Non relativistic SUSY in variants of the planar Lévy-Leblond equation

(Exotic symmetries and spacetimes, Tours, November 2022)

László Palla
Institute for Theoretical Physics Eötvös University

based on
arXiv:2006.15129[hep-th]

My encounters with Peter

- KÖMAL math. competitions undergraduate years
- monopole era mid'70 - mid'80
- Tours 1994-96

2+1 dim. Chern-Simons collaboration with C. Duval
several visits to Tours

Outline

- Introduction
- The free planar LLE and its bosonic symmetries
- Supercharge candidates and the weak identification
- $N=2$ SUSY for the free LLE
- SUSY for the gauged LLE
- SUSY for the Chern-Simons coupled LLE
- Summary

Non relativistic SUSY in planar Lévy-Leblond equation
non rel. SUSY: extend Schrödinger symmetry by anticommuting generators (Duval, Horváthy) in $d>2$ unique $N=1$ extension

$$
\text { in } d=2 \text { two } N=1 \text { combining into } N=2
$$

Lévy-Leblond equation (LLE): in $3+1$
"non relativistic Dirac eq." for $s=\frac{1}{2}$ particle $\left(\begin{array}{cc}-i \vec{\sigma} \vec{\partial} & -2 i m \\ \partial_{t} & i \vec{\sigma} \vec{\partial}\end{array}\right)\binom{\Phi}{\chi}=0$
its square Pauli equation
$N=1$ extension (Aizawa et al.)
here planar LLE its Schrödinger symmetry known (Duval, Horváthy, Palla)
describe non rel. $2+1$ space R by Kaluza-Klein reduction: $(M, g) \quad 3+1$ dim. Lorentz ξ cov. const. lightlike $\quad R \quad$ quotient of M coordinates on $M \quad\left(t, x^{i}, s\right) i=1,2 \quad \xi \equiv \partial_{s} \quad$ metric $\quad \sum\left(d x^{i}\right)^{2}+2 d t d s$ non rel. symmetries: higher dim. ones leaving ξ invariant

Free LLE and its bosonic symmetries massles 4d Dirac eq. $\quad \not \quad \psi=0$
$\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 g^{\mu \nu} \quad \gamma^{t}=\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}-i \sigma^{i} & 0 \\ 0 & i \sigma^{i}\end{array}\right) \quad i=1,2 \quad \gamma^{s}=\left(\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right)$
equivariance condition $\nabla_{\xi} \psi=i m \psi \quad$ and Ansatz $\psi=e^{i m s}\binom{\Phi\left(t, x^{i}\right)}{\chi\left(t, x^{i}\right)}$
$\left(\begin{array}{cc}-i \sigma^{j} \partial_{j} & -2 i m \\ \partial_{t} & i \sigma^{j} \partial_{j}\end{array}\right)\binom{\Phi}{\chi}=0 \quad \Gamma=-\frac{\sqrt{-g}}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}=\left(\begin{array}{cc}-i \sigma^{3} & 0 \\ 0 & i \sigma^{3}\end{array}\right)$
Γ splits into two for 2 component $\psi_{\epsilon} \quad \Gamma \psi_{\epsilon}=-i \epsilon \psi_{\epsilon} \quad \epsilon= \pm$

$$
\psi_{+}=e^{i m s}\left(\begin{array}{l}
\phi_{+} \\
0 \\
0 \\
\chi_{+}
\end{array}\right) \quad\left(\begin{array}{cc}
-i\left(\partial_{1}+\epsilon i \partial_{2}\right) & -2 i m \\
\partial_{t} & i\left(\partial_{1}-\epsilon i \partial_{2}\right)
\end{array}\right)\binom{\phi_{\epsilon}}{\chi_{\epsilon}}=0 \quad \psi_{-}=e^{i m s}\left(\begin{array}{l}
0 \\
\phi_{-} \\
\chi_{-} \\
0
\end{array}\right)
$$

