|h∨∂g) ∼= Z(g)/Z(g|h∨∂g) = Z(g)/Z(g|h) ∼= I(g|h)
by Eq.(5.1): should Z(h|h∩∂g) be a proper subgroup of I(g|h), it would have less
subgroups, contradicting the one-to-one correspondence between L (h∩∂g,h) and
L (∂g,h∨∂g) that follows from the modularity of the deconstruction lattice. □



EXACT SEQUENCES AND THE COMBINATORICS OF CONFORMAL MODELS 12

g

h∨∂g= g/Z(g|h)

∂g

h

h∩∂g= h/I(g|h)

∂h

Fig.3: Inclusion relations relevant to Theorem 3.

7. A long exact sequence

An interesting addendum to the previous results follows from the observation
that, thanks to Eq.(6.1), the short exact sequences Eq.(6.2) and Eq.(6.3) can be
combined for h∝g into a four-term exact sequence, and the latter leads, by means
of a recursive process, to a long exact sequence connecting the centers of higher
central quotients.

Too see how this come about, remember that I(g|h) = Z(h|∂g) for h ∝ g by
Theorem 2, hence the short exact sequence of Eq.(6.2) reads in this case

1 −−−−→ Z(g|h) −−−−→ Z(g) −−−−→ Z(h|∂g) −−−−→ 1 (7.1)
Next, since h∝g implies ∂g∝h, we can substitute ∂g for h, and simultaneously h
for g in Eq.(7.1) to yield

1 −−−−→ Z(h|∂g) −−−−→ Z(h) −−−−→ Z(∂g|∂h) −−−−→ 1 (7.2)
and combining this last sequence with Eq.(7.1) gives the four-term exact sequence

1 −−−−→ Z(g|h) −−−−→ Z(g) −−−−→ Z(h) −−−−→ Z(∂g|∂h) −−−−→ 1 (7.3)

But there is no reason to stop here, as h∝g implies ∂kh∝∂kg for any k≥1, so
we can substitute ∂kg for g and ∂kh for h in Eq.(7.3) to obtain an exact sequence

1 −→ Z(∂kg|∂kh) −→ Z(∂kg) −→ Z(∂kh) −→ Z(∂k+1g|∂k+1h) −→ 1
Combining Eq.(7.3) with the above sequences for k=1, . . . , n leads finally to the
long exact sequence

1 Z(g|h) Z(g) Z(h) Z(∂g) Z(∂h)

· · · Z(∂ng) Z(∂nh) Z(∂n+1g|∂n+1h) 1

Since ∂n+1g = ∂ng for large enough n (c.f. Section 3) and ∂k+1g ⊆ ∂kh ⊆ ∂kg

for h∝g and k>1, there exists a largest integer N such that ∂Nh ̸=∂Ng (clearly,
this integer depends on both g and h). This leads finally to the following result.
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Theorem 4. If h∝g and N is the largest integer such that ∂Nh ̸=∂Ng, then there
is a long exact sequence

1 Z(g|h) Z(g) Z(h) Z(∂g)

Z(∂h) · · · Z(∂Ng) Z(∂Nh) 1

Proof. This is a direct consequence of the above considerations, taking into account
that Z(∂N+1g|∂N+1h)=1 since ∂N+1h=∂N+1g. □

8. Extensions vs quotients

We have gone a long way in achieving our original goal of understanding the
relations between the centers of different elements of L , c.f. the exact sequences
Eq.(6.4) and Eq.(6.8), or the isomorphism Eq.(6.7). But this is by no means the
end of the story, as practical considerations suggest that one should also consider
the case of central extensions besides that of quotients. Of course, since h∝g not
only means that h is a central quotient of g, but also that g is a central extension
of h, all the results of Section 6 apply, but they have the drawback of referring to
central quotients of g and h instead of their central extensions. Fortunately, this
can be remedied by using the following result.

Lemma 7. Z(h⊥|g⊥)∼=Z(g|h) and I(h⊥|g⊥)∼=Z(h⊺|g) whenever h∝g.