in 2d there are two LLE-s (!) since $\quad \not \equiv \neq\left(-2 i m \partial_{t}-\partial_{k} \partial_{k}\right) 1_{4}$ their "squares"

$$
i \partial_{t}\binom{\Phi}{\chi}=H\binom{\Phi}{\chi} \quad H=-\frac{1}{2 m} \partial_{k} \partial_{k} \mathbf{1}_{4}
$$

bosonic symmetries: $\quad \xi\left(\equiv \partial_{s}\right)$ preserving 4d conformal transformations

$$
[\mathcal{B}, \not \varnothing]=\Sigma_{\mathcal{B}} \ngtr \quad \Sigma_{\mathcal{B}}=-\frac{1}{4} \nabla_{\mu} X_{\mathcal{B}}^{\mu}
$$

explicitely (∂_{t} and ∂_{j} are trivial)

$$
\left.\begin{array}{c}
d=\left(\begin{array}{cc}
2 t \partial_{t}+x^{k} \partial_{k}+1 & 0 \\
0 & 2 t \partial_{t}+x^{k} \partial_{k}+2
\end{array}\right) \quad b^{j}=\left(\begin{array}{cc}
t \partial_{j}-i m x^{j} & 0 \\
\frac{i}{2} \sigma^{j} & t \partial_{j}-i m x^{j}
\end{array}\right) \\
K=\left(\begin{array}{cc}
t^{2} \partial_{t}+t x^{k} \partial_{k}+t-\frac{i m}{2} r^{2} & 0 \\
\frac{i}{2} \sigma^{j} x_{j} & t^{2} \partial_{t}+t x^{k} \partial_{k}+2 t-\frac{i m}{2} r^{2}
\end{array}\right)
\end{array} r^{2}=x^{k} x^{k}\right)
$$

Schrödinger symmetry algebra $\quad s c h(2)=\left(s l_{2} \oplus s o(2)\right)$ (S) $h(2)$ Heisenberg algebra $h(2) \quad\left[i \partial_{j}, b^{k}\right]=m \delta^{j k} 1_{4} \quad J$ forms so(2) $\left(i \partial_{t}, d, K\right)$ form $s l_{2} \quad\left[d, i \partial_{t}\right]=-2 i \partial_{t}, \quad\left[i \partial_{t}, K\right]=i \cdot d, \quad[d, K]=2 K$ all $\mathcal{B} \quad[\mathcal{B},\ulcorner]=0 \quad$ for later reference $\quad[d, H]=-2 H$

Supercharge candidates fermionic extensions $\mathcal{F} \quad\{\mathcal{F}, \not \subset\}=\Sigma_{\mathcal{F}} \not \subset$ (trivial sol. $\mathcal{F}=1_{4}, \quad \mathcal{F}=\Gamma$ generate chiral rotation) non-trivial solutions

$$
\left.\begin{array}{rl}
\mathcal{F} & =\tilde{Q}=\frac{1}{\sqrt{2 m}}\left(\begin{array}{cc}
-i \epsilon_{k l} \sigma^{k} \partial_{l} & 0 \\
0 & i \epsilon_{k l} \sigma^{k} \partial_{l}
\end{array}\right)=\frac{1}{\sqrt{2 m}} \gamma^{k} \epsilon_{k l} \partial_{l}, \\
\mathcal{F} & =\wedge=\left(\begin{array}{cc}
0 & \beta \\
\alpha \partial_{t} & 0
\end{array}\right)=\alpha \gamma^{t} \partial_{t}-\frac{\beta}{2} \gamma^{s}
\end{array}\left(\Sigma_{\tilde{Q}}=0\right)=0\right) \quad \text { if } \quad \beta-2 i m \alpha=00 .
$$

normalizations $\quad \tilde{Q} \widetilde{Q}=H \quad \wedge \wedge=\alpha \beta \partial_{t} 1_{4} \quad$ commute with ξ $\{\Gamma, \widetilde{Q}\}=0, \quad\{\Gamma, \wedge\}=0, \quad\{\wedge, \widetilde{Q}\}=0$
$\tilde{Q} \psi_{\epsilon} / \wedge \psi_{\epsilon}$ opposite chirality to $\psi_{\epsilon} \rightarrow \tilde{Q} \psi_{+} / \wedge \psi_{+}$solve LLE for $\psi_{-}(!)$ we need both ψ_{+}and ψ_{-}to represent \widetilde{Q} / \wedge
\widetilde{Q} and \wedge commute with translations and rotation
supercharge candidates
choose $\alpha \beta=i \quad \wedge=\left(\begin{array}{cc}0 & i \sqrt{2 m} \\ \frac{\partial_{t}}{\sqrt{2 m}} & 0\end{array}\right) \quad$ for solutions of LLE

$$
\wedge \wedge=i \partial_{t} 1_{4}=H=\widetilde{Q} \widetilde{Q}
$$

for solutions of LLE ("weakly") identify $i \partial_{t}$ and $-\frac{1}{2 m} \partial_{k} \partial_{k}$
check weak identification in bosonic algebra
$\left[H, i \partial_{j}\right]=0 \quad[H, J]=0 \quad$ and $\quad\left[H, b^{j}\right]=i \partial_{j}=\left[i \partial_{t}, b^{j}\right]$ look whether (H, d, K) also form $s l_{2}$ algebra

$$
\begin{aligned}
& {[H, K]=}\left(\begin{array}{cc}
2 t\left(-\frac{1}{2 m} \partial_{k} \partial_{k}\right)+i x^{k} \partial_{k}+i & 0 \\
-\frac{i}{2 m} \sigma^{k} \partial_{k} & 2 t\left(-\frac{1}{2 m} \partial_{k} \partial_{k}\right)+i x^{k} \partial_{k}+i
\end{array}\right)= \\
& i \cdot d+\frac{1}{2 m}\left(\begin{array}{cc}
0 & 0 \\
-i \sigma^{k} \partial_{k} & -2 m i
\end{array}\right)=i \cdot d+\frac{1}{2 m} \gamma^{t} \ngtr
\end{aligned}
$$

last term vanishes for sol.s of LLE (!) weakly $s l_{2}$ algebra OK Jacobi identity for $[\mathcal{B},[H, K]]$?

Fermionic extension of the Schrödinger symmetry
new fermionic generators: commute \wedge / \widetilde{Q} with \mathcal{B} start with \wedge

$$
\begin{aligned}
& {\left[\wedge, b^{j}\right]:=Z^{j}, \quad j=1,2 \quad\left\{Z^{j}, Z^{k}\right\}=m \delta^{j k} 1_{4} \quad\left\{\Lambda, Z^{j}\right\}=i \partial_{j} 1_{4}} \\
& {[\wedge, K]:=\widehat{S} \quad \widehat{S} \widehat{S}=i K \text { conformal supercharge }}
\end{aligned}
$$

with \widetilde{Q} analogously

$$
\begin{gathered}
{\left[\widetilde{Q}, b^{j}\right]:=\widetilde{Z}^{j} \quad \tilde{Z}^{j}=-\epsilon_{j k} Z^{k} \quad\left\{\widetilde{Q}, \widetilde{Z}^{j}\right\}=i \partial_{j} 1_{4} \quad\left\{\tilde{Z}^{j}, \widetilde{Z}^{k}\right\}=m \delta^{j k} 1_{4}} \\
{[\widetilde{Q}, K]:=\widetilde{S} \quad \widetilde{S} \widetilde{S}=i K+\frac{t}{2 m} \gamma^{t} \phi \quad \text { weakly also conf. supercharge }}
\end{gathered}
$$