Proof. First, note that h∝ g iff g⊥ ∝ h⊥. Since by assumption, h= g/H for some
subgroup H<Z(g), hence [6] there is a subgroup H ⊥ of Z(h⊥) isomorphic with H
such that g⊥ =h⊥/H ⊥, and this implies the isomorphism Z(h⊥|g⊥)=H ⊥ ∼=H=Z(g|h)
by Theorem 2. As to the second assertion, it followsEq.(6.1) and the above since
I(h⊥|g⊥)=Z(g⊥|∂(h⊥))=Z(g⊥|(h⊺)⊥)∼=Z(h⊺|g), proving the claim. □

In particular, substituting h⊥ for g and g⊥ for h in Eq.(6.2), and making use of
Lemma 7 leads to the short exact sequence

1 −−−−→ Z(g|h) −−−−→ Z(h⊥) −−−−→ Z(h⊺|g) −−−−→ 1 (8.1)
to be contrasted with Eq.(7.1), while a similar argument applied to Eq.(7.3) leads
to the exact sequence

1 −−→ Z(g|h) −−→ Z(h⊥) −−→ Z(g⊥) −−→ Z(g⊺|h⊺) −−→ 1 (8.2)
Let’s note that, by making use of Theorem 3, one can drop the requirement h∝g,

resulting in the following generalization of Lemma 7.

Lemma 8. Z(h⊥|g⊥)∼=Z(g∩h⊺|h) and I(h⊥|g⊥)∼=Z(h⊺∨g|g) for h⊆g.

Proof. First of all, let’s note that ∂(h⊥) ⊆ g⊥ ∩ ∂(h⊥) ⊆ g⊥ ⊆ g⊥ ∨ ∂(h⊥) ⊆ h⊥

whenever h ⊆ g, and this implies Z(h⊥|g⊥) = Z(h⊥|g⊥ ∨∂(h⊥)) ∼= Z(g∩h⊺|h) and
I(h⊥|g⊥)=Z(g⊥|g⊥ ∩∂(h⊥))∼=Z(g∨h⊺|g) according to Theorem 3 and Lemma 7. □

Substituting h⊥ for g and g⊥ for h in Eq.(6.2) gives (for h⊆g)
1 −−−−→ Z(g∩h⊺|h) −−−−→ Z(h⊥) −−−−→ Z(h⊺∨g|g) −−−−→ 1 (8.3)

when taking into account Lemma 8, to be compared to the sequence
1 −−−−→ Z(g|h ∨ ∂g) −−−−→ Z(g) −−−−→ Z(h|h∩∂g) −−−−→ 1 (8.4)

that follows from Eq.(6.11).
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9. Summary and outlook

The main theme of our investigations was to characterize the mutual relations
between the centers of different elements of the deconstruction lattice L , with
particular emphasis on the central quotients and extensions of a given g∈L . We
have seen that one can go a long way in this direction using exact sequences, as
exhibited by results like Eq.(6.4), Theorem 4 and Eq.(8.2). While not providing
a direct and constructive description of the relevant groups, this information is
usually enough to pin down (more or less uniquely) their structure, and this is what
matters for most applications. Once the relevant centers are known, one can use this
knowledge to simplify greatly otherwise cumbersome computations that could prove
difficult in case of large examples. In particular, the explicit Galois correspondence
described by Lemma 5 is a very useful tool in actual computations, while Lemma 8
settles the dual relation of central quotients and extensions.

Apart from the practical considerations set forth above, there are more conceptual
issues underlying the interest in the previous results. One such is the search for an
analogue of the famous lemma of Grün [10], according to which the upper central
series of a perfect group has length at most two. In our context this would mean
that, provided g ∈ L does not contain any simple current, the maximal central
quotient ∂g should be centerless, i.e. Z(∂g)=1. While this holds automatically for
local g∈L corresponding to some finite group, the generic case seems much more
difficult to prove, as there is no clear adaptation of the group theoretic techniques
used in the proof of Grün’s lemma.

Another interesting question concerns the analogue of Ito’s theorem [22, 23],
which in our case is tantamount to the claim that the ratio

1
dα

∑
p∈∂g

d2
p

is an algebraic integer for every α ∈ g. Should this claim hold, it would restrict
severely the arithmetic properties of the quantum dimensions and, more generally,
the Galois action on the primaries [6]. As before, the claim follows from known
group theoretic results for local g∈L corresponding to some finite group, but its
generalization to arbitrary g∈L is far from being obvious.

Finally, we should note that in the preceding discussions we have neglected one
important aspect, namely that the center Z(g) of any given g∈L is not simply an
abelian group, but has a natural permutation action on the set of g-classes [6], which
is compatible with the restriction map. This permutation action is far from being
arbitrary, as can be seen most directly on the example of abelian g, i.e. when all
primaries in g are simple currents, since in this case the g-classes are in one-to-one
correspondence with the characters of Z(g), and the permutation action is regular,
i.e. the action of Z(g) on itself by translations. On the other extreme, if g equals
the maximal element of the deconstruction lattice L , then each g-class contains
precisely one primary, with central classes containing the simple currents, and the
corresponding permutation action is nothing but the action of the group of simple
currents on the set of primaries that is induced by the fusion product. This latter
action is known to have non-trivial properties [24]. It is natural to expect that for
g∈L intermediate between these two extremes, the permutation action of Z(g) still
enjoys some interesting properties, but this circle of questions lies outside the scope
of the present note.
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Appendix A. Proof of modularity

Lemma 9. For g, h∈L , a primary p belongs to the join g∨h iff there exists α∈g
and β∈h such that Np

αβ > 0.

Proof. Let g ⊔ h=
{
p |Np

αβ>0 for some α∈g and β∈h
}

. Clearly, both g and h are
contained in g ⊔ h. On the other hand, p∈g ⊔ h means that there exists α∈g and
β ∈ h such that Np

αβ > 0: since g∨h is the least element of L containing both g
and h, we have necessarily p ∈ g∨h, hence g ⊔ h ⊆ g∨h. To prove that they are
actually equal, it suffices to show that g ⊔ h∈L , i.e. that p, q∈g ⊔ h and Nr

pq>0
implies r∈g ⊔ h. But this is tantamount to showing that, if there exists α1, α2 ∈g
and β1, β2 ∈h such that Np

α1β1
>0 and Nq

α2β2
>0, then for all r such that Nr

pq>0
there exists α3 ∈g and β3 ∈h satisfying Nr

α3β3
>0. By the associativity of the fusion

algebra, it follows form our assumptions that
0 < Np

α1β1
Nq
α2β2

Nr
pq ≤

∑
s,t

Ns
α1β1

N t
α2β2

Nr
st =

∑
w,t

Nw
α1tN

r
β1wN

t
α2β2

=
∑
w,u

Nu
α1α2

Nw
β2uN

r
β1w =

∑
u,v

Nu
α1α2

Nv
β1β2

Nr
uv

i.e. there should exist primaries α3 and β3 such that Nα3
α1α2

, Nβ3
β1β2

and Nr
α3β3

are
all positive. But g, h ∈ L and Nα3

α1α2
Nβ3
β1β2

> 0 implies that α3 ∈ g and β3 ∈ h,
consequently r∈g ⊔ h. □

The previous result allows for the following streamlined proof of the modularity
of L (recall that Nr

pq=Nq
pr, with p denoting the charge conjugate of p).

Theorem 5. The lattice L is modular, that is
h2 ∩ (h1 ∨ g) ⊆ h1 ∨ (h2 ∩ g)

for g, h1, h2 ∈L such that h1 ⊆h2.

Proof. Suppose that α∈h2 ∩ (h1 ∨ g). Then α∈h2, hence α∈h2, and by Lemma 9
there exists primaries β∈h1 and γ∈g such that Nα

βγ>0. But β∈h2 since h1 ⊆h2,
consequently Nγ

βα=Nα
βγ implies γ∈h2, i.e. γ∈h2. All in all, we get that Nα

βγ>0
with β∈h1 and γ∈g ∩ h2, consequently α∈h1∨(h2 ∩ g) by Lemma 9, proving the
assertion. □

Modularity has many important consequences [9], e.g. the Kurosh-Ore theorem or
having a modular rank function, but our analysis makes mainly use of the so-called
diamond isomorphism theorem, according to which, for any two elements a, b of a
modular lattice (L,∧,∨), there is an order-preserving one-to-one correspondence
between the sets {x∈L | a ∧ b ≤ x ≤ a} and {x∈L | b ≤ x ≤ a ∨ b}.
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