$\left(\wedge, Z^{j}, \widehat{S}\right)$ or $\left(\widetilde{Q}, \widetilde{Z}^{j}, \widetilde{S}\right) \quad$ give two $N=1$ extensions of $\operatorname{sch}(2)$
Q.: can we have them simultaneously? (anti)commutators between different sets $\{\Lambda, \widetilde{S}\}=i J+Y \quad Y=\frac{-i}{2 m}\left(\begin{array}{cc}i m \sigma^{3} & 0 \\ \epsilon_{p q} \sigma^{p} \partial_{q} & i m \sigma^{3}\end{array}\right) \quad Y$ new bosonic generator? $[\mathcal{B}, Y]=0 \quad \mathcal{B}=i \partial_{t}, i \partial_{j}, b^{j}, d, K, J$
$[\Lambda, Y]=i \widetilde{Q} \quad[\widetilde{Q}, Y]=-i \Lambda-\frac{i}{\sqrt{2 m}} \ngtr \quad Y: \quad \wedge \leftrightarrow \widetilde{Q}$ weakly
similarly $Y: \quad Z^{j} \leftrightarrow \tilde{Z}^{j} \quad Y: \quad \widehat{S} \leftrightarrow \widetilde{S} \quad Y$ can be included

$$
\mathcal{B}=i \partial_{t}, i \partial_{j}, b^{j}, d, K, J, Y \quad \mathcal{F}=\wedge, Z^{j}, \widehat{S}, \widetilde{Q}, \widetilde{Z}^{j}, \widetilde{S}
$$

$N=2$ extension of Schrödinger symmetry described by C. Duval and Peter checked generalized Jacobi identities hold weakly

Remarks, discussion

- $\left[\mathcal{B},\ulcorner]=0, \quad\{\mathcal{F}, \Gamma\}=0 \quad\right.$ we need both ψ_{+}and ψ_{-}
- this $N=2$ extension same as the one in planar Pauli eq. (Duval, Horváthy) generators are related non trivially $\quad Q_{2 d} \sim \sigma^{i} \partial_{i} \quad$ "twisted" $Q_{2 d} \sim \epsilon_{i j} \sigma^{i} \partial_{j}$ $\widetilde{Q} 4 d$ version of the "twisted" $Q_{2 d}$ but Λ is tricky $\quad 4 d$ generalization of $Q_{2 d}$ $Q=\frac{1}{\sqrt{2 m}}\left(\begin{array}{cc}-i \sigma^{k} \partial_{k} & 0 \\ 0 & -i \sigma^{k} \partial_{k}\end{array}\right) \quad$ commutes with the Dirac op. $[Q, \not \subset]=0$

$$
Q=\Lambda+\frac{1}{\sqrt{2 m}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \ngtr \quad \text { weakly they coincide }
$$

- in d (space) +1 (time) dim. just one LLE when d odd and two when d even free Dirac eq. on $\quad M_{D=d+2} \quad$ Dirac spinor $2^{[D / 2]} \mathrm{dim}$. irred. for D / d odd, no chirality Γ
splits into two $2^{[d / 2]} \operatorname{dim}$. Weyl for D / d even, $\exists \Gamma$ gen. of \wedge for any $d \quad$ for even $d \quad\{\wedge, \Gamma\}=0 \quad N=1$ extension for any d

$$
N=2 \quad \text { extension for } d=2 \text { only }
$$

SUSY in gauged LLE

reduction from gauged Dirac eq. $\not \phi \psi=0 \quad D_{\mu}=\nabla_{\mu}-$ iea $_{\mu}$ with $a_{\mu}(x)$ $U(1)$ gauge field $\quad f_{\mu \nu}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu}$ closed 2 form no e.o.m.
$f_{\mu \nu} \xi^{\nu}=0 \quad$ guarantees $\quad f_{\mu \nu} \quad$ lift of closed $\quad F_{\alpha \beta} \quad \alpha \beta=t, 1,2$
a_{μ} lift of vector potential $A_{\alpha}=\left(A_{t}, A_{j}\right)$ for $F_{\alpha \beta}$
gauged LLE by substitution $\quad \partial_{j} \rightarrow D_{j} \equiv \partial_{j}-i e A_{j} \quad \partial_{t} \rightarrow D_{t} \equiv \partial_{j}-i e A_{t}$

$$
\left(\begin{array}{cc}
-i \sigma^{j} D_{j} & -2 i m \\
D_{t} & i \sigma^{j} D_{j}
\end{array}\right)\binom{\Phi}{\chi}=0
$$

crutial difference to free LLE $\quad \partial_{j} \partial_{t}$ commute $\quad D_{j} D_{t}$ do not
consider s.p.m. gauge fields $\quad A_{t}=0 \quad \partial_{t} A_{j}=0 \quad\left(F_{t k} \equiv 0 \quad D_{t}=\partial_{t}\right)$
"square" of gauged LLE

$$
i \partial_{t}\binom{\Phi}{\chi}=H_{e}\binom{\Phi}{\chi} \quad H_{e}=-\frac{1}{2 m}\left(\begin{array}{cc}
D_{j}^{2}+e \sigma^{3} \epsilon_{k l} \partial_{k} A_{l} & 0 \\
0 & D_{j}^{2}+e \sigma^{3} \epsilon_{k l} \partial_{k} A_{l}
\end{array}\right)
$$

bosonic symmetries of gauged LLE [DHP] more complicated

$$
[\mathcal{B}, \not D]=-i e \gamma^{\mu}\left(L_{X_{\mathcal{B}}} a\right)_{\mu}-\frac{1}{4} \nabla_{\mu} X_{\mathcal{B}}^{\mu} \not D \quad\left(L_{X_{\mathcal{B}}} a\right)_{\mu} \quad \text { Lie derivative of } a_{\mu}
$$

$$
\text { if } \psi \text { solves gauged LLE, then } \mathcal{B} \psi \text { solves rather } \not p(\mathcal{B} \psi)-i e \gamma^{\mu}\left(L_{X_{\mathcal{B}}} a\right)_{\mu} \psi=0
$$

check fermionic extension start with $\left(\wedge, Z^{j}, \widehat{S}\right)$
$\{\Lambda, \not D\}=0 \quad$ if $\quad A_{t}=0 \quad \partial_{t} A_{j}=0 \quad$ i.e. if gauge field s.p.m.
using simple identities and case-by case analysis: this $N=1$ extension survives
story of $\left(\widetilde{Q}, \widetilde{Z}^{j}, \widetilde{S}\right)$ is different $\quad\{\widetilde{Q}, \not D\} \neq 0 \quad$ and $\quad \widetilde{Q} \widetilde{Q}=H \neq H_{e}$
can define $\quad \widetilde{Q}_{e}=\frac{1}{\sqrt{2 m}}\left(\begin{array}{cc}-i \epsilon_{k l} \sigma^{k} D_{l} & 0 \\ 0 & i \epsilon_{k l} \sigma^{k} D_{l}\end{array}\right) \quad\left\{\widetilde{Q}_{e}, \not D\right\}=0 \quad$ for s.p.m.
but cannot be supercharge as

$$
\left[i \partial_{j}, \widetilde{Q}_{e}\right]=\frac{e}{\sqrt{2 m}} \gamma^{k} \epsilon_{k l} \partial_{j} A_{l} \neq 0
$$

SUSY in LLE coupled to Chern-Simons th. (CS) 4d form of CS
$f_{\mu \nu}=\frac{e}{\kappa} \sqrt{-g} \epsilon_{\mu \nu \rho \sigma} \xi^{\rho} j^{\sigma} \quad f_{\mu \nu}=\partial_{\mu} a_{\nu}-\partial_{\nu} a_{\mu} \quad j^{\mu} \quad$ 4d current $f_{\mu \nu}$ lift of a closed $F_{\alpha \beta} \quad j^{\mu}$ projects to a 3 current $J^{\alpha}=\left(\rho, J^{k}\right) \alpha=t, 1,2$ CS descends as $F_{\alpha \beta}=-\frac{e}{\kappa} \sqrt{-g} \varepsilon_{\alpha \beta \gamma} J^{\gamma} \quad$ with our metric

$$
B \equiv \epsilon_{i j} \partial_{i} A_{j}=-\frac{e}{\kappa} \rho \quad E^{j} \equiv F_{j t}=\frac{e}{\kappa} \epsilon_{j k} J^{k} \quad \partial_{t} J^{t}+\partial_{j} J^{j}=0
$$

couple CS to LLE $\quad\left(\begin{array}{cc}-i \sigma^{j} D_{j} & -2 i m \\ D_{t} & i \sigma^{j} D_{j}\end{array}\right)\binom{\Phi}{\chi}=0$
by identifying CS curent and natural LLE current
Dirac adjoint $\quad \bar{\psi}=\psi^{\dagger} G \quad \bar{\gamma}_{\mu}:=G^{-1} \gamma_{\mu}^{\dagger} G=\gamma_{\mu} \quad G^{\dagger}=G \quad G=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$$
\begin{gathered}
\nabla_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right)=0 \quad j^{\mu}=\bar{\psi} \gamma^{\mu} \psi \quad \text { with our Dirac matrices } \\
\rho \equiv J^{t}=|\Phi|^{2}=\left|\phi_{+}\right|^{2}+\left|\phi_{-}\right|^{2} \quad J^{j}=i\left(\Phi^{\dagger} \sigma^{j} \chi-\chi^{\dagger} \sigma^{j} \Phi\right)
\end{gathered}
$$

In [DHP] ξ preserving conformal transformations act as symmetries on sol.s what about $\quad N=1$ extension by $\left(\wedge, Z^{j}, \widehat{S}\right)$?
$\left(\Lambda, Z^{j}, \widehat{S}\right) \quad$ symmetry of gauged LLE if $\quad A_{t} \equiv 0 \quad \partial_{t} A_{j}=0$ here imply static sol.s with definite chirality spinors only
$F_{j t} \equiv 0 \longrightarrow J^{j}=0 \quad$ and also $\quad \partial_{t} \rho=0 \longrightarrow \chi \equiv 0, \quad \partial_{t} \Phi=0$
$\chi_{+} \equiv 0 \quad \chi_{-} \equiv 0 \quad$ and static $\quad \phi_{ \pm} \quad$ satisfy

$$
\left(D_{1}+i D_{2}\right) \phi_{+}=0 \quad\left(D_{1}-i D_{2}\right) \phi_{-}=0 \quad \epsilon_{i j} \partial_{i} A_{j}=-\frac{e}{\kappa}\left(\left|\phi_{+}\right|^{2}+\left|\phi_{-}\right|^{2}\right)
$$

normalizable sol. when only one of $\phi_{ \pm} \neq 0$
since $\{\ulcorner, \mathcal{F}\}=0$ under any \mathcal{F}
$\binom{\phi}{\chi}=\left(\begin{array}{c}\phi_{+} \\ 0 \\ 0 \\ 0\end{array}\right) \quad\binom{\tilde{\Phi}}{\tilde{\chi}}=\mathcal{F}\binom{\Phi}{\chi}=\left(\begin{array}{c}0 \\ \tilde{\phi}_{-} \\ \tilde{\chi}_{-} \\ 0\end{array}\right) \quad$ has opposite chirality
ρ and J^{j} stay invariant CS eq.s preserve their form under any \mathcal{F} $N=1$ extension survives

Summary

- showed $N=2$ extension of Schrödinger sym. for the free planar LLE
\exists two LLE-s for $\quad \psi_{ \pm} \quad$ we need both
extension exists weakly for solutions of LLE
- $N=1$ part survives for gauged LLE when gauge field is s.p.m.
- the same $N=1$ extension is a symmetry of the solution space of the coupled Chern-Simons - LLE system